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Abstract. We provide a sharp bound for the order sequence of Wronskians. We
also give another proof of the truncated second main theorem over function fields
which is a generalization of the ABC theorem due to Mason, Voloch, Brownawell
and Masser, Noguchi and the author.

1. Introduction

Let C be an irreducible nonsingular projective algebraic curve of genus g defined

over an algebraically closed field k of characteristic p. Let K be the function field

of C. Suppose that t is a local parameter of a point P of C, i.e. vP (t) = 1. K is

then a finite separable field extension of k(t).(cf. [Si], Chapter II, Proposition 1.4)

Recall that the Hasse derivatives D
(i)
t is defined on k(t) by D

(i)
t (tj) =

(
j
i

)
tj−i, and

then can be naturally extended to K(cf. [S-V]). The Hasse derivatives satisfy the

following:

Proposition 1.1. (a) D
(i)
t (zw) =

i∑
j=0

D
(j)
t (z)D(i−j)

t (w), ∀ z, w ∈ K.

(b) D
(i)
t D

(j)
t =

(
i+j

i

)
Di+j

t .

Let now p > 0. Following Garcia and Voloch’s notation in [G-V], we let Km =

{x ∈ K|D(i)
t (x) = 0 for 1 ≤ i < pm} and let K∞ = {x ∈ K|D(i)

t (x) = 0 for i ≥ 1}.

Proposition 1.2. For all m ≥ 1, Km is a field. Moreover, D
(pm)
t is a derivation

on Km and Km+1 = {x ∈ Km|D(pm)
t (x) = 0}.

Proof. See [G-V], Proposition 1.¤
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Remark. Km = kKpm

and K∞ = k (See [G-V]).

Throughout the paper x0,...,xn will denote elements of K.

Garcia and Voloch also proved the following (cf. [G-V])

Theorem A. x0,...,xn are linearly independent over Km if and only if there exist

integers 0 = ε0 < · · · < εn < pm with det
(
D

(εi)
t (xj)

)
6= 0

In [Wa1], the author gave an upper bound for each εi by showing the following:

Theorem B. If x0, ..., xn are linearly independent over Km, then there exist inte-

gers 0 = ε0 < ε1 < ... < εn with εi ≤ ipm−1 such that

det(D(εi)
t xj)0≤i,j≤n 6= 0.

This bound is the best possible when n < p. For example,

Example. Let K = k(t) and p > n. Let xi = tip
(m−1)

, 0 ≤ i ≤ n, where m

is a positive integer. Then x0, . . . , xn are linearly independent over Kpm

, and

εi = ip(m−1).

When n ≥ p, this bound is clearly not the best possible. We will see later that

the field extension degree [K : Kpα

] = pα. Therefore, when pα ≤ n < pα+1 it only

makes sense to consider the case where x0, . . . , xn are linearly independent over

Kpm

for m ≥ α+1. In Section 2, we will locate the best possible bound for each εi

in the general case. The bound on εi is closely related to the theory of Weierstrass

points in positive characteristic.(cf. [G-V], [S-V], etc.)

In [Wa1], the author used the previous theorem and some results of [S-V] on

Weierstrass points to prove the truncated second main theorem of function fields

of any characteristic which is a generalization of the ABC Theorem due to Mason,

Voloch, and Brownawell and Masser. The truncated second main theorem has many

applications in function field Diophantine geometry. For example, it was used by the

author to study the S-integral points on projective spaces minus hyperplanes.(cf.

[Wa1], [Wa2], [Wa3], and [Wa4]) In Section 3, we will include another proof which

is in the flavor of Nevanlinna theory and only involves Wronskians. We should also

mention here that Noguchi(cf. [No]) also used techniques from Nevanlinna theory

to show a truncated second main theorem for function fields of higher dimension

with characteristic zero.
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Ackowlegements. This note is motivated by some questions about the ABC

theorem and the theory of Weierstrass points that arose during the ABC workshop

of the 1998 Arizona Winter School. The author would like to thank Professor W.

McCallum for suggestions on the proof of Lemma 2.1. The author also wishes to

thank Professor J. F. Voloch for some helpful comments.

2. Wronskians

We first formulate some results to understand the structure of the vector space

spanned by {x0, ..., xn} over Kpγ

, γ ≥ 1.

Lemma 2.1. Let u and m be nonnegative integers. Then the field extension degree

of [Kpm

,Kpm+u

] is pu. Furthermore, {tipm | 0 ≤ i ≤ pu− 1} is a set of basis for the

vector space Kpm

over Kpm+u

.

Proof. To show the field extension degree of [Kpm

,Kpm+u

] is pu, we first prove

that [K : Kp] = p. It then follows similarly that [Kpm

: Kpm+1
] = p. Therefore

[Kpm

,Kpm+u

] = pu.

Since the function field K is a finite separable field extension over k(t), there

exists an element y ∈ K such that K = k(t, y). Furthermore, we may assume that

y satisfies a monic minimal polynomial f(Y ) ∈ k(t)[Y ]. Then we have

[k(t, y) : k(t)][k(t) : k(tp)]

= [k(t, y)] : k(tp)]

= [k(t, y) : k(tp, yp)][k(tp, yp) : k(tp)].

Because that [k(t) : k(tp)] = p, it remains to show that [k(t, y) : k(t)] = [k(tp, yp) :

k(tp)].

Suppose that f(Y ) = Y r + an−1(t)Y r−1 + · · · + a0(t) = f̃(t, Y ), where ai(t) ∈
k(t). We raise each coefficient of ai(t) to its p−th power and denote it by ap

i (t).

Let f̃p(t, y) = Y r + ap
n−1(t)Y

r−1 + · · · + ap
0(t). Then f̃p(tp, yp) = (f̃(t, y))p = 0.

Therefore, [k(tp, yp) : k(tp)] ≤ r. Since k is an algebraically closed field, k = kp.

Therefore if f̃p(tp, Y p) is reducible over k(tp), then f(t, Y ) will be reducible in

k(t)[Y ] which gives a contradiction. Hence [k(tp, yp) : k(tp)] = r = [k(t, y) : k(t)].

Similarly, one can show that [Kpm

: Kpm+1
] = p. Therefore [Kpm

,Kpm+u

] = pu.

One can easily see that det
(
D

(ipm)
t tjpm

)
0≤i,j≤pu−1

6= 0, so the second part of

the assertion follows directly from the Theorem A and the first assertion. ¤
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Lemma 2.2. Suppose pα ≤ n < pα+1 for some nonnegative integer α, and let β be

a nonnegative integer less than or equal to α. If x0, . . . , xn are linearly independent

over Kpα+s

for some positive integer s, then the dimension of the vector space

spanned by x0, . . . , xn over Kpβ+s

is strictly greater than pβ.

Proof. Suppose r + 1 is the dimension of the vector space spanned by x0, . . . , xn

over Kpβ+s

. Without loss of generality, we can assume that x0, . . . , xr are linearly

independent over Kpβ+s

. By Lemma 2.1, {tipβ+s | 0 ≤ i ≤ pα−β−1} is a set of basis

for the vector space Kpβ+s

over Kpα+s

. Then the set

{tipβ+s

xj | 0 ≤ i ≤ pα−β − 1, 0 ≤ j ≤ r}

is linearly independent over Kpα+s

. Since xj , r + 1 ≤ j ≤ n, is a linear com-

bination of x0, . . . , xr over Kpβ+s

, the dimension of the vector space spanned

by {tipβ+s

xj | 0 ≤ i ≤ pα−β − 1, 0 ≤ j ≤ r} over Kpα+s

is no less than the

dimension of the vector space spanned by {x0, . . . , xn} over Kpα+s

. Therefore,

pα−β(r + 1) ≥ n + 1 > pα. Hence r + 1 > pβ . ¤

We will formulate an upper bound on εi according to the dimension of each

vector space spanned by {x0, . . . , xn} over Kpγ

for γ ≥ 0. Later, we will offer some

examples to show that this formulation is necessary.

Theorem 1. Suppose that pα ≤ n < pα+1 and m ≥ α + 1. Let the dimension

of the vector space spanned by x0, . . . , xn over Kpγ

be lγ + 1 for 0 ≤ γ ≤ m. Let

0 = γ0 < γ1 < · · · < γu ≤ m be a sequence of integers between 0 and m such that

0 = lγ0 < lγ1 < · · · < lγu = n and lγδ
= lγδ+1 = · · · = lγδ+1−1. Then x0, . . . , xn are

linearly independent over Kpm

if and only if there exist integers 0 = ε0 < ε1 · · · < εn

with

pγδ−1 + s− 1 ≤ εlγδ−1+s ≤ min{spγδ−1, pγδ − 1}, 1 ≤ s ≤ lγδ
− lγδ−1 ,

such that det
(
D

(εi)
t xj

)
0≤i,j≤n

6= 0.

Remark 2.1. By Lemma 2.2, lm−α+i ≥ pi.

Remark 2.2. It is easy to see that in general one has εi ≤ ipm. Therefore Theorem

1 is stronger than the Theorem B.

Remark 2.3. When the characteristic of k is 0, εi = i.
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Corollary. εlγδ−1+1 = pγδ−1, for δ = 1, 2, ..., u.

Proof. It follows easily from the inequalities in Theorem 1. ¤

Proof of Theorem 1. The “ if ” part comes from Theorem A. Therefore, we only

need to show the other direction.

Without loss of generality, we may assume that x0, ..., xlγδ
are linearly indepen-

dent over Kpγδ . By definition of γδ, x0, ..., xlγδ−1+1 are linearly dependent over

Kpγδ−1
. Therefore, by Theorem A we have εlγδ−1+1 ≥ pγδ−1. Hence, εlγδ−1+s

>

εlγδ−1+1 + s− 1 ≥ pγδ−1 + s− 1. This proves one side of the inequality.

For the other side of the inequality, we will prove it by induction. Since x0, . . . , xlγ1

are linearly independent over Kpγ1 , from Theorem B there exist 0 = ε0 < ε1 · · · <
εlγ1

with εi ≤ ipγ1−1 such that det
(
D

(εi)
t xj

)
0≤i,j≤lγ1

6= 0. Together with Theorem

A, we conclude

εi ≤ min{ipγ1−1, pγ1 − 1}, for 1 ≤ i ≤ lγ1 .

The proof will be completed by two induction steps. First we show that if the

theorem is true for n = lγβ
, 0 ≤ β < u, then it is true for n = lγβ

+ 1. We then

show that if the theorem is true for n = lγβ
+ s, then it is true for n = lγβ

+ s + 1,

where 1 ≤ s < lγβ+1 − lγβ
.

Now suppose that the theorem is true for n = lγβ
and the conclusion of the

theorem does not hold for n = lγβ
+ 1. Then the vectors

(xj , D
(1)
t xj , D

(2)
t xj , . . . , D

(pγβ+1−1)
t xj), 0 ≤ j ≤ lγβ

+ 1

are linearly dependent over K. Then there exist a0, . . . , alγβ
+1 ∈ K such that

lγβ
+1∑

j=0

ajD
(i)
t xj = 0 for 0 ≤ i ≤ pγβ+1−1. (2.1)

Since x0, . . . , xlγβ
are linearly independent over Kpγβ , by the induction hypothesis

we have that the lγβ
+ 1 vectors above, for 0 ≤ j ≤ lγβ

, are linearly independent

over K. Hence alγβ
+1 6= 0 and, without loss of generality, we can assume that

alγβ
+1 = 1. We will show that aj ∈ Kpγβ+1 , for 0 ≤ j ≤ lγβ

. Then we have

x0, . . . , xlγβ
+1 are linearly dependent over Kpγβ+1 which will give a contradiction

that completes this step of induction proof.
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To prove that aj ∈ Kpγβ+1 , by Proposition 1.2, it suffices to show that D
(r)
t aj = 0

for r = 1, p, p2, . . . , pγβ+1−1 . We will prove it by induction. For r = 1, applying Dt

to (2.1), we have

(i + 1)

lγβ
+1∑

j=0

ajD
(i+1)
t xj +

lγβ∑

j=0

DtajD
(i)
t xj = 0.

It follows from (2.1) that

lγβ∑

j=0

DtajD
(i)
t xj = 0, for 0 ≤ i ≤ pγβ+1−1 − 1. (2.2)

Since the lγβ
+ 1 vectors above (i.e. for 0 ≤ j ≤ lγβ

) are linearly independent over

K we get Dtaj = 0 for 0 ≤ j ≤ lγβ
.

Assume that D
(pν)
t aj = 0 for ν = 0, 1, . . . , r − 1 < γβ+1 − 1 and for 0 ≤ j ≤

lγβ
. Then we have aj ∈ Kpr

. Therefore, D
(b)
t aj = 0 for 1 ≤ b ≤ pr − 1 and

for 0 ≤ j ≤ lγβ
. Apply D

(b)
t , 1 ≤ b ≤ pr − 1, to (2.1) for i = pγβ+1−1, i.e.

∑lγβ
+1

j=0 ajD
(pγβ+1−1)
t xj = 0. Then we have

(
pγβ+1−1 + b

b

) lγβ
+1∑

j=0

ajD
(pγβ+1−1+b)
t xj = 0.

Since
(

pγβ+1−1 + b
b

)
6= 0 mod p,

lγβ
+1∑

j=0

ajD
(i)
t xj = 0, for 1 ≤ i ≤ pγβ+1−1 + pr − 1. (2.3)

Applying the operator Dpr

t to (2.1) for 0 ≤ i ≤ pγβ+1−1 − 1, we then have

lβ∑

j=0

D
(pr)
t ajD

(i)
t xj = 0, for 1 ≤ i ≤ pγβ+1−1 − 1.

Since the lγβ
+ 1 vectors above (i.e. for 0 ≤ j ≤ lγβ

) are linearly independent over

K we get D
(pr)
t aj = 0 for j = 0, 1, . . . , lγβ

. This completes the first step of the

induction proof.

Next, we will show that if the theorem is true for n = lγβ
+ s, then it is true

for n = lγβ
+ s + 1, 1 ≤ s < lγβ+1 − lγβ

. If (s + 1)pγβ+1−1 ≥ pγβ+1 − 1, then by

Theorem A the theorem holds. Therefore, we may assume that (s + 1)pγβ+1−1 <
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pγβ+1 − 1. Suppose that the theorem is true for n = lγβ
+ s, and it does not hold

for n = lγβ
+ s + 1, 1 ≤ s < lβ+1 − lβ . Similar to the previous argument, we have

lγβ
+s+1∑

j=0

ajD
(b)
t xj = 0 for 0 ≤ b ≤ (s + 1)pγβ+1−1. (2.4)

Similarly, we can assume that alγβ
+s+1 = 1. It then suffices to show that D

(pν)
t aj =

0 for ν = 1, 2, 3, . . . , γβ+1 − 1. We will do it by induction. Suppose D
(ν)
t aj = 0

for ν = 1, 2, 3, . . . , r − 1 < γβ+1 − 1. Applying the operator D
(pr)
t to (2.4) for

0 ≤ b ≤ spγβ+1−1, we have

lγβ
+s∑

j=0

D
(pr)
t ajD

(b)
t xj = 0 for 0 ≤ b ≤ spγβ+1−1. (2.5)

By the induction hypothesis, the lγβ
+ s+1 vectors above (i.e. 0 ≤ j ≤ lγβ

+ s) are

linearly independent over K. Therefore, D
(pr)
t aj = 0 for j = 0, 1, . . . , lγβ

. Induc-

tively, we have D
(ν)
t aj = 0 for ν = 1, 2, 3, . . . , pγβ+1−1. This completes the second

step of the induction proof. Therefore the proof for this theorem is completed. ¤

We provide the following examples to show that the results is indeed the best

possible and the decomposition on each Kpγ

is necessary.

Example 1. Let K = k(t), p = 3, and n = 10. Let xi = ti for 0 ≤ i ≤ 9, and let

x10 = t18. Then x0, ..., x10 are linearly independent over K27. In this case, α = 2,

m = 3, l0 = 0, l1 = 2, l2 = 8, and l3 = 9; γ0 = 0, γ1 = 1, γ2 = 2, and γ3 = 3. We

have εi = i for 0 ≤ i ≤ 9, and ε10 = 18.

Example 2. Let K = k(t), p = 3, and n = 4. Let x0 = 1, x1 = t3, x2 = t6,

x3 = t9, x4 = t18. Then x0, ..., x4 are linearly independent over K27. In this case,

α = 1, m = 3, l0 = 0, l1 = 0, l2 = 2, and l3 = 4; γ0 = 0, γ1 = 2, and γ2 = 3. We

have ε1 = 3, ε2 = 6, ε3 = 9, ε4 = 18.

Example 3. Let K = k(t), p = 3, and n = 3. Let x0 = 1, x1 = t3, x2 = t9,

x3 = t18. Then x0, ..., x3 are linearly independent over K27. In this case, α = 1,

m = 3, l0 = 0, l1 = 0, l2 = 1, and l3 = 3; γ0 = 0, γ1 = 2, and γ2 = 3. We have

ε1 = 3, ε2 = 9, ε3 = 18.
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3. The Proof of the Truncated Second Main Theorem

In this section we will give another proof for the truncated second main theorem

in the flavor of Nevanlinna theory. The method which we are going to use here

is basically the argument from [B-M] and [La](p.220), but we replace the ordinary

higher derivatives by the Hasse derivatives in order to deal with function fields of

positive characteristic.

We will need some basic propositions.

Proposition 3.1. (a) If gi =
∑

aijxj with (aij) ∈ GLn+1(k), then

det(Dεi
t gj) = det(aij)det(Dεi

t xj).

(b) If h ∈ K, then

det(Dεi
t hxj) = hn+1det(Dεi

t xj).

(c) If x is another separating variable, then

det(Dεi
x xj) = (

dt

dx
)ε0+ε1...+εndet(Dεi

t xj).

Proof. See [S-V], Proposition 1.4.¤

Proposition 3.2. Let tP be a local parameter of a point P ∈ C. If x be a nonzero

element in K, then

vP (
Di

tP
x

x
) ≥

{ −i, if vP (x) 6= 0
0, if vP (x) = 0.

Proof. If vP (x) = 0, we have vP (DtP
x) ≥ 0. Therefore vP (

Di
tP

x

x ) ≥ 0 if vP (x) = 0.

If vP (f) = m 6= 0, then there exists η ∈ K with vP (η) = 0 such that x = tmP η.

By Proposition 1.1.a

Di
tP

x

x
=

1
x

i∑

j=0

(
m
j

)
tm−j
P Di−j

tP
η

=
t−i
P

η

i∑

j=0

(
m
j

)
ti−j
P Di−j

tP
η.

Therefore vP (
Di

tP
x

x ) ≥ −i. ¤
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Proposition 3.3. Let L1, ..., Lq be linear forms in n+1 variables with coefficients

in k and in general position. Let x0, ..., xn be elements of K such that Li(x0, ..., xn) 6≡
0. Denote by li = Li(x0, ..., xn). If vP (l1) ≤ vP (l2) ≤ .... ≤ vP (lq), then vP (l1) =

vP (l2) = .... = vP (lq−n) = min
0≤i≤n

{vP (xi)}.

Proof. See [Wa], Proposition 4.2.¤

Theorem 2. Suppose that x0, ..., xn are elements of K, and are linearly indepen-

dent over kKpm

. Suppose that L1, ..., Lq are linear forms in n+1 variables with coef-

ficients in k, and are in general position, i.e. any n+1 elements of {Li} are linearly

independent over k. Then there exists a sequence of numbers 0 = ε0 < ε1 · · · < εn,

such that

(q − n− 1)h(x0, ..., xn) ≤
q∑

i=1

∑

P /∈S

min
1≤i≤q

{εn, vP (Li(x0, ..., xn))− min
0≤j≤n

{vP (xj)}}

+ (ε1 + · · ·+ εn)max{0, 2g − 2 + |S|}. (3.1)

Furthermore, when the characteristic of p = 0, εi = i; when p > 0, the upper bound

for εi is described in Theorem 1.

Proof.

If x0, ..., xn are linearly independent over kKpm

(p ≥ 0), then by Theorem 1 and

its remarks there exists a sequnce of bounded numbers 0 = ε0 < · · · < εn such that

det(Dεi
t xj) 6= 0.

Let Li(x0, ..., xn) =
n∑

j=0

aijxj := li for 1 ≤ i ≤ q. Let I = {i0, ..., in} be an index

subset of {1, ..., q} and {u1, ..., uq−n−1} be the complement of I. Let

G =
l1 . . . lq

det(Dεi
t xj)

. (3.2)

By Proposition 3.1.a

det(Dεi
t lij ) = det(aij)det(Dεi

t xj).

Then we have the following formula:

lu1 . . . luq−n−1 = cIG
det(Dεi

t lij )
li0 . . . lin

= cIG det(
Dεi

tP
lij∏n

i=0 lij

)(
dt

dtP
)−
Pn

i=0 εi , (3.3)
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where cI is a nonzero constant in k. Let eP = − min
0≤i≤n

{vP (xi)}. By Proposition

3.1.b we also have

vP (det(
Dεi

tP
lij

lij

)) = vP (det(
Dεi

tP
Lij

(teP

P f0, ..., t
eP

P fn)∏n
i=0 Lij (t

eP

P f0, ..., t
eP

P fn)
)). (3.4)

Assume that vP (l1) ≥ vP (l2) ≥ · · · ≥ vP (lq) for P ∈ C. Then by Proposition 3.3,

vP (ln+1) = · · · = vP (lq) = min{vP (xi)} = −eP . Let I = {1, ..., n + 1}. Then (3.3)

and (3.4) imply

(q − n− 1)min{vP (xi)} = vP (G) + vP (det(
Dεi

tP
(lij

tep)∏n
i=0 lij

teP
))−

n∑

i=0

εivP (
dt

dtP
). (3.5)

By Proposition 3.2, we have the following two inequalities:

vP (det(
Dεi

tP
(lij t

eP )∏n
i=0 lij t

eP
)) ≥ − min

0≤i≤n
{εi, vP (lij ) + eP }. (3.6)

vP (det(
Dεi

tP
(lij t

eP )∏n
i=0 lij t

eP
)) ≥

n∑

i=0

εi. (3.7)

Let S be a finite set of points of C. Then (3.5), (3.6), (3.7) and the Riemann-Roch

theorem (cf. [Ma]) imply

(q − n− 1)h(x0, ..., xn) ≤
∑

P /∈S

q∑

j=1

min{εn, vP (lj) + eP }

+ (ε1 + · · ·+ εn)max{0, 2g − 2 + |S|}. (3.8)

This completes the proof. ¤
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