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This chapter gives some preliminary material on number theory and algebraic
geometry.

Section 1 gives basic preliminary notation, both mathematical and logistical. Sec-
tion 2 describes what algebraic geometry is assumed of the reader, and gives a few
conventions that will be assumed here. Section 3 gives a few more details on the field
of definition of a variety. Section 4 does the same as Section 2 for number theory.

The remaining sections of this chapter give slightly longer descriptions of some
topics in algebraic geometry that will be needed: Kodaira’s lemma in Section 5, and
descent in Section 6.

§1. General notation

The symbols Z , Q , R , and C stand for the ring of rational integers and the fields of
rational numbers, real numbers, and complex numbers, respectively. The symbol N sig-
nifies the natural numbers, which in this book start at zero: N = {0, 1, 2, 3, . . . } . When
it is necessary to refer to the positive integers, we use subscripts: Z>0 = {1, 2, 3, . . . } .
Similarly, R≥0 stands for the set of nonnegative real numbers, etc.

The set of extended real numbers is the set R := {−∞}∐
R

∐{∞} . It carries
the obvious ordering.

If k is a field, then k̄ denotes an algebraic closure of k . If α ∈ k̄ , then Irrα,k(X)
is the (unique) monic irreducible polynomial f ∈ k[X] for which f(α) = 0 .

Unless otherwise specified, the wording almost all will mean all but finitely many.
Numbers (such as Section 2, Theorem 2.3, or (2.3.5)) refer to the chapter in which

they occur, unless they are preceded by a number or letter and a colon in bold-face
type (e.g., Section 3:2, Theorem A:2.5, or (7:2.3.5)), in which case they refer to the
chapter or appendix indicated by the bold-face number or letter, respectively.
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§2. Conventions and required knowledge in algebraic geometry

It is assumed that the reader is familiar with the basics of algebraic geometry as given,
e.g., in the first three chapters of [H], especially the first two. Note, however, that some
conventions are different here.

This book will primarily use the language of schemes, rather than of varieties. The
reader who prefers the more elementary approach of varieties, however, will often be
able to mentally substitute the word variety for scheme without much loss, especially
in the first few chapters.

With the exception of Appendix B, all schemes are assumed to be separated.
We often omit Spec when it is clear from the context; e.g., X(A) means X(Spec A)

when A is a ring, Pn
A means Pn

Spec A , and X ×A B means X ×Spec A Spec B when A
and B are rings.

The following definition gives slightly different names for some standard objects.

Definition 2.1. Let X be a scheme. Then a vector sheaf of rank r on X is a sheaf
that is locally isomorphic to Or

X . A line sheaf is a vector sheaf of rank 1 .

Note that a vector sheaf is what is often called a locally free sheaf, with the
additional restriction that its rank be the same everywhere. A line sheaf is also called
an invertible sheaf by many authors.

Varieties

Not all authors use the same definition of variety. Here we use:

Definition 2.2. Let k be a field. A variety over k , also called a k-variety, is an integral
scheme, of finite type (and separated) over Spec k . If it is also proper over k ,
then we say it is complete. A curve is a variety of dimension 1 .

Note that, since k is not assumed to be algebraically closed, the set of closed points
of a variety X is the set X(k̄) , modulo the action of Autk(k̄) . Also, the residue field
K(P ) for a closed point P will in general be a finite extension of k .

Note also that we have not assumed a variety to be geometrically integral. The
advantage of this approach is that every irreducible closed subset of a variety will
again be a variety, so that there is a natural one-to-one correspondence between the
set of points of a variety and its set of subvarieties. This also agrees with the general
philosophy that definitions should be weak.

Finally, note that X being a variety over k is not the same as X being defined
over k (Definition 3.2). For example, let k be a number field. Then any variety over
k can be transformed into a variety over Q merely by composing with the canonical
morphism Spec k → SpecQ . On the other hand, not all varieties are defined over Q ;
for example take the point in A1

Q corresponding to ±√2 .
More details on this situation appear in the next section.

§3. The field of definition of a variety

This section defines what it means for a variety to be “defined over” a field. We show
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that there is a well defined minimal field over which this is the case, and that it is true
over all larger fields. Moreover, some information on the structure of this field is given.

We begin by describing what happens to a variety under base change to a larger
field.

Proposition 3.1. Let k be a field, let X be a variety over k , and let k′ be a normal
extension of k . Then every irreducible component of X×kk′ dominates X (under
the projection X×k k′ → X ), and all irreducible components are conjugate under
the action of Autk(k′) .

Proof. We may restrict to an open affine of finite type over k , so we may assume that
X is a closed subvariety of An

k for some n . The first assertion is then obvious from the
going-down theorem. The second assertion follows from ([L 1], Ch. I, Prop. 11), which
states that if A is an integrally closed entire ring with field of fractions K , if L is a
Galois extension of K , if B is the integral closure of A in L , and if p is a maximal
ideal in A , then all prime ideals of B lying over p are conjugate under AutK(L) .
But by localizing, we may allow p to be any prime ideal, and the restriction that L
be Galois over K can be relaxed to L normal over K ; the details of this are left to
the reader. ¤

This motivates the following definition.

Definition 3.2. Let X be a variety over a field k , and let k′ be an extension field
of k . Then we say that X is defined over k′ if all irreducible components of
(X ×k k′)red are geometrically integral. If this is the case, then we also say that
k′ is a field of definition for X .

Remark 3.3. In particular, if k′ = k , then this reduces to saying that X is defined
over k if and only if it is geometrically integral.

Lemma 3.4. Let k ⊆ k′ be fields, let X be a variety over k , and let {U1, . . . , Un} be
a cover of X by open subvarieties. Then X is defined over k′ if and only if all
Ui are defined over k′ .

Proof. Fix some i , and let U ′ be an irreducible component of (Ui×k k′)red . Then the
closure of U ′ in (X ×k k′)red is an irreducible component of (X ×k k′)red ; since that
irreducible component is geometrically integral, so is U ′ . Thus all Ui are defined over
k′ .

Now suppose that all Ui are defined over k′ , and let X ′ be an irreducible compo-
nent of (X ×k k′)red . Then X ′ is covered by irreducible components of (Ui ×k k′)red ;
hence X ′ is geometrically integral. Thus the converse holds as well. ¤

Regular extensions

Definition 3.2 can be phrased in algebraic terms using the notion of regular field exten-
sions.
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Definition 3.5. A field extension K/k is regular if k is algebraically closed in K (i.e.,
any element of K algebraic over k is already contained in k ), and K is separable
over k .

Lemma 3.6. Let K/k be a field extension, and regard the algebraic closure k̄ of k as
a subfield of K . Then the following conditions are equivalent.

(i). K is a regular extension of k ;
(ii). K is linearly disjoint from k̄ over k ; and
(iii). the natural map K ⊗k k̄ → Kk̄ is injective.

Proof. The equivalence (i) ⇐⇒ (ii) follows from ([L 2], Ch. VIII, Lemma 4.10). The
equivalence of (ii) and (iii) is immediate from the definitions. ¤
Proposition 3.7. A variety X over k is defined over k if and only if K(X) is a regular

extension of k .

Proof. By Lemma 3.4, we may assume that X is affine.
Let A be the affine ring of X , and let K = K(X) , so that K is the field of

fractions of A . Then X ×k k̄ is integral if and only if A⊗k k̄ is entire.
First suppose that K is regular over k . Consider the composition of maps

A×k k̄ ↪→ K ×k k̄ → Kk̄.

The first arrow is injective because k̄ is flat over k . Lemma 3.6 implies that the second
arrow is also injective, so A×k k̄ is entire. Thus X is geometrically integral.

Conversely, assume that A⊗k k̄ is entire. Then, for all finite subextensions L of
k̄/k , AL := A ⊗k L is entire since it is a subring (by flatness). Let K ′ be its field
of fractions. Let θ1, . . . , θd be a basis for L over k ; then (by flatness) θ1, . . . , θd ,
as elements of AL , are linearly independent over A . Therefore they form a basis for
K ′ over K , so [K ′ : K] = d = [L : k] . But it is easy to check that since AL is
integral over A , any map AL → K extending the injection A ↪→ K is injective. Thus
[KL : K] = [K ′ : K] = [L : k] , so K and L are linearly disjoint over k . This holds
for all L finite over k , so K and k̄ are linearly disjoint over k . ¤
The minimal field of definition

We now show that a variety X over k has a unique minimal field of definition. This
leads to a slightly different concept of the field of definition, in a different context; this
is useful in its own right.

Definition 3.8. Let k ⊆ k′ ⊆ k2 be fields, let X be a scheme of finite type over k , and
let Z be a closed subscheme of X ×k k2 . Then we say that Z is defined over k′

if there exists a subscheme Z ′ of X ×k k′ such that Z ′ ×k′ k2 = Z . If so, then
we also say that k′ is a field of definition for Z .

Lemma 3.9. Let k ⊆ k′ be fields, and let X be a closed subvariety of An
k . Then

X is defined over k′ (as a variety) if and only if every irreducible component of
(X ×k k′)red is defined over k′ (as a subscheme of An

k′
).

Proof. First, we immediately reduce to the case where k = k′ .
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If X is defined over k , then it is geometrically integral, and the only irreducible
component of (X×k k̄)red is X×k k̄ itself, which is defined over k since it comes from
X .

Conversely, suppose some irreducible component of (X×k k̄)red is defined over k .
Then there exists a scheme X ′ of An

k such that X ′×k k̄ is this irreducible component.
But, by Proposition 3.1, X ′ ×k k̄ dominates X under the map X ×k k̄ → X , so since
X ′ is integral, we must have X ′ = X . Thus X ×k k̄ is integral, so X is geometrically
integral. ¤

Lemma 3.10. Let k ⊆ k2 be fields, let n ∈ N , and let a be an ideal in k2[X1, . . . , Xn] .
Then there exists a field k1 such that k ⊆ k1 ⊆ k2 and, for all fields k′ with
k ⊆ k′ ⊆ k2 , a is generated by elements of k′[X1, . . . , Xn] if and only if k′ ⊇ k1 .

Proof. By ([C-L-O’S], Ch. 2, § 7, Prop. 6), every ideal in a polynomial ring over a
field has a unique reduced Gröbner basis. Let k1 be the field generated over k by the
coefficients of the elements of such a basis of a . Then the “if” part of the lemma is
obvious.

Conversely, suppose a is generated by elements of k′[X1, . . . , Xn] for some field
k′ . Let a′ be the ideal in k′[X1, . . . , Xn] generated by those elements. Then a′ has a
reduced Gröbner basis with coefficients in k′ . But the definition of reduced Gröbner
basis involves only linear algebra in the coefficients of the polynomials, so the unique
reduced Gröbner basis is preserved by enlarging the field of coefficients. In particular
the reduced Gröbner bases of a′ and a coincide; hence k′ ⊇ k1 . ¤

Proposition 3.11. Let k ⊆ k2 be fields, let X be a scheme of finite type over k , and
let Z be a closed subscheme of X×k k2 . Then there exists a unique minimal field
of definition k1 of Z : for all fields k′ with k ⊆ k′ ⊆ k2 , Z is defined over k′ if
and only if k′ ⊇ k1 .

Proof. In the special case where X = An
k , this follows immediately by translating

Lemma 3.10 into geometrical language. The general case follows by covering X by
open affines Ui , which can then be regarded as closed subvarieties of Ani

k . ¤

Proposition 3.12. Let X be a variety over a field k , and let k2 be a field extension of
k containing an algebraic closure of k . Then there exists a unique minimal field
of definition k1 of X : for all fields k′ with k ⊆ k′ ⊆ k2 , X is defined over k′ if
and only if k′ ⊇ k1 .

Proof. By Lemma 3.4, we may reduce immediately to the case where X is affine. Thus
we may consider X as a closed subvariety of An

k .
If we replace k2 with its algebraic closure, then a minimal field of definition for

X exists by Lemma 3.9 and Proposition 3.11. But it is clear from Definition 3.2 that
X is always defined over k̄ , so k1 is contained in k̄ , which is contained in the original
field k2 . ¤

The following proposition gives a good idea of the structure of the field k1 .
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Proposition 3.13. Let k be a field, let p be a prime ideal in k̄[X1, . . . , Xn] , and let
k′ be the smallest field such that p is generated by elements of k′[X1, . . . , Xn] .
Let L be the field of fractions of k̄[X1, . . . , Xn]/p , and let K be the subfield of
L generated by k and the images of X1, . . . , Xn . Then k′ is a purely inseparable
extension of the algebraic closure of k in K ; moreover, K is separable over k if
and only if k′ is separable over k .

Proof. See ([W], Ch. 1, Prop. 23). ¤
Corollary 3.14. Let X be a variety over a field k , and let k′ be the minimal field of

definition of X . Then k′ is a purely inseparable extension of the algebraic closure
of k in K(X) ; moreover, K(X) is separable over k if and only if k′ is separable
over k .

Proof. This follows by translating Proposition 3.13 into geometrical language. ¤

§4. Conventions and required knowledge in number theory

It is assumed that the reader has mastered the basics of algebraic number theory as
presented, for example, in Part I of [L 1], especially the first five chapters.

In addition, the following definitions are used.

Number fields

A number field k has a canonical set of places, denoted Mk . This set is in one-to-one
correspondence with the disjoint union of:

(i). the set of real embeddings σ : k ↪→ R ;
(ii). the set of complex conjugate pairs {σ, σ̄} of embeddings σ : k ↪→ C ; and
(iii). the set of nonzero prime ideals p in the ring of integers R of k .

These places are referred to as real places, complex places, and non-archimedean places,
respectively. In addition, an archimedean place is a real or complex place.

These places have almost-absolute values ‖ · ‖v defined by

‖x‖v =





|σ(x)|, if v is real, corresponding to σ : k ↪→ R;
|σ(x)|2, if v is complex, corresponding to σ, σ̄ : k ↪→ C;

(R : p)ordp(x), if v is non-archimedean, corresponding to p ⊆ R

(In the last of the above three cases, ordp(x) is the order of x at p ; i.e., the exponent
of p in the factorization of the fractional ideal (x) . This requires x 6= 0 ; we also define
‖0‖v = 0 .) These are not necessarily genuine absolute values, since the almost absolute
value associated to a complex place does not satisfy the triangle inequality.

Instead of the triangle inequality, however, we have that if a1, . . . , an ∈ k , then

(4.1)

∥∥∥∥∥
n∑

i=1

ai

∥∥∥∥∥
v

≤ nNv max
1≤i≤n

‖ai‖v,
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where

(4.2) Nv =





1 if v is real;
2 if v is complex; and
0 if v is non-archimedean.

In particular, if v is non-archimedean, then ‖ · ‖v obeys something stronger than
the triangle inequality:

(4.3) ‖x + y‖v ≤ max(‖x‖v, ‖y‖v).

In addition, note that we have

(4.4)
∑

v∈Mk

Nv = [k : Q]

for any number field k .
In addition, if L is a finite extension of k , v ∈ Mk , and x ∈ k , then

(4.5)
∏

w∈ML

w|v

‖x‖w = ‖x‖[L:k]
v .

Furthermore, these places satisfy a product formula:

(4.6)
∏

v∈Mk

‖x‖v = 1 for all x ∈ k∗ .

The set of archimedean places of a number field k is denoted S∞(k) , or just S∞
if it is clear what k is.

Function fields

Recall that a function field is the field k := K(X) of rational functions on some
nonsingular projective curve X over a field k0 . Fix a constant c > 1 . Then define
a set Mk of places of k by defining, for each closed point P ∈ X , a place v with
absolute value defined by

(4.7) ‖x‖v = c−[K(P ):k0] ordP x,

where ordP is the order of vainishing of the rational function x at P . (Again, (4.7)
requires that x be nonzero; we of course define ‖0‖v = 0 for all v ∈ Mk .) Then these
absolute values again satisfy the product formula (4.6), as well as the formula (4.5) for
extensions of fields. It is customary to take c = e , so that log ‖x‖v will take on integral
values. Or, with finite fields, one could take c = #k0 , to provide some parallels with
the number field case.
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In the number field case, there is really only one choice for Mk , and the normal-
izations of ‖ · ‖v do not depend on additional choices. This is not the case in the
function field case, however. Not only do the normalizations of ‖ · ‖v depend on c and
on k0 , but also the set Mk may vary for a given function field k . For example, with
the field k := C(X, Y ) , we may take C(X) as the field of constants and treat Y as
an indeterminate, or vice versa. Therefore, we will assume that, whenever a function
field k is given, its set Mk of places, and the normalizations of its absolute values,
are given with it. Furthermore, an extension L/k of function fields is assumed to be
one for which the set ML is the set of all places extending places in Mk , and c and
k0 coincide. Then, in the notation of the preceding paragraph, L = K(X ′) for some
curve X ′ provided with a finite morphism to X .

For a function field k , all places v ∈ Mk are non-archimedean. Therefore, by
(4.3), the set

{x ∈ k | ‖x‖v ≤ 1 for all v ∈ Mk }
is a field, called the field of constants of k . If X is defined over k0 , then k0 coincides
with this field of constants, by Proposition 3.7 and Lemma 3.6. Moreover, this remains
true if k0 is enlarged. Therefore it will often be assumed that X is defined over k0 .

For a function field k , let Nv = 0 for all v ∈ Mk ; then (4.1) and (4.2) hold also
in the function field case. In addition:

Convention 4.8. If k is a function field, then we adopt the convention that [k : Q] = 0 .

With this convention, (4.4) holds for function fields as well.
If k is a function field, then we let S∞(k) = ∅ .

Global fields

Definition 4.9. Recall that a global field is either a number field or a function field.

If k is a global field, we let Mk denote the disjoint union of ML for all finite
extensions L of k .

Local fields

Definition 4.10. A local field is the completion of a global field at one of its places.

The set of local fields (as defined here) coincides with the disjoint union of:
(i). The set of finite extensions of Qp for some rational prime p ,
(ii). The set of finite extensions of k0((T )) for some field k0 , and
(iii). R and C .
If k is a global field and v ∈ Mk , then the almost-absolute value ‖ · ‖v extends

uniquely to an almost-absolute value on the completion kv . In that case, we may
drop the subscript v , since the place is implicit from the fact that we are dealing with
elements of kv : ‖x‖ for x ∈ kv .

For a local field kv as above, we let Mkv = {v} . Of course, there is no product
formula in this case.
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§5. Associated points, rational maps, and rational sections
When dealing with schemes that are not necessarily reduced, we use a definition of
rational map and rational section that is a bit different from the usual definition; see
Definition 5.3. This definition is based on schematic denseness.

Definition 5.1. Let U be an open subset of a scheme X . We say that U is schemat-
ically dense in X if its schematic closure (the schematic image of the open im-
mersion U ↪→ X , or the smallest closed subscheme of X containing U ) is all of
X .

Often it is convenient to think of schematic denseness in terms of the associated
points of X .

Proposition 5.2. An an open subset U of a noetherian scheme X is schematically
dense if and only if it contains all associated points of X .

Proof. It suffices to show this when X is an affine scheme. Let A be the affine ring
of X , let (0) = q1 ∩ · · · ∩ qn be a minimal primary decomposition of the ideal (0) in
A , and let pi =

√
qi for each i . Then p1, . . . , pn are the primes corresponding to the

associated points of X .
First suppose that U contains all associated points of X . Let a be the ideal

corresponding to the schematic closure of U , and let f ∈ a . For all i , Spec A/a
contains an open neighborhood of pi ; therefore (A/a)pi/a = Ap . In particular, f = 0
in Ap , so Ann(f) meets A \ p . Thus, for all i there exists xi ∈ Ann(f) such
that xi /∈ pi . It follows by an easy exercise that there exists x ∈ Ann(f) such that
x /∈ p1 ∪ · · · ∪ pn . But then x is not a zero divisor, by ([L 2], X Prop. 2.9). This can
happen only if f = 0 , so a = 0 and thus U is schematically dense in X .

Conversely, suppose that U does not contain the point corresponding to pi . After
renumbering the indices, we may assume that i = n and that {i | pi ⊇ pn} = {1, . . . , r}
for some r < n . Let

a = q1 ∩ · · · ∩ qr.

Since the chosen primary decomposition was minimal, we have a 6= (0) . We claim that
U ⊆ Spec A/a . Indeed, let p be a prime ideal corresponding to a point in U . Since
U is open and since pn /∈ U , we have p + pn , and therefore p + pi for all i > r . Let
S = A \ p . By ([A-M], Prop. 4.8(i)) and ([A-M], Prop. 4.9), we then have

(0) =
n⋂

i=1

S−1qi =
r⋂

i=1

S−1qi = S−1a.

Thus p ∈ Spec A/a (since S−1a = (0) implies a ⊆ p ), and (A/a)p = Ap . This holds
for all p ∈ U , so U is an open subscheme of Spec A/a . This shows that U is not
schematically dense in X . ¤
Definition 5.3. Let X be a scheme.

(a). If X is noetherian, then a rational map f : X 99K Y from X to another
scheme Y is an equivalence class of pairs (U, f) , where U is a schematically
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dense open subset of X , f : U → Y is a morphism, and (U, f) is said to be
equivalent to (U ′, f ′) if f and f ′ agree on U ∩ U ′ .

(b). If X is noetherian, then a rational function on X is a class of pairs (U, f) ,
where U is a schematically dense open subset of X , f is a regular function
on U , and the equivalence relation is similar to the one in part (a).

(c). A rational section of a sheaf F on X is a section of F over a schematically
dense open set.

(d). A rational section of a line sheaf L on X is said to be invertible if it has
an inverse over a schematically dense open subset.

Remark. The relations in parts (a) and (b) above are equivalence relations because Y
is separated, and because the open sets in question are schematically dense.

§6. Cartier divisors and associated line sheaves
The above definition of invertible rational section of a line sheaf meshes well with the
notion of a Cartier divisor.

We begin by recalling the definition of a Cartier divisor.

Definition 6.1. Let X be a scheme.
(a). The sheaf K , called the sheaf of total quotient rings of OX , is the sheaf

associated to the presheaf U 7→ S−1OX(U) , where S is the multiplicative
system of elements which are not zero divisors.

(b). Let O∗
X denote the sheaf of invertible elements of OX . Then a Cartier

divisor on X is a global section of the sheaf K ∗/O∗
X .

The set of Cartier divisors forms a group, which is written additively instead of
multiplicatively by analogy with Weil divisors.

By standard properties of sheaves, a Cartier divisor can be described by giving an
open cover {Ui} of X and sections fi ∈ K (Ui) such that fi/fj lies in OX(Ui ∩Uj)∗

for all i and j . Such a description is called a system of representatives for the Cartier
divisor. If {(Ui, fi)}i∈I is a system of representatives for a Cartier divisor D , then
D

∣∣
Ui

= (fi) for all i . If the scheme X is integral, which is true in most applications,
then K is just the constant sheaf K(X) , and therefore in a system of representatives
all fi may be taken to lie in K(X) .

A Cartier divisor is principal if it lies in the image of the map

Γ(X, K ) → Γ(X, K /O∗
X).

If X is integral, then this is equivalent to the assertion that all fi can be taken equal to
the same f ∈ K(X) . Two Cartier divisors are linearly equivalent if their difference is
principal. A Cartier divisor is effective if it has a system of representatives {(Ui, fi)}i∈I

such that fi lies in OX(Ui) for all i . If D is a Cartier divisor, its support, denoted
SuppD , is the set

SuppD = {P ∈ X | DP /∈ O∗
X,P }
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(where DP ∈ KP denotes the germ of D at P ). The support of D is a Zariski-closed
subset of X . More concretely, if {(Ui, fi)}i∈I is a system of representatives for D ,
then (Supp D) ∩ Ui equals the set of all P ∈ Ui such that fi is not an invertible
element of the local ring OX,P at P . If D is a Cartier divisor with Supp D = ∅ , then
D = (1) .

For more information on Cartier divisors and how they compare to Weil divisors,
see ([H], II §6).

Lemma 6.2. Let A be a commutative noetherian ring. Let X = Spec A , and let U
be an open subset of X containing all associated points. Let S be the multi-
plicative system of (nonzero) elements of A which are not zero divisors. Then
OX(U) ⊆ S−1A . Conversely, for any s ∈ S−1A , there exists an open subset U ,
containing all associated points of X , such that s ∈ OX(U) .

Proof. Let s be a section in OX(U) . Since the complement of U is a closed subset
not containing any associated point of X , there exists f ∈ A which vanishes on the
complement of U , yet is not contained in any associated prime of A . The former
condition implies that s ∈ Af , since D(f) ⊆ U ; the latter implies that f is not a zero
divisor, by ([L 2], X Prop. 2.9). Hence f ∈ S and s ∈ Af ⊆ S−1A .

Conversely, suppose s ∈ S−1A . Then s ∈ Af for some f ∈ S . In particular, by
([L 2], X Prop. 2.9), f is not contained in any associated prime of A . Thus s ∈ OX(U)
for some open U containing all the associated points of X . ¤
Definition 6.3. Let X be a noetherian scheme, let L be a line sheaf on X , and

let s be an invertible rational section of L . Then, for any open affine subset
U = SpecA of X over which L is trivial, the restriction of s to U defines an
element of S−1A , where S is as in Lemma 6.2. Since s is invertible, this element
actually lies in (S−1A)∗ . This element depends on the choice of trivialization:
changing the trivialization multiplies the element by an element of A∗ . Therefore,
this gives a well defined section of K ∗/O∗ over U . These sections glue to give a
global section of K ∗/O∗ over X . This section, regarded as a Cartier divisor, is
called the associated Cartier divisor, and is denoted (s) .

Proposition 6.4. Let X be a noetherian scheme.

(a). Let f be a rational function on X . Then f may be regarded as an invertible
rational section of the trivial line sheaf OX , and the definition of (f) as such
coincides with the principal divisor (f) .

(b). Let L be a line sheaf on X and let s be an invertible rational section of
L . Then s is a global (regular) section of L if and only if (s) is effective.

(c). Let φ : X ′ → X be a morphism of noetherian schemes, let L be a line sheaf
on X , and let s be an invertible rational section of L which is defined and
nonzero at the images (under φ ) of all associated points of X ′ . Then φ∗s
is an invertible rational section of φ∗L , and (φ∗s) = φ∗(s) .

(d). Let s1 and s2 be invertible rational sections of line sheaves L1 and L2 ,
respectively. Then s1 ⊗ s2 is an invertible rational section of L1 ⊗L2 , and
(s1 ⊗ s2) = (s1) + (s2) .
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Proof. These all follow immediately from the definition. ¤
Recall from ([H], II §6) the definition of the sheaf O(D) associated to a Cartier

divisor D on a scheme X (Hartshorne denotes it L (D) ). It is a subsheaf of K .

Definition 6.5. Let D be a Cartier divisor on a noetherian scheme X . The global
section 1 ∈ K defines a rational section, called the canonical section of O(D) .

In addition to ([H], II Prop. 6.13), we have the following properties.

Proposition 6.6. Let D be a Cartier divisor on a noetherian scheme X .

(a). If s is the canonical section of O(D) , then (s) = D .
(b). If φ : X ′ → X is a morphism of noetherian schemes such that none of the asso-

ciated points of X ′ are taken into the support of D, then O(φ∗D) ∼= φ∗O(D).

Proof. This is left as an exercise for the reader. ¤

§7. Big divisors and Kodaira’s lemma

——— Not written yet.

§8. Descent

——— Not written yet. Should it go earlier? See Serre, Groupes Alg. et Corps de
Classes, p. 108 (Ch. V No. 20).
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