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Abstract. We present in a unified way proofs of Roth’s theorem and an
effective version of Mordell’s conjecture, using the ABC conjecture. We also
show how certain stronger forms of the ABC conjecture give information about
the type of approximation to an algebraic number.

1. Introduction

In 1991, Noam D. Elkies showed that the ABC conjecture implies Mordell’s
conjecture [5]. And in 1994, Enrico Bombieri showed that the ABC conjecture
implies Roth’s theorem about Diophantine approximation of algebraic numbers [3].
The proofs of these two implications are very similar (see §§6.4, 6.7), and in §6.8,
we formulate a theorem that implies both Roth’s theorem and Mordell’s conjecture.

We formulate the ABC conjecture in §2. In §2.4, we introduce the ‘type function’,
which allows us to formulate certain stronger forms of the ABC conjecture. In §4,
we formulate Roth’s theorem and define the ‘type’ of an algebraic number, and
in §5, we formulate Mordell’s conjecture and ‘effective Mordell’. §6.3 is devoted
to Bely̆ı’s construction of an algebraic function which is ramified over 0, 1 and ∞
alone [1]. The application of this construction to P1 yields Roth’s theorem, §6.4,
and the application to a curve C of genus 2 or higher yields Mordell’s conjecture,
§6.7.

Both Roth’s theorem and Mordell’s conjecture are theorems, see [10, 16] and
[2,4,6,7,21] respectively, and from this point of view it seems uninteresting to have
conditional proofs of these theorems, depending on the ABC conjecture, whose
validity is still unknown. However, the proofs of these theorems using ABC are
much simpler and transparent, and point out very clearly the relationship between
the theory of Diophantine approximation and the theory of points on curves of high
genus. More importantly, using ABC, one can prove considerably stronger versions
of the two theorems. Specifically, ABC implies effective Mordell (see §5.1), and a
certain stronger form of the ABC conjecture implies a certain refinement of Roth’s
theorem (see §4.1).
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Regarding this refinement of Roth’s theorem, in the sixties S. Lang conjectured
that Roth’s theorem could be improved to− log |α− p/q|−2 log q ≤ (1 + ε) log log q,
see [11, p. 214]. Indeed, this is supported by the analogous inequality in the case of
meromorphic functions, see §3.2. However, the strongest possible form of the ABC
conjecture only yields

− log
∣∣∣∣α−

p

q

∣∣∣∣− 2 log q ≤ K

√
log q

log log q
,(1.1)

for some constant K depending on α, see Theorem 4.3 and §2.4. Therefore, we
want to raise the question whether this is the strongest possible form of Roth’s
theorem:

For (some or every?) algebraic number α of degree ≥ 3 over Q, (1.1)
cannot be improved; that is, for some value of K > 0, the opposite
inequality is satisfied for infinitely many p and q.

In terms of the coefficients an of the continued fraction expansion of α, this would
imply that log an ≥ κ

√
n infinitely often, for some κ > 0. There is some numerical

evidence for this question, see [13, 18]. For example, the continued fraction of the
real root of x3 − 8x − 10 = 0, discussed in [18], has some very large coefficients.
When these computations are pushed further though, this continued fraction seems
to behave randomly after the 161st coefficient, with coefficients of order log an =
O(log n). On the other hand, one must be careful in interpreting these data: if the
constant κ above is very small, one starts to find large coefficients only for very
large values of n. Moreover, large coefficients will be very rare. We will address
this question in subsequent work.

Finally, we point out that to simplify this exposition, we have restricted ourselves
to the rational numbers. But the ABC conjecture, Mordell’s conjecture and Roth’s
theorem can be formulated for any finite extension of Q, and ABC implies Roth
and Mordell in these more general situations as well. The proofs presented here
generalize with little modification.

1.1. Notations and conventions. Throughout, we use the following notations
and letters with a special meaning:

x ∨ y denotes the maximum of x and y,
#V denotes the number of elements of the set V ,
p is a prime number,
v is a valuation, either vp or v∞, see §2.2,
S is a finite set of valuations,
w ∈ S valuations in S are denoted by w,
C is an algebraic curve,
C(Q) denotes the points on C with rational coordinates,
P1 is the projective line, see §2.3,
Q̄ is the field containing all numbers algebraic over Q.

We think of C as the set of points (x0 : · · · : xn) ∈ Pn that satisfy the homogeneous
equations

p1(x0, . . . , xn) = 0, . . . , pk(x0, . . . , xn) = 0,(1.2)

with k ≥ n− 1 and pi irreducible. The set of complex solutions of these equations
is the Riemann surface C(C). If the coefficients of p1, . . . , pk lie in Q, we say that
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C is defined over Q. A map f : C −→ Pm will be given by m + 1 homogeneous
polynomials of the same degree,

f : (x0 : · · · : xn) 7−→ (f0 (x0, . . . , xn) : · · · : fm (x0, . . . , xn)) .(1.3)

If the coefficients of f0, . . . , fm lie in Q, we say that f is defined over Q.

2. The ABC conjecture

Given a sum a + b = c, with a, b, c ∈ Z, coprime and a, b, c 6= 0, we define the
height and the radical of this sum by

h(a, b, c) = max {log |a|, log |b|, log |c|} ,

r(a, b, c) =
∑

p|abc

log p,(2.1)

where p runs over all prime divisors of a, b and c.
For example,

a + b = c height radical
2 + 3 = 5 log 5 log 30
9 + 16 = 25 log 25 log 30
3 + 125 = 128 log 128 log 30
19 · 1307 + 7 · 292 · 318 = 28 · 322 · 54 36.15 . . . 22.26 . . .

(2.2)

We see that in the last two examples, the height is larger than the radical. The
ABC conjecture says that the height cannot be much larger than the radical.

Conjecture 2.1 (ABC conjecture). For every ε > 0 there exists a constant K(ε)
such that

h(a, b, c) ≤ r(a, b, c) + εh(a, b, c) + K(ε),

for every sum a + b = c of coprime nonzero integers.

Equivalently, we may write this inequality as

h(a, b, c) ≤ 1
1− ε

r(a, b, c) +
K(ε)
1− ε

.(2.3)

For example, this inequality expresses the fact that if one fixes the radical, i.e., if
one considers sums of integers composed of a fixed set of prime numbers, then there
are only finitely many such sums, and the summands satisfy an a priori bound.

2.1. Original interest of the ABC conjecture. The ABC conjecture was for-
mulated in 1983 by Masser and Oesterlé, as a possible approach to Fermat’s con-
jecture (Wiles’ theorem):

For n ≥ 3, the equation xn + yn = zn has no solutions in positive
integers x, y, z.

Indeed, this is a simple consequence of the ABC conjecture. Let xn + yn = zn be
a solution. This is a sum of integers, and the height of this sum is h = log zn. The
radical is composed of the prime factors of xnynzn, hence of the prime factors of
xyz. Thus r =

∑
p|xyz log p ≤ log xyz < log z3. We use formulation (2.3) of the

ABC conjecture, with ε = 1/2. Dividing by log z, we obtain n < 6+ 2K(1/2)
log z . Since

it is known that there are no solutions for n = 3, 4, 5 or 6, this leaves only finitely
many values of x, y, z and n to check.
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For the later applications, we need to reformulate the definition of the height
and the radical, so that we do not need to assume that a, b, c are integers and
coprime. To do this, we introduce the projective plane and the valuations of Q.

2.2. The valuations of Q. A valuation of Q is a function v : Q → R ∪ {−∞}
satisfying, for some constant K,

v(x) = −∞ only for x = 0,

v(xy) = v(x) + v(y) for all x, y ∈ Q∗,

v(x + y) ≤ K + (v(x) ∨ v(y)) for all x, y ∈ Q.

Here, v(x) ∨ v(y) is the maximum of v(x) and v(y).
Given a prime number p, we denote the number of factors p of the rational

number x by ordp(x). Then we define the p-adic valuation of Q as

vp(x) = − ordp(x) log p,

and the valuation at ∞ as

v∞(x) = log |x|.
For example, v2(4/3) = −2 log 2, v3(4/3) = log 3, vp(4/3) = 0 for all other p-adic
valuations, and v∞(4/3) = log 4/3.

One checks that these functions are indeed valuations. The p-adic valuations are
nonarchimedean, i.e., vp(x + y) ≤ vp(x) ∨ vp(y), for every x, y ∈ Q. The valuation
at infinity satisfies v∞(x+ y) ≤ log 2+ (v∞(x)∨ v∞(y)), for every x, y ∈ Q, and we
call it archimedean. It is known that these are all the valuations of Q, except for
the trivial valuation, v(0) = −∞ and v(x) = 0 for x 6= 0.

Every nonzero rational number has a factorization into prime factors,

|x| =
∏
p

pordp(x).

Taking logarithms, we obtain the following important relation between the valua-
tions of Q. Here, and in the rest of this paper,

∑
v denotes summation over all

valuations of Q, except the trivial one.

Proposition 2.2 (Sum formula). For x ∈ Q∗,
∑

v

v(x) = 0.

In other words, the sum of all the valuations of Q is the trivial valuation.

2.2.1. Extension of a valuation to an algebraic extension of Q. An algebraic num-
ber α is usually viewed as a complex root of its minimal polynomial. Then |α| is
just the modulus of this complex number, and this extends v∞ to a valuation of
Q(α).

To extend a finite valuation vp is less easy. But if one is willing to accept the
p-adic closure Qp of Q and the algebraic closure Cp of Qp, with the corresponding
extension of vp to Cp, this becomes just as easy as for v∞. Namely, every embedding
σ : Q(α) → Cp gives an extension of vp defined by vp(β) = vp(σ(β)), for β ∈ Q(α).
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2.3. The projective plane over Q. We denote by P2(Q) the projective plane
over Q, i.e., the set of triples (x : y : z), for x, y, z ∈ Q not all zero, where for
λ ∈ Q∗, the triples (x : y : z) and (λx : λy : λz) denote the same point of P2(Q).
Subsets of P2(Q) may be given by homogeneous equations. In particular, we will
consider the subset given by the equation x + y = z, which is a line in P2(Q).

For each point of P2(Q), we have many different ways to denote this point. For
example, given a point (x : y : z), we may choose λ such that λx, λy and λz are
coprime integers. Another useful choice is to divide by z if z 6= 0, to obtain the
coordinates (f : g : 1) for the point (x : y : z), where f = x/z and g = y/z.

The triple (0 : 0 : 0) is not a point of P2(Q). In §6.6, we still need to consider
it, and then we call it indeterminate.

The height of the point P = (a : b : c) ∈ P2(Q) is defined by

h(P ) = h(a : b : c) =
∑

v

max{v(a), v(b), v(c)},

where, as always, v runs over all valuations of Q. If a, b and c are nonzero, the
radical of P is defined by

r(P ) = r(a : b : c) =
∑

p : #{vp(a),vp(b),vp(c)}≥2

log p.

One needs to check that these definitions do not depend on the choice of coordinates
for P . For the radical, this is easy. For the height, one needs Proposition 2.2 to
do this. Then one can choose relatively prime integer coordinates for P to see that
these new definitions coincide with (2.1).

We define the error term of P as

e(P ) = e(a : b : c) = max{h(P )− r(P ), 0}.
With these definitions, we reformulate the ABC conjecture.

Conjecture 2.3 (Reformulation of Conjecture 2.1). For all ε > 0 there exists a con-
stant K(ε) such that

e(P ) ≤ εh(P ) + K(ε),(2.4)

for every point P = (a : b : c) ∈ P2(Q) on the line a + b = c with abc 6= 0.

2.4. The type of the error term. In view of (3.3) below, one might think that
the ABC conjecture for Q could be improved to e(P ) ≤ log h(P ) + K log log h(P ),
for every P ∈ P2(Q) on the line a+ b = c with abc 6= 0. However, in [8], the author
constructs an infinite sequence of such points P with

e(P ) ≥ 6.07

√
h(P )

log h(P )
.(2.5)

(See also [19, Theorem 2]). This result thus provides an upper bound for the
strongest possible version of the ABC conjecture. Ignoring the factor log h(P ),
the conjecture that e(P ) ≤ K

√
h(P ) is indeed supported by numerical data. For

example, the fourth sum in (2.2) has e(P ) = 13.88 . . . , which is 2.309 . . . times√
h(P ).
Assume that in (2.4), we know K(ε) explicitly as a function of ε. Then we

determine, for every value of h, the minimum ψ(h) of εh + K(ε),

ψ(h) = min
ε>0

εh + K(ε).
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This then allows us to formulate Conjecture 2.3 as

e(P ) ≤ ψ(h(P )),(2.6)

for some function ψ(h) = o(h).
For example, if K(ε) = exp (1/ε), we find ψ(h) ≈ h/log h. Likewise, K(ε) = K/ε

corresponds to ψ(h) = 2
√

Kh. Finally, K(ε) = − log ε gives ψ(h) = log h+1, which
is impossible by inequality (2.5) above.

3. Algebraic and meromorphic functions

This section is not needed to understand the rest of this paper. We have assem-
bled the facts about algebraic functions that we do need in §§6.2, 6.5. The reader
unfamiliar with the basic theory of algebraic functions may read §6.2 before reading
this section.

Proposition 2.2 expresses the fact that Q is a global field. Other global fields are
the function field C(C) of a curve C and the field M of meromorphic functions.
For every global field one can formulate the ABC conjecture, Roth’s theorem and
Mordell’s conjecture.

3.1. Algebraic functions. Let C be an algebraic curve, of genus g. The field of
maps f : C(C) −→ P1(C) has the valuations vx(f) = − ordx(f), for each point
x ∈ C(C). The analogue of Proposition 2.2 is

∑
x vx(f) = 0.

For a non-constant map f : C(C) −→ P1(C), we define the height and the radical
of P = (f : 1− f : 1) ∈ P2(C(C)) by h(P ) = deg f , and r(P ) = #f−1{0, 1,∞}.
By (6.6) and (6.7), counting only the ramification above 0, 1 and ∞, we obtain
2g − 2 ≥ −2 deg f +

∑
f(x)=0,1,∞ (ex(f)− 1) = deg f −∑

f(x)=0,1,∞ 1. Thus

h(P ) ≤ r(P ) + 2g − 2,

which is the analogue of the ABC conjecture for algebraic functions. The only
question that remains is whether this inequality is sharp. In other words, does
there exist a map f : C −→ P1 that is only ramified over 0, 1 and ∞? This
question is answered in Theorem 6.1.

By (6.7), there does not exist an algebraic function p : P1 −→ C if g ≥ 1. This
is the analogue of Mordell’s conjecture1. The analogue of Roth’s theorem is the
following theorem (see [10, Theorem 1.1, Ch. 7]):

Let A be a finite set of points of C(C). Choose, for each a ∈ A, a curve
Ca, a covering pa : Ca −→ C, a point xa ∈ Ca(C) above a and a map
αa : Ca(C) −→ P1(C). Let wa be the valuation associated with xa,
and λa(α, β) = max {0,−wa(α− β)}. Let ε > 0. Then there exists a
constant K such that

∑

a∈A

λa (f ◦ pa, αa) ≤ 2 deg f + εdeg f + K,

for every map f : C(C) −→ P1(C).

1The analogue of Mordell’s conjecture for function fields F over C is that all but finitely many
points of C(F ) are constant, i.e., they lie in C(C). See [11, Theorem 2.3, Ch. I] and [15, Lecture
II, p. 39].
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3.2. Meromorphic functions. This situation has the flavor of both algebraic
functions and rational numbers. This is due to the fact that the field M of mero-
morphic functions has archimedean valuations. Also the nonarchimedean valuations
are scaled by a certain factor, the analogue of log p for the valuation vp. For each
complex number x with |x| < ρ, we have a valuation vx(f, ρ) = − ordx(f) log ρ

|x| ,
and for each |z| = ρ, we have the valuation vz(f, ρ) = log |f(z)|. See [12, 20] for an
introduction to Nevanlinna theory and these ideas.

For a ∈ P1(C) and f ∈M with f(0) 6= a or ∞, we have,

Na(f, ρ) + λa(f, ρ) + log
|f(0)− a|√

1 + |a|2
√

1 + |f(0)|2 =

= N∞(f, ρ) + λ∞(f, ρ)− log
√

1 + |f(0)|2,
(3.1)

where Na and N∞ respectively count the a-points and the poles of f ,

Na(f, ρ) =
∑

|x|<ρ, f(x)=a

ordx(f − a) log
ρ

|x| ,

N∞(f, ρ) =
∑

|x|<ρ, f(x)=∞
− ordx(f) log

ρ

|x| ,

and λa and λ∞ respectively measure the closeness of f to a and to ∞ on large
circles,

λa(f, ρ) =
∫

|z|=ρ

− log
|f(z)− a|√

1 + |a|2
√

1 + |f(z)|2
dz

2πiz
,

λ∞(f, ρ) =
∫

|z|<ρ

log
√

1 + |f(0)|2 dz

2πiz
.

The height, h(f, ρ), of f is defined by the right hand side of (3.1). Further, the
ramification of f is measured by R(f, ρ) =

∑
|x|<ρ (ex(f)− 1) log ρ

|x| .
For a = 0, equality (3.1) expresses the analogue of Proposition 2.2. The analogue

of Roth’s theorem is usually called the ‘second main theorem of Nevanlinna theory’:

For every finite subset A of P1(C) there exist a constant K and an open
set V ⊂ (0,∞) of finite total length such that

∑

a∈A

λa(f, ρ) + R(f, ρ) ≤ 2h(f, ρ) + log h(f, ρ) + K log log h(f, ρ),(3.2)

for all ρ /∈ V .

The height and the radical of a point P = (f : 1−f : 1) ∈ P2(M) with f(0) 6= 0,
1 or ∞ are defined by h(P, ρ) = h(f, ρ) and r(P, ρ) =

∑
f(x)=0,1,∞ log ρ

|x| . Thus
r(P, ρ) ≥ N0(f, ρ) + N1(f, ρ) + N∞(f, ρ) − R(f, ρ). Taking A = {0, 1,∞} in (3.2)
yields the ABC conjecture for meromorphic functions, with a bound 2 log h(f, ρ) +
K log log h(f, ρ) for the error term,

h(P, ρ) ≤ r(P, ρ) + 2 log h(P, ρ) + K log log h(P, ρ),(3.3)

for all ρ > 0 outside a set of finite total length.
The analogue of Mordell’s conjecture is that there does not exist a non-constant

holomorphic map f : C −→ C(C) when the genus of C is at least two.
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4. Roth’s theorem

In 1955, K.J. Roth proved the following theorem, see [16],

Theorem 4.1. Let α be algebraic over Q and ε > 0. Then
∣∣∣α− s

t

∣∣∣ <
1

t2+ε

for only finitely many rational numbers s/t.

We define the height of x = s/t, where s, t ∈ Z are coprime, as

h(x) = max{log |s|, log |t|}.
Given a valuation w of Q and an algebraic number α, we extend w to a valuation
of Q(α). The function

λw(x, α) = max{0,−w(x− α)},
λw(x,∞) = max{0, w(x)}.

measures the w-adic closeness of x to α and to ∞, respectively. We now formulate
a generalization of Roth’s theorem, see [10, Theorem 1.1, Ch. 7],

Theorem 4.2. Let S be a finite set of valuations of Q. Let αw, for each w ∈ S,
be an algebraic number or ∞, and extend w to a valuation of Q(αw). Let ε > 0.
Then there exists a constant K such that∑

w∈S

λw (x, αw) ≤ 2h(x) + εh(x) + K,(4.1)

for every x ∈ Q.

4.1. The type of an algebraic number. In view of (3.2), one could hope to im-
prove (4.1) to

∑
w∈S λw (x, αw) ≤ 2h(x)+ψ (h(x)), with ψ(h) = log h+K log log h,

where K may depend on {αw : w ∈ S}. In general, a function ψ for which this
inequality is satisfied is called a type of {αw}. In §6.4, we will show,

Theorem 4.3. Assume the ABC conjecture with bound ψ(h), see (2.6). Then there
exist constants d and K such that (4.1) is satisfied for every x ∈ Q, with ε(h(x))+K
replaced by ψ(dh(x)) + K.

Thus, in view of (2.5), the best possible version of Roth’s theorem that can be
obtained using the ABC conjecture (and the method of §6.4) is (1.1).

5. Mordell’s conjecture

In 1922, L.J. Mordell made the following conjecture, see [14],

Conjecture 5.1. Let C be an algebraic curve defined over Q of genus g ≥ 2. Then
C(Q) is finite.

For example, the curve given by the equation y2 = x5 + x + 1 in the plane has
genus 2. Thus Mordell’s conjecture says that x5 + x + 1 is the square of a rational
number for only finitely many rational values of x.

Mordell’s conjecture was proved by Faltings in 1983 [6]. In 1991, Vojta gave a
proof along the lines of Diophantine approximation, see [2, 7, 21]. As Vojta points
out in [21], the known proofs of this conjecture are ineffective, in the sense that
given an algebraic curve, one can obtain an explicit upper bound for the number
of points in C(Q), but not for their height. In the above example, this means that
one does not know an upper bound for the numerator and denominator of x.
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5.1. ABC implies effective Mordell. Using the ABC conjecture, we obtain an
algorithm to find all points of C(Q) as follows:

– Construct a special map f : C −→ P1 (see §6.3);
– Then every point x ∈ C(Q) either has f(x) = 0, 1 or ∞, or the height of f(x)

is bounded by an explicit constant (see §6.7).

It thus remains to look for points of C in the fibers of f above 0, 1 and ∞, and
above finitely many other points of P1(Q).

6. ABC implies Roth’s theorem and Mordell’s conjecture

We collect facts from the theory of heights in §6.1, see [10,17]. In §§6.2, 6.5–6.6,
we collect facts from algebraic geometry, see [9, 10,17].

6.1. The theory of heights. For x = (x0 : · · · : xn) ∈ Pn(Q), the height of x is
defined by

h(x) =
∑

v

max {v (x0) : · · · : v (xn)} .

The first, and most important fact about the height is that for every B > 0, the
number of x ∈ P1(Q) with h(x) ≤ B is finite.

Let m be a polynomial in two variables of total degree d. Then there exists a
constant K such that,

log |m(s, t)| ≤ d h(s : t) + K,(6.1)

for s, t ∈ Z coprime.
A map f : P1(Q) −→ Pm(Q) of degree d is given by (1.3), with n = 1 and

fi ∈ Q[x0, x1] of degree d. Then h(f(x)) ≤ dh(x) + K. The converse inequality is
more difficult to prove, but it holds too. Thus,

|h(f(x))− dh(x)| ≤ K,(6.2)

for some constant K. For example, for the map P : (a : b) 7−→ (a : b : a + b) we
have

h(x) ≤ h(P (x)) ≤ h(x) + log 2.(6.3)

In §6.7, we need the theory of heights on a curve C. To define a height function
on C (Q), we choose a map f : C −→ P1. If f has degree d, we define the height
h(x) = hf (x) of x ∈ C(Q) by

h(x) = hf (x) =
1
d
h(f(x)).(6.4)

If g : C −→ P1 is another map, there exists a constant K such that,

|hf (x)− hg(x)| ≤ K
√

hf (x),(6.5)

for all x ∈ C
(
Q̄

)
, the points with algebraic coordinates on C.
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6.2. Ramification and Hurwitz’s formula. Consider a map f : C −→ C ′ be-
tween nonsingular algebraic curves. Allowing complex values for the coordinates,
we obtain a map f : C(C) −→ C ′(C) of Riemann surfaces. For a point y ∈ C ′(C),
the preimage f−1{y} contains in general a certain number, say d, points. Only for
finitely many points y, the preimage contains a different number of points, and then
it contains less than d points. This number d is called the degree of f , denoted by
deg f . When #f−1{y} < deg f , we say that f is ramified over y, or above y.

For a point x ∈ C(C), in general, f maps a small enough neighborhood of x in
C(C) one-to-one to a small neighborhood of f(x) in C ′(C). Only for finitely many
points x, the map f is not one-to-one on any neighborhood of x. For such points
x, we say that f is ramified at x. In that case, there exists a number e ≥ 2 and
a small neighborhood U of x in C(C) such that the restriction of f to U − {x} is
e-to-one. This number e is called the multiplicity of f at x, denoted by ex(f).
Also, f is not ramified at x if and only if ex(f) = 1.

If f : C −→ P1 maps to the Riemann sphere P1(C), we have that ex(f) =
ordx(f − f(x)) if f(x) 6= ∞, and ex(f) = − ordx(f) if f(x) = ∞.

We can check whether f is ramified at x with the derivative. Let ∆ ⊂ C be the
unit disc and let ϕ : ∆ −→ U be an analytic bijection, with U as above and ϕ(0) = x.
Likewise, let ψ : f(U) −→ C be analytic one-to-one. Then g = ψ ◦ f ◦ ϕ : ∆ −→ C
is analytic and e-to-one outside 0. Thus g(z) = g(0)+ge ·ze + . . . , and f is ramified
if and only if g′(0) = 0.

We have that f is ramified above y if and only if f is ramified at some point x
with f(x) = y. Let g : C ′ −→ C ′′ be another map. Then deg(g ◦ f) = deg f · deg g
and g ◦ f is ramified exactly at each point where f is ramified and at each point
x ∈ C(C) such that g is ramified at f(x). Also, g ◦ f is ramified exactly over each
point over which g is ramified and over each point z ∈ C ′′ such that f is ramified
over some point in g−1{z}.

If we count the points in f−1{y} with multiplicity, their number is always deg f ,

for every y ∈ C ′(C) :
∑

x : f(x)=y

ex(f) = deg f.(6.6)

We also need Hurwitz’s formula, which relates the ramification of f with the genus
of C and C ′:

2g(C)− 2 = (2g(C ′)− 2) · deg f +
∑

x∈C(C)

(ex(f)− 1) .(6.7)

Note that the sum on the right is finite, since ex > 1 for only finitely many x. For
example, the genus of P1 is 0. This follows from Hurwitz’s formula, applied to the
map z 7−→ z2 from P1 to P1.

Finally, for a map that is only ramified over 0, 1 and ∞, we have,

2g(C)− 2 = −2 deg f +
∑

f(x)=0, 1,∞
(ex(f)− 1)

= deg f −#f−1{0, 1,∞},
(6.8)

by (6.6) and (6.7).

6.3. Bely̆ı’s construction. The following theorem answers the question whether
equality is possible in the ABC conjecture for algebraic functions, see §3.1.
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Theorem 6.1 (Bely̆ı [1]). Given an algebraic curve C defined over Q and a finite
subset Σ of algebraic points of C, there exists a map f : C −→ P1, defined over Q,
such that f is only ramified over 0, 1 and ∞, and f(Σ) ⊆ {0, 1,∞}.
Proof. The proof is given in three steps.

Step 1. Reduction to C = P1. Let g be any map C −→ P1 defined over Q and
consider the finite subset of P1,

Σ′ = g(Σ) ∪ {
x ∈ P1 : g is ramified over x

}
.

If f ′ : P1 −→ P1 is the map of the theorem applied to P1 and Σ′, then we take
f = f ′ ◦g. We assume now that C = P1 and that Σ ⊂ P1 is a finite set of algebraic
points.

Step 2. Reduction of the degree of α ∈ Σ. Let d be the maximal degree over Q
of the elements of Σ and choose α ∈ Σ of degree d. The algebraic number α is
root of a polynomial m(X) of degree d with rational coefficients. We obtain a map
m : P1 −→ P1,

m : (x0 : x1) 7−→
(
xd

1m (x0/x1) : xd
1

)
,

which is ramified at ∞ and at every point x where the derivative m′(x) vanishes.
Consider the set

Σ′ = m(Σ) ∪ {m(x) : m′(x) = 0} ∪ {∞}.
Now m(α) = 0, and for every β ∈ Σ, the degree of m(β) is at most the degree of
β. Moreover, since m′ has degree d− 1, m(x) has degree at most d− 1 over Q for
a root x of m′. Thus Σ′ contains less elements of degree d than Σ.

Repeating this step, eventually Σ will contain only rational points. We may then
assume that {0, 1,∞} ⊆ Σ. Namely, if a ∈ Σ, then z 7→ 1

z−a is nowhere ramified
and it maps a to ∞. Then, if {a,∞} ⊆ Σ, the map z 7→ z − a is nowhere ramified
and it maps a,∞ to 0,∞, and finally, if {a, 0,∞} ⊆ Σ, then z 7→ z/a is nowhere
ramified and it maps a, 0,∞ to 1, 0,∞.

Step 3. Reduction of the number of elements of Σ. Suppose that Σ contains 0, 1,
∞ and a fourth point a/c, with a, c 6= 0 and a 6= c. Consider the function

ϕ(x) = λxa(1− x)c−a.

This map is (possibly) ramified at 0, 1 and ∞, and at points x with ϕ′(x) = 0.
Moreover, ϕ(x) = 0 or ∞ only for x = 0, 1 or ∞. Thus for x 6= 0, 1,∞, ϕ′(x) = 0
if and only if ϕ′(x)/ϕ(x) = 0. Now,

ϕ′(x)
ϕ(x)

=
a

x
− c− a

1− x
,

and we find that ϕ′(x) = 0 for x = a/c. Choose λ such that ϕ(a/c) = 1. Then ϕ is
only ramified over 0, 1 and ∞, and since ϕ{0, 1,∞} = {0,∞}, ϕ(Σ) contains less
elements than Σ. After repeating this step, Σ will eventually only contain 0, 1 and
∞.
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6.4. ABC implies Roth’s theorem.

Proof of Theorem 4.3 using ABC. Let f : P1 −→ P1 be Bely̆ı’s map associated to
C = P1 and Σ = {(αw : 1) : w ∈ S}. Since f is a rational function defined over
Q, we can write it as a quotient of relatively prime homogeneous polynomials with
integer coefficients,

f (x0 : x1) = (a (x0, x1) : c (x0, x1)) ,

where a, c ∈ Z[x0, x1] are homogeneous of degree d = deg f . Let b (x0, x1) =
c (x0, x1) − a (x0, x1). The polynomials a, b and c factorize into irreducible homo-
geneous factors over Z[x0, x1],

a (x0, x1) = me1
1 (x0, x1) · . . . ·mei

i (x0, x1) ,

b (x0, x1) = m
ei+1
i+1 (x0, x1) · . . . ·mej

j (x0, x1) ,

c (x0, x1) = m
ej+1
j+1 (x0, x1) · . . . ·mek

k (x0, x1) .

We write dν = deg mν . Thus #f−1{0} =
∑i

ν=1 dν , #f−1{1} =
∑j

ν=i+1 dν ,
#f−1{∞} =

∑k
ν=j+1 dν , and by (6.8),

k∑
ν=1

dν = d + 2.(6.9)

Since for each w ∈ S, f (αw) = 0, 1 or ∞, the point αw is a root of one of the mν ,
i.e., for some µ, mµ(αw, 1) = 0, or mµ(1, 0) = 0 if αw = ∞. Since the polynomials
mν are coprime, there is only one such mµ.

In the following, if w = vp or w = v∞ is a specific valuation, we shall write αp

or α∞ instead of αw.
Let x ∈ P1(Q) be a point such that f(x) 6= 0, 1,∞. Write x = (s : t) with

s, t ∈ Z coprime. We apply the ABC conjecture to the point

P = (f(x) : 1− f(x) : 1) = (a(s, t) : b(s, t) : c(s, t)) .

By (6.3) and (6.2), for the height of P , there exists a constant K0 such that

h(P ) ≥ h(f(x)) ≥ d · h(x)−K0.(6.10)

For the radical, we obtain the estimate,

r(P ) ≤
∑

p|a(s,t)b(s,t)c(s,t)

log p =
∑

p|m1(s,t)...mk(s,t)

log p.(6.11)

If S contains only the valuation v∞, we may proceed as follows. Let α∞ be a
root of mµ. Then, by (6.11), (6.1) and case (i) of Lemma 6.2 below,

r(P ) ≤
k∑

ν=1

log |mν(s, t)|

≤
k∑

ν=1

dνh(x)− λ∞ (x, α∞) + K,

(6.12)

for some constant K. By the ABC conjecture, (6.10) and (6.9), we conclude,

λ∞ (x, α∞) ≤ 2h(x) + K + ψ(dh(x)).

This implies Theorem 4.1. If we know the ABC conjecture with a better bound for
the error term than ψ(h) = εh + K(ε), we also obtain a type for α∞.
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In general, S contains more valuations. By (6.11), if a prime p contributes log p
to the radical, then p|mν(s, t) for some ν. This contribution is then bounded by
−vp (mν(s, t)). If vp ∈ S and αp is a root of mµ, we apply case (ii) of Lemma 6.2
below to get a stronger bound for the contribution of p to the radical,

log p ≤ −vp (mµ(s, t))− λp (x, αp) + Kp,

for some constant Kp.
Thus the contribution of vp to the radical is bounded by

k∑
ν=1

−vp (mν(s, t)) ,

if vp /∈ S, and by
(

k∑
ν=1

−vp (mν(s, t))

)
− λp (x, αp) + Kp,

if vp ∈ S. Adding all these contributions, we obtain, by Proposition 2.2,

r(P ) ≤
k∑

ν=1

log |mν(s, t)| −
∑

w∈S, finite

λw (x, αw) +
∑

w∈S, finite

Kw.

We conclude, as in (6.12) above, that

r(P ) ≤
k∑

ν=1

dνh(x)−
∑

w∈S

λw (x, αw) + K,(6.13)

for some constant K. Combining this with (6.10) and (6.9), the ABC conjecture
gives us,

∑

w∈S

λw (x, αw) ≤ 2h(x) + K + ψ(dh(x)).

This proves Theorem 4.3.

Lemma 6.2. Let α be algebraic over Q of degree d, or α = ∞, in which case
d = 1. Let m(x0, x1) ∈ Z[x0, x1] be the minimal homogeneous polynomial such that
m(α, 1) = 0 (or m(x0, x1) = x1 if α = ∞). Let w be a valuation, and extend w to
a valuation of Q(α). Then there exists a constant K such that for all x = s/t ∈ Q,
with s, t ∈ Z coprime,

(i) if w = v∞,

v∞(m(s, t)) ≤ dh(x)− λ∞ (x, α) + K,(6.14)

(ii) if w = vp,

vp(m(s, t)) ≤ −λp (x, α) + K.(6.15)

Proof. For α = ∞, this follows directly from the definitions.
Assume α 6= ∞. If w(x − α) ≥ 0, we have λw(x, α) = 0. Then (i) follows from

(6.1), and (ii) follows since the valuation of an integer is ≤ 0.
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If w(x − α) < 0, we factorize m(x, 1) as (x − α)P (x), for some polynomial P
over Q(α). Since w(x) ≤ w(α) + log 2, we obtain w(P (x)) ≤ K for some constant
K. Then for x = s/t,

w(m(s, t)) = dw(t) + w(m(x, 1))

≤ dw(t) + w(x− α) + K

= dw(t)− λw(x, α) + K.

Case (i) and (ii) follow since dv∞(t) ≤ dh(x) and dvp(t) ≤ 0, respectively.

6.5. The theory of divisors. Let C(C) be a Riemann surface. A finite sum

D = e1(x1) + · · ·+ ek(xk),

with x1, . . . , xk ∈ C(C) and e1, . . . , ek ∈ Z, is called a divisor. We write ei =
ordxi(D), the order of D at xi. Thus we may write D =

∑
x∈C(C) ordx(D)(x).

The degree of D is deg D = e1 + · · · + ek. A divisor is positive, D ≥ 0, if
ordx(D) ≥ 0 for every x ∈ C(C). We also write D ≤ D′ for D′ − D ≥ 0. The
support of D is sup D = {x ∈ C(C) : ordx(D) 6= 0}.

For a map f : C −→ P1 and a ∈ P1(C), we get a positive divisor

f∗(a) =
∑

x∈f−1{a}
ex(f)(x),

the a-divisor of f . Note that deg f∗(a) = deg f .
Let C be defined over Q. Then every embedding σ : Q̄ → C gives an embedding

of C
(
Q̄

)
in C(C). We say that a positive divisor D is defined over Q if the image

σD does not depend on σ. The positive divisor D defined over Q is irreducible if
it cannot be written as sum of positive divisors defined over Q.

For a positive divisor D the maps f : C −→ P1 with f∗(∞) ≤ D form a vector
space (respectively, a Q-vector space if D is defined over Q and we consider only
f that are defined over Q). The dimension of this space over C (respectively, over
Q) is denoted by l(D). We need the theorem of Riemann-Roch, in the form

l(D) = deg D + 1− g,(6.16)

for every positive divisor D with deg D ≥ 2g − 1 (respectively, defined over Q).
Here, g is the genus of C. We use (6.16) to deduce,

Lemma 6.3. Let D be a positive divisor of the Riemann surface C, of genus g. If
deg D ≥ 2g, then there exists a map d : C −→ P1 such that D = d∗(0).

Proof. The trivial divisor D = 0 is zero divisor of a constant, nonzero map. This
takes care of the case g = 0 and D = 0.

Let D > 0 have degree ≥ 2g. By (6.16), l(D) = deg D + 1 − g. We consider a
point x in the support of D. Since deg(D − (x)) = deg D − 1 ≥ 2g − 1, we obtain
by (6.16), l(D − (x)) = l(D) − 1. This means that there exists a function f with
f∗(∞) ≤ D but not f∗(∞) ≤ D− (x). Thus f has a pole at x of order exactly the
multiplicity of x in D.

For each point x in the support of D, we find a function fx with a pole of order
ordx(D) at x, possible poles at the other points of D, of order at most that of D,
and no other poles. Some linear combination of these functions, f =

∑
x∈sup D cxfx,

with cx ∈ Q, will have pole divisor D. Then for d = 1/f we have D = d∗(0).
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6.6. Primes of good reduction. Consider a curve C and a map f : C −→ P1,
defined over Q. We multiply the defining equations (1.2) and (1.3) by a common
denominator so that all polynomials involved have integral coefficients. Then, given
a prime number p, we may take each coefficient modulo p, and consider only values
modulo p for the variables. More generally, we set an algebraic number α to 0 if
vp(α) < 0, and to ∞ if vp(α) > 0 for some extension of vp. We use a bar to denote
reduction modulo p.

Modulo some primes however, a defining equation of C may become 0 = 0, or the
map f may get a lower degree, or become indeterminate at some points, meaning
that it maps a point to (0 : 0). Also, given a divisor D of C, modulo p some points
in D may coalesce or may become indeterminate. We exclude such primes.

We describe a procedure to find a finite set of primes that contains all primes of
bad reduction for f . Choose a point a ∈ P1(Q) such that f is not ramified over a
and a point b ∈ P1(Q) different from a. Exclude all primes for which a or b become
indeterminate or for which they coalesce. Also exclude all primes of bad reduction
for the divisors f∗(a) and f∗(b). Modulo a prime that has not been excluded, we
have ā 6= b̄, so f̄ is not constant, and deg f̄ = deg f̄∗ (ā) = deg f .

It may still happen that f̄ maps a point of C to the indeterminate point. This
happens for only finitely many primes, as we see as follows. By Hilbert’s Nullstel-
lensatz, there exist homogeneous polynomials c0, c1, . . . , ck+1, with integral coeffi-
cients, such that,

c0f0 + c1f1 + c2p1 + · · ·+ ck+1pk = cxl
n,

for some exponent l and a nonzero integer c. Now C has finitely many points with
xn = 0, and we exclude the primes for which the image under f of some of these
points becomes indeterminate2. We also exclude the prime divisors of c.

6.7. ABC implies Mordell’s conjecture.

Proof of Conjecture 5.1 using ABC. Let f : C −→ P1 be Bely̆ı’s function associ-
ated to C and Σ = ∅. Then f is defined over Q, and in particular, f(x) ∈ P1(Q)
for x ∈ C(Q). The divisors A = f∗(0), B = f∗(1) and C = f∗(∞) have a decom-
position into irreducible divisors,

A = e1M1 + · · ·+ eiMi,

B = ei+1Mi+1 + · · ·+ ejMj ,

C = ej+1Mj+1 + · · ·+ ekMk.

We denote the degree of Mν by dν and the degree of f by d. Thus #f−1{0} =∑i
ν=1 dν , #f−1{1} =

∑j
ν=i+1 dν and #f−1{∞} =

∑k
ν=j+1 dν , and by (6.8),

k∑
ν=1

dν = d + 2− 2g < d.(6.17)

To complete the argument, we only need that
∑k

ν=1 dν < d. Thus, we do not need
the full power of Bely̆ı’s construction.

Let N be so large that for each ν, NMν is given as the zero divisor of a function,

NMν = m∗
ν(0).

(By Lemma 6.3, we may take N = 2g.)

2If C is contained in [xn = 0], we view C as embedded in Pn−1, and we use xn−1 instead.



16 MACHIEL VAN FRANKENHUYSEN

Let x ∈ C(Q) be a point with rational coordinates such that f(x) 6= 0, 1,∞. We
apply the ABC conjecture to the point

P = (f(x) : 1− f(x) : 1)

to deduce that the height of x is bounded. By (6.3), h(P ) ≥ h(f(x)). We choose
the function f to define a height function h(x) on C, by formula (6.4). Then

h(P ) ≥ dh(x).(6.18)

We now estimate the radical. Let p be a prime of good reduction for C, f ,
each mν and each Mν . We use a bar to denote reduction modulo p. The prime p
contributes log p to the radical only if vp(f(x)) > 0, vp(f(x)) < 0 or vp(1−f(x)) < 0,
i.e., if f̄(x̄) = ∞̄, 0̄ or 1̄. Then x̄ is in the support of Ā, B̄ or C̄. Since the
decompositions of A, B and C remain the same when reducing modulo p, x̄ is
in the support of some M̄ν . Thus m̄ν(x̄) = 0̄. This means that vp(mν(x)) < 0.
Moreover, since m̄∗

ν (0̄) = NM̄ν , vp(mν(x)) is a multiple of N log p. Thus the
contribution of p to the radical is bounded by

− 1
N

vp (mν(x)) ≤
k∑

ν=1

0 ∨ − 1
N

vp (mν(x)) .(6.19)

Also for v∞ we obtain

0 ≤
k∑

ν=1

0 ∨ − 1
N

v∞ (mν(x)) .(6.20)

Adding all these contributions, we find,

r(P ) ≤
∑

p : good

k∑
ν=1

0 ∨ − 1
N

vp (mν(x)) +
∑

p : bad

log p

≤
k∑

ν=1

∑
v

0 ∨ − 1
N

v (mν(x)) + K

=
k∑

ν=1

1
N

h (mν(x)) + K,

for some constant K. Now mν has degree Ndν , hence by (6.5), h (mν(x)) ≤
Ndνh(x) + O

(√
h(x)

)
, and we obtain

r(P ) ≤
k∑

ν=1

dνh(x) + K0

√
h(x) + K1,(6.21)

for some constants K0 and K1. By the ABC conjecture, (6.17) and (6.18),

(2g − 2)h(x) ≤ K0

√
h(x) + K1 + ψ(dh(x)).(6.22)

Since 2g − 2 > 0 (or, more generally, d −∑k
ν=1 dν > 0) and ψ(dh(x)) = o (h(x)),

we obtain that h(x) is bounded. This proves Conjecture 5.1 and the algorithm in
§5.1.



ABC IMPLIES ROTH’S THEOREM AND MORDELL’S CONJECTURE 17

Note that compared with (6.13), we get an extra
√

h(x) term in the estimate
for the radical in (6.21). It is remarkable that for the strongest possible form of the
ABC conjecture,

ψ(h) = 6.07

√
h

log h
,

by (2.5), the third term on the right of inequality (6.22) is only slightly smaller
than the first term on the right, and for weaker types of the error term, the third
term is the larger one.

6.8. Unification of Roth’s theorem and Mordell’s conjecture. Let C be
defined over Q of genus g. For an algebraic point α ∈ C

(
Q̄

)
and e = 2g, there

exists a function φ : C −→ P1, defined over Q(α), with φ∗(∞) = e(α). For a
valuation w, extended to Q(α), we define

λw(x, α) = 0 ∨ 1
e
w (φ(x)) ,(6.23)

for x ∈ C(Q).
The following theorem implies both Theorem 4.3 and effective Mordell.

Theorem 6.4. Let C be a curve of genus g, defined over Q. Let S be a finite set of
valuations of Q and let αw ∈ C

(
Q̄

)
, for each w ∈ S. Extend w to a valuation of

Q(αw). Assume the ABC conjecture with bound ψ(h). Then there exist constants
d, K0 and K1 such that,∑

w∈S

λw (x, αw) ≤ (2− 2g)h(x) + K0

√
h(x) + ψ(dh(x)) + K1,

for every x ∈ C(Q).

Proof. Let f : C −→ P1 be Bely̆ı’s function associated to C and Σ = {αw : w ∈ S}.
We then follow the same argument as in §6.7. To estimate the radical, we also
exclude the primes of bad reduction for the functions φ that we have used in (6.23)
to define λw. If vp ∈ S contributes to the radical, and vp (mµ (x̄)) < 0, with
mµ (αp) = 0, we obtain by Lemma 6.5 below,

log p ≤ − 1
N

vp (mµ(x))− λp (x, αp) + Kp

≤
(

k∑
ν=1

0 ∨ − 1
N

vp (mν(x))

)
− λp (x, αp) + Kp.

Also for v∞ we obtain by Lemma 6.5,

0 ≤
(

k∑
ν=1

0 ∨ − 1
N

v∞ (mν(x))

)
− λ∞ (x, αp) + K∞.

We then finish the proof as in §6.7.

Lemma 6.5. Let α ∈ C
(
Q̄

)
and m : C −→ P1 be defined over Q such that

m(α) = 0 with multiplicity at least N . Let w be a valuation, extended to Q(α).
Then there exists a constant K such that,

0 ≤
(

0 ∨ − 1
N

w(m(x))
)
− λw(x, α) + K,

for all x ∈ C(Q).
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Proof. If λw(x, α) is large, then w(φ(x)) is large by (6.23). Thus φ(x) is close to
∞ in the w-adic topology. By an approximation procedure, we find a point y close
to x such that φ(y) = ∞, i.e., y ∈ supφ∗(∞). But then y = α and hence x is close
to α. Since m vanishes at α to order N at least, and φ has a pole of order e, the
lemma follows.
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