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Introduction

Historically, two approaches have been followed to study the classical Fermat
equation xr+yr = zr. The first, based on cyclotomic fields, leads to questions
about abelian extensions and class numbers of K = Q(ζr) and values of the
Dedekind zeta-function ζK(s) at s = 0. Many open questions remain, such as
Vandiver’s conjecture that r does not divide the class number of Q(ζr)

+. The
second approach is based on modular forms and the study of two-dimensional
representations of Gal(Q̄/Q). Even though two-dimensional representations
are more subtle than abelian ones, it is by this route that Fermat’s Last
Theorem was finally proved. (Cf. [Fre], [Se2], [Ri2], [W3], and [TW], or
[DDT] for a general overview.)

This article examines the equation

xp + yq = zr. (1)

Certain two-dimensional representations of Gal(K̄/K), where K is the real
subfield of a cyclotomic field, emerge naturally in the study of equation (1),
giving rise to a blend of the cyclotomic and modular approaches. The special
values ζK(−1) – which in certain cases are related to the class numbers
of totally definite quaternion algebras over K – appear as obstructions to
proving that (1) has no solutions. The condition that r is a regular prime
also plays a key role in the analysis leading to one of our main results about
the equation xp + yp = zr (theorem 3.22).

One is interested in primitive solutions (a, b, c) to equation (1), i.e., those
satisfying gcd(a, b, c) = 1. (Such a condition is natural in light of the abc
conjecture for example. See also [Da1].) A solution is called non-trivial if
abc 6= 0. It will be assumed from now on that the exponents p, q, and r are
prime and that p is odd.

Let (a, b, c) be a non-trivial primitive solution to equation (1). One wishes
to show that it does not exist. The program for obtaining the desired contra-
diction, following the argument initiated by Frey and brought to a successful
conclusion by Wiles in the case of xp + yp = zp, can be divided into four
steps.
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Step 1: (Frey, Serre) Associate to (a, b, c) a mod p Galois representation

ρ : Gal(K̄/K) −→ GL2(F)

having “very little ramification”: i.e., whose ramification can be bounded
precisely and a priori independently of the solution (a, b, c). Here K is a
number field and F is a finite field. For the Fermat equation xp + yp = zp,
one may take K = Q and F = Z/pZ: the representation ρ is then obtained by
considering the action of GQ on the p-division points of the Frey elliptic curve
y2 = x(x − ap)(x + bp). As will be explained in section 1, one is essentially
forced to take K = Q(ζq, ζr)

+ and F the residue field of K at a prime above
p in studying equation (1).

Step 2: (Wiles) Prove that ρ is modular, i.e., arises from a Hilbert modular
form on GL2(K). In the setting of Fermat’s equation, Wiles proves that all
semistable elliptic curves over Q arise from a modular form, which implies
the modularity of ρ.

Step 3: (Ribet) Assuming step 2, show that ρ comes from a modular form of
small level, and deduce (in favorable circumstances) that its image is small,
i.e., contained in a Borel subgroup or in the normalizer of a Cartan subgroup
of GL2(F). In the setting of Fermat’s equation, Ribet showed that ρ has to
be reducible; for reasons that will be explained in section 3, one cannot rule
out the case where the image of ρ is contained in the normalizer of a Cartan
subgroup when dealing with equation (1).

Step 4: (Mazur) Show that the image of ρ is large; for example, that it
contains SL2(F). Historically, this is the step in the proof of Fermat’s Last
Theorem that was carried out first, in the seminal papers [Ma1] and [Ma2]
which also introduced many of the tools used in steps 2 and 3.

In the classical setting, combining the conclusions of steps 3 and 4 leads to
a contradiction and shows that (a, b, c) does not exist, thus proving Fermat’s
Last Theorem. In [Da2] and [DMr], it was observed that the program above
can be used to show that xp + yp = zr has no non-trivial primitive solutions
when r = 2, 3 and p ≥ 6 − r. (The result for r = 3 being conditional on
the Shimura-Taniyama conjecture, which is still unproved for certain elliptic
curves whose conductor is divisible by 27.) The purpose of this article is to
generalize the analysis to the general case of equation (1).
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Sections 1, 2, 3, and 4 describe the generalizations of steps 1, 2, 3 and 4
respectively. As a concrete application, the main results of section 3 relate
solutions to xp+yp = zr to questions about p-division points of certain abelian
varieties with real multiplications by Q(cos(2π/r)). Alas, our understanding
of these questions (and of the arithmetic of Hilbert modular forms over totally
real fields) is too poor to yield unconditional statements. For the time being,
the methods of this paper should be envisaged as as a way of tying equation
(1) to questions which are more central, concerning Galois representations,
modular forms, and division points of abelian varieties.
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A. Kraus, and K. Ribet for their helpful comments, and to N. Katz and
J.-F. Mestre for pointing out a key construction used in section 1. The
author greatly benefitted from the support of CICMA and the hospitality
of the Université Paris VI (Jussieu) and the Institut Henri Poincaré where
the work on this paper was started, and of the ETH in Zürich where it was
completed. This work was partly funded by grants from NSERC and FCAR
and by an Alfred P. Sloan research award.

1 Frey representations

1.1 Definition

If K is any field of characteristic 0, write GK := Gal(K̄/K) for its absolute
Galois group. Typically, K will be a number field; let K(t) be the function
field over K in an indeterminate t. The group GK(t) fits into the exact
sequence

1 −→ GK̄(t) −→ GK(t) −→ GK −→ 1.

Let F be a finite field, embedded in a fixed algebraic closure of its prime field.

Definition 1.1 A Frey representation associated to the equation xp+yq = zr

over K is a Galois representation

% = %(t) : GK(t) −→ GL2(F)

satisfying
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1. The restriction of % to GK̄(t) has trivial determinant and is irreducible.
Let

%̄geom : GK̄(t) −→ PSL2(F)

be the projectivization of this representation.

2. The homomorphism %̄geom is unramified outside {0, 1,∞}.
3. It maps the inertia groups at 0, 1 and ∞ to subgroups of PSL2(F) of

order p, q and r respectively.

The characteristic of F is also called the characteristic of the Frey represen-
tation.

One should think of % = %(t) as a one-parameter family of Galois representa-
tions of GK indexed by the parameter t. Condition 1 in the definition ensures
that this family has constant determinant but is otherwise “truly varying”
with t. The motivation for the definition of %(t) is the following:

Lemma 1.2 There exists a finite set of primes S of K depending on % in an
explicit way, such that, for all primitive solutions (a, b, c) to the generalized
Fermat equation xp+yq = zr, the representation ρ := %(ap/cr) has a quadratic
twist which is unramified outside S.

Sketch of proof: Let
%̄ : GK(t) −→ PGL2(F)

be the projective representation deduced from %. The field fixed by the
kernel of %̄ is a finite extension of K(t), whose Galois group is identified with
a subgroup G of PGL2(F) by %̄; in other words, it is the function field of a
G-covering of P1 over K. This covering is unramified outside {0, 1,∞} and
its ramification indices are p, q and r above those three points: it is a G-
covering of “signature (p, q, r)” in the sense of [Se1], sec. 6.4. The lemma now
follows from a variant of the Chevalley-Weil theorem for branched coverings.
(See for example [Be] or [Da1].)

Definition 1.3 Two Frey representations %1 and %2 attached to equation (1)
are said to be equivalent if their corresponding projective representations %̄1

and %̄2 differ by an inner automorphism of PGL2(F̄), i.e., if %1 is conjugate
(over F̄) to a central twist of %2.
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To a Frey representation % we assign a triple (σ0, σ1, σ∞) of elements in
PSL2(F) of orders p, q and r satisfying σ0σ1σ∞ = 1 as follows. (Cf. [Se1],
ch. 6.) The element σj is defined as the image by %̄geom of a generator of
the inertia subgroup of GK̄(t) at t = j. The elements σ0, σ1, and σ∞ are
well-defined up to conjugation once primitive p, q and r-th roots of unity
have been chosen. One can choose the decomposition groups in such a way
that the relation σ0σ1σ∞ = 1 is satisfied (cf. [Se1], th. 6.3.2.). The triple
(σ0, σ1, σ∞) is then well-defined up to conjugation.

If Cj is the conjugacy class of σj in PSL2(F), one says that the Frey
representation % is of type (C0, C1, C∞).

For the following definition, assume that the exponents p, q and r are
odd, so that σ0, σ1 and σ∞ lift to unique elements σ̃0, σ̃1 and σ̃∞ of SL2(F)
of orders p, q and r respectively.

Definition 1.4 The Frey representation attached to xp + yq = zr is said to
be odd if σ̃0σ̃1σ̃∞ = −1, and is said to be even if σ̃0σ̃1σ̃∞ = 1.

1.2 Classification: the rigidity method

If n is an integer, let ζn denote a primitive nth root of unity. Given an odd
prime p, write p∗ := (−1)(p−1)/2p, so that Q(

√
p∗) is the quadratic subfield of

Q(ζp). We now turn to the classification of Frey representations, beginning
with the classical Fermat equation.

The equation xp + yp = zp

Theorem 1.5 Let p be an odd prime. There is a unique Frey representation
%(t) of characteristic p (up to equivalence) associated to the Fermat equation
xp + yp = zp. One may take K = Q and F = Fp, and the representation %(t)
is odd.

Remark: This theorem is originally due to Hecke [He], where it is expressed
as a characterization of a certain field of modular functions of level p.

Proof of theorem 1.5: Set F = Fp. We begin by classifying conjugacy classes of
triples σ0, σ1 and σ∞ of elements of order p in PSL2(F) satisfying σ0σ1σ∞ =
1. There are two conjugacy classes of elements of order p in PSL2(F), denoted
pA and pB respectively. The class pA (resp. pB) is represented by an upper-
triangular unipotent matrix whose upper right-hand entry is a square (resp. a
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non-square). These two classes are rational over Q(
√

p∗) in the sense of [Se1],
sec. 7.1, and are interchanged by the non-trivial element in Gal(Q(

√
p∗)/Q)

as well as by the non-trivial outer automorphism of PSL2(F). Lift σ0, σ1,
and σ∞ to elements σ̃0, σ̃1 and σ̃∞ of order p in SL2(F). The group SL2(F)
acts on the space V = F2 of column vectors with entries in F. Since σ̃j is
unipotent, there are non-zero vectors v1 and v2 in V which are fixed by σ̃0

and σ̃1 respectively. Because σ0 and σ1 do not commute, the vectors v1 and

v2 form a basis for V . Scale v2 so that σ̃0 is expressed by the matrix

(
1 1
0 1

)

in this basis; let

(
1 0
x 1

)
be the matrix representing σ̃1. Since σ̃∞ has trace

2, the relation σ̃0σ̃1 = σ̃−1
∞ forces x = 0, which is impossible since σ1 is of

order p. Hence there are no even Frey representations of characteristic p. The
relation σ̃0σ̃1 = −σ̃−1

∞ gives x = −4. Note that the resulting elements σ0,
σ1, and σ∞ belong to the same conjugacy class in PSL2(F). It is well-known
that they generate PSL2(F). Hence there are exactly two distinct conjugacy
classes of surjective homomorphisms

%̄geom
A , %̄geom

B : GQ̄(t) −→ PSL2(F),

of type (pA, pA, pA) and (pB, pB, pB) respectively, which are interchanged by
the outer automorphism of PSL2(F). By the rigidity theorem of Belyi, Fried,
Thompson and Matzat (cf. [Se1], sec. 7), %̄geom

A and %̄geom
B extend uniquely to

homomorphisms

%̄A, %̄B : GQ(t) −→ PGL2(F) = Aut(PSL2(F))

which are conjugate to each other.Thus there is at most one Frey representa-
tion % attached to xp+yp = zp, whose corresponding projective representation
%̄ is conjugate to %̄A and %̄B. To prove the existence of %, it is necessary to
show that %̄A (say) lifts to a linear representation GQ(t) −→ GL2(F). The ob-
struction to such a lifting is given by a cohomology class c in H2(Q(t),±1).
We note that (for j = 0, 1, and ∞) the homomorphism %̄A maps the de-
composition group at t = j to the normalizer of σj, which is the image
in PGL2(Fp) of a Borel subgroup B of upper triangular matrices. Since
the inclusion F×p −→ B splits, it follows that the restrictions c0, c1 and
c∞ of the cohomology class c in H2(Q((t)),±1), H2(Q((t − 1)),±1) and
H2(Q((1/t)),±1) vanish. In particular, c has trivial “residues” at t = 0, 1,
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∞ in the sense of [Se3], chapter II, annexe §2. Hence c is “constant”, i.e.,
comes from H2(Q,±1) by inflation ([Se3], chapter II, annexe, §4). Therefore
it vanishes, since H2(Q,±1) injects in H2(Q((t)),±1).

The equation xp + yp = zr

Let us now turn to the equation xp + yp = zr, where r and p are distinct
primes. One is faced here with the choice of considering either Frey repre-
sentations of characteristic p, or of characteristic r. From now on, we adopt
the convention that the prime p is always used to denote the characteristic of
the Frey representation, so that the equations xp + yp = zr and xr + yr = zp

will require seperate consideration.
The following theorem is inspired from the proof given in [Se1], prop. 7.4.3

and 7.4.4 for the case r = 2 and r = 3, the general case following from an
identical argument. (See also [DMs].)

Theorem 1.6 Suppose that r and p are distinct primes and that p 6= 2.
There exists a Frey representation of characteristic p over K associated to
xp + yp = zr if and only if

1. The field F contains the residue field of Q(ζr)
+ at a prime p above p,

and

2. The field K contains Q(ζr)
+.

When these two conditions are satisfied, there are exactly r − 1 Frey repre-
sentations up to equivalence. When r 6= 2, exactly (r− 1)/2 of these are odd,
and (r − 1)/2 are even.

Proof: For condition 3 in definition 1.1 to be satisfied, it is necessary that
PSL2(F) contain an element of order r. This is the reason for condition 1 in
theorem 1.6. Condition 2 arises from the fact that (for r 6= 2) the (r − 1)/2
distinct conjugacy classes of elements of order r in PSL2(F) are rational over
Q(ζr)

+ and are not rational over any smaller extension. Assume conversely
that conditions 1 and 2 are satisfied. Let σ0, σ1, and σ∞ be chosen as in
the proof of theorem 1.5, and let σ̃j be the lift of σj to SL2(F) of order p
when j = 0, 1. Finally, let σ̃∞ be a lift of σ∞ to an element of order r if r is
odd, and to an element of order 4 if r = 2. Let ω̄ ∈ F be the trace of σ̃∞.
When r = 2 one has ω̄ = 0, and when r is odd, ω̄ is of the form ϕ(ζr + ζ−1

r )
where ϕ is a homomorphism from Z[ζr + ζ−1

r ]+ to F. Note that there are
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exactly (r − 1)/2 such ϕ’s. One now finds, as in the proof of theorem 1.5,
that (σ̃0, σ̃1, σ̃∞) is conjugate to one of the following two triples:

((
1 1
0 1

)
,

(
1 0

−(2 + ω̄) 1

)
,

( −1 1
−2− ω̄ 1 + ω̄

))
,

((
1 1
0 1

)
,

(
1 0

−(2− ω̄) 1

)
,

(
1 −1

2− ω̄ −1 + ω̄

))
.

When r = 2, these triples are equal in PSL2(F). When r is odd, they
are distinct. An argument based on rigidity as in the proof of theorem 1.5
produces (r−1) inequivalent homomorphisms from GK(t) to GL2(F), yielding
the desired odd and even Frey representations. These Frey representations
will be constructed explicitly in section 1.3 (cf. lemma 1.9 and theorem 1.10).

The equation xr + yr = zp

Theorem 1.7 Suppose that r and p are distinct odd primes. There exists a
Frey representation of characteristic p over K associated to xr + yr = zp if
and only if

1. The field F contains the residue field of Q(ζr)
+ at a prime p above p,

and

2. The field K contains Q(ζr)
+.

When these two conditions are satisfied, there are exactly (r − 1)(r − 2)/2
inequivalent Frey representations: (r − 1)2/4 odd representations, and (r −
1)(r − 3)/4 even representations.

Although the conclusion is somewhat different, the proof of theorem 1.7
follows the same ideas as the proof of theorem 1.6. Each triple (C0, C1, pA),
where C0 and C1 each range over the (r− 1)/2 possible conjugacy classes of
elements of order r in PSL2(F) gives rise to a unique odd and even projective
representation of GK(t) of type (C0, C1, pA), with one caveat: there is no even
representation of type (C0, C1, pA) when C0 = C1.

The equation xp + yq = zr

We finally come to the general case of equation (1). Assume that the expo-
nents p, q and r are distinct primes and that p is odd.
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Theorem 1.8 There exists a Frey representation of characteristic p over K
associated to xp + yq = zr if and only if

1. The field F contains the residue fields of Q(ζq)
+ and of Q(ζr)

+ at a
prime p above p, and

2. The field K contains Q(ζq)
+ and Q(ζr)

+.

When these two conditions are satisfied, there are (r−1)(q−1)/2 inequivalent
Frey representations over Q(ζq, ζr)

+. If q, r 6= 2, then (r−1)(q−1)/4 of these
are odd, and (r − 1)(q − 1)/4 are even.

The proof is the same as for theorems 1.5, 1.6 and 1.7.

1.3 Construction: hypergeometric abelian varieties

The equation xp + yp = zp

One can construct the Frey representation %(t) of theorem 1.5 explicitly, by
considering the Legendre family of elliptic curves

J = J(t) : y2 = x(x− 1)(x− t).

It is an elliptic curve over Q(t) which has multiplicative reduction at t = 0
and 1, and potentially multiplicative reduction at t = ∞. The module J [p] of
its p-division points is a two-dimensional F-vector space on which GQ(t) acts
linearly. The corresponding representation %(t) is the Frey representation of
characteristic p attached to xp + yp = zp.

The equation xp + yp = zr

When r = 2, let C2(t) be the elliptic curve over Q(t) given by the equation

C2(t) : y2 = x3 + 2x2 + tx. (2)

Lemma 1.9 The mod p Galois representation associated to C2 is the Frey
representation associated to xp + yp = z2.

The proof of this lemma is omitted: it follows the same ideas but is simpler
than the proof of theorem 1.10 below for the case of odd r, for which all the
details are given.
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Suppose now that r is an odd prime. Let ωj = ζj
r + ζ−j

r , and write ω for
ω1, so that K = Q(ω) is the real subfield of the cyclotomic field Q(ζr). Let
d = (r − 1)/2 be the degree of K over Q.

Let g(x) =
∏d

j=1(x + ωj) be the characteristic polynomial of −ω, and let
f(x) be an antiderivative of ±rg(x)g(−x); for example, we will take:

f(x) = xg(x2 − 2) = g(−x)2(x− 2) + 2 = g(x)2(x + 2)− 2.

Following [TTV], consider the following hyperelliptic curves over Q(t) of
genus d:

C−
r (t) : y2 = f(x) + 2− 4t, (3)

C+
r (t) : y2 = (x + 2)(f(x) + 2− 4t). (4)

Let J−r = J−r (t) and J+
r = J+

r (t) be their jacobians over Q(t).
In [TTV], Tautz, Top, and Verberkmoes show that these families of hy-

perelliptic curves have real multiplications by K, i.e., that

EndQ̄(t)(J
±
r ) = OK . (5)

Their proof shows that the endomorphisms of J±r are in fact defined over
K, and that the natural action of Gal(K/Q) on EndK(t)(J

±
r ) and on OK are

compatible with the identification of equation (5) above, which is canonical.
(See also [DMs].)

Fix a residue field F of K at a prime above p, and let ϕ be a homomor-
phism ofOK to F. The module J±r [p]⊗ϕF is a two-dimensional F-vector space
on which GK acts F-linearly. By choosing an F-basis for this vector space
one obtains Galois representations (depending on the choice of ϕ, although
this dependence is supressed from the notations)

%±r (t) : GK(t) −→ GL2(F).

Theorem 1.10 The representations %−r (t) and %+
r (t) (as ϕ varies over the

(r − 1)/2 possible homomorphisms from OK to F) are the r − 1 distinct
Frey representations of characteristic p associated to xp + yp = zr. The
representations %−r are odd, and the representations %+

r are even.

Proof: (See also [DMs], prop. 2.2, 2.3.) Observe that
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1. Outside of t = 0, 1,∞, the curves C±
r (t) have good reduction. Hence %±r (t)

satisfies condition 2 in definition 1.1 of a Frey representation.

2. The C±
r (t) are Mumford curves over Spec(K[[t]]) and Spec(K[[t − 1]]),

i.e., the special fiber of C±
r (t) over these bases is a union of projective lines

intersecting transversally at ordinary double points. For example, replacing
y by 2y + (x + 2)g(x) yields the following equation for C+

r (t), whose special
fiber is the union of two projective lines crossing at the d+1 ordinary double
points (x, y) = (−2, 0), (−ωj, 0):

y2 + (x + 2)g(x)y + t(x + 2) = 0. (6)

Likewise, replacing y by 2y + xg(−x) gives the following equation for C+
r (t)

over Spec(K[[t− 1]]):

y2 + xg(−x)y + g(−x)2 + (x + 2)(t− 1) = 0. (7)

Its special fiber is a projective line with the d ordinary double points (x, y) =
(ωj, 0). A similar analysis can be carried out for C−

r (t). By Mumford’s theory,
the Jacobians J±r (t) have purely toric reduction at t = 0 and t = 1, and hence
%±r maps the inertia at these points to unipotent elements of SL2(F).

3. The curve C−
r (t) has a quadratic twist which acquires good reduction

over K[[(1/t)
1
r ]], while C+

r (t) acquires good reduction over this base. For

example, setting t̃ = (1/t)
1
r and replacing x by 1/x and y by (2y+1)/x(r+1)/2

in equation (4) for C+
r (t) gives the model:

y2 + y = xr + t̃h(x, y, t̃/2), (8)

where h is a polynomial with coefficients in Z. Therefore %−r (resp. %+
r ) maps

the inertia at t = ∞ to an element of order 2r (resp. r) of SL2(F) whose
image in PSL2(F) is of order r.

It follows from 2 and 3 that %±r (t) satisfies condition 3 in definition 1.1.

4. A strong version of property 1 now follows from the following group-
theoretic lemma:

Lemma 1.11 Let σ0, σ1, and σ∞ be elements of PSL2(F) of order p, p, and
r satisfying σ0σ1σ∞ = 1. Then σ0, σ1, and σ∞ generate PSL2(F) unless
(p, r) = (3, 5) and σ̃0σ̃1σ̃∞ = −1, in which case they generate an exceptional
subgroup isomorphic to A5 ⊂ PSL2(F9).
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Proof: Let G be the subgroup of PSL2(F) generated by the images of σ0, σ1,
and σ∞. The proper maximal subgroups of PSL2(F) are conjugate to one of
the groups in the following list (Cf. for example [Hu], ch. II.8 th. 8.27)

1. The Borel subgroup of upper triangular matrices.

2. The normalizer of a Cartan subgroup.

3. A group isomorphic to PSL2(F′) or PGL2(F′) for some F′ ⊂ F.

4. One of the exceptional subgroups A4, S4 or A5.

The fact that G contains two unipotent elements that do not commute rules
out the possibility that G is contained in a Borel subgroup or the normalizer
of a Cartan subgroup, and the fact that it contains an element of order r
rules out the groups isomorphic to PSL2(F′) or PGL2(F′). Obviously, G
can be contained in one of the exceptional subgroups only if both p and
r are ≤ 5, i.e., if (r, p) = (2, 3), (2, 5), (3, 5) or (5, 3). In the first three
cases G is isomorphic to PSL2(Fp). (Note that PSL2(F3) ' A4 and that
PSL2(F5) ' A5.) When (r, p) = (5, 3) and σ̃0σ̃1σ̃∞ = −1, one checks directly
that G is isomorphic to the exceptional subgroup A5 ⊂ PSL2(F9).

The equation xr + yr = zp

Choose a parameter j ∈ {1, 3, 5, . . . , r− 2}, and define curves over the func-
tion field Q(t) by the equations:

X−
r,r(t) : y2r = u2xj−2

(
x− 1

x− u

)j+2

,

X+
r,r(t) : yr = u2xj−2

(
x− 1

x− u

)j+2

, u =
t

t− 1
.

A role will be played in our construction by the Legendre family J(t) of
elliptic curves, whose equation we write in the more convenient form:

J(t) : y2 = u2xj−2

(
x− 1

x− u

)j+2

.

These curves are equipped with the following structures.
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1. A canonical action of µr on X−
r,r, and X+

r,r, defined by

ζ(x, y) = (x, ζy), ζ ∈ µr.

2. An involution τ on X−
r,r, X+

r,r and J defined by

τ(x, y) = (u/x, 1/y).

This involution has two fixed points on X+
r,r, and no fixed points on X−

r,r and
on J .

3. Maps π : X−
r,r −→ J , and πr : X−

r,r −→ X+
r,r defined by

π(x, y) = (x, yr); πr(x, y) = (x, y2).

These maps obey the rules

τζ = ζ−1τ, πζ = π, πrζ = ζ2πr, τπ = πτ, τπr = πrτ.

Let
C±

r,r = X±
r,r/τ, J ′ = J/τ.

The maps π and πr commute with τ and hence induce maps from C−
r,r to

J ′ and C+
r,r respectively, which will be denoted by the same letters by abuse

of notation. Write π∗ and π∗r for the maps between the Jacobians of J ′,
C+

r,r and C−
r,r induced by π and πr respectively by contravariant functoriality.

Finally let J+
r,r denote the Jacobian of C+

r,r, and let J−r,r be the quotient of the
Jacobian Jac(C−

r,r) of C−
r,r defined by

J−r,r := Jac(C−
r,r)/(π

∗(J ′) + π∗r(J
+
r,r)).

Proposition 1.12 The abelian varieties J+
r,r (resp. J−r,r) have dimension equal

to (r − 1)/2 when j ∈ {1, 3, 5, . . . , r − 4} (resp. j ∈ {1, 3, 5, . . . , r − 2}). In
these cases there is a natural identification

EndK(J±r,r) = OK

which is compatible with the action of Gal(K/Q) on each side.

14



Proof: The computation of the dimension of J±r,r is a direct calculation based
on the Riemann-Hurwitz formula. To study the endomorphism rings of J±r,r,
let

ηζ : X±
r,r −→ C±

r,r × C±
r,r

be the correspondence from C±
r,r to C±

r,r given by ηζ := (pr, pr ◦ ζ), where pr
is the natural projection of X±

r,r to C±
r,r. The resulting endomorphism ηζ of

Pic(C±
r,r) is defined (on effective divisors) by the equation:

ηζ(prP ) = pr(ζP ) + pr(ζ−1P ).

The commutation relations between ζ and π and πr show that

πηζ = 2π, πrηζ = ηζ2πr.

Hence the subvarieties π∗(J ′) and π∗r(J
+
r,r) of Jac(C−

r,r) are preserved by these
correspondances, which induce endomorphisms of J−r,r as well as of J+

r,r. The
assignment ζ 7→ ηζ yields an inclusion of OK into End(J±r,r), which is an
isomorphism since J±r,r is not of CM type. The result follows.

Choose as before a homomorphism ϕ : OK −→ F and let %±r,r be the Galois
representations obtained from the action of GK(t) on the modules J±r,r[p]⊗ϕF.
Note that the representations %±r,r depend on the choice of the parameter j
as well as on the choice of ϕ.

Theorem 1.13 1. The representations %−r,r, as j ranges over {1, 3, . . . , r−2}
and ϕ over the different homomorphisms OK −→ F, are the (r−1)2/4 distinct
odd Frey representations attached to xr + yr = zp.

2. The representations %+
r,r, as j ranges over {1, 3, . . . , r− 4} and ϕ over

the different homomorphisms OK −→ F, are the (r − 1)(r − 3)/4 distinct
even Frey representations attached to xr + yr = zp.

Proof: See for example [Ka], th. 5.4.4, or [CW].

Remarks:
1. The periods of the abelian varieties J±r,r, as functions of the variable t, are
values of certain classical hypergeometric functions. These functions arise
as solutions of a second-order differential equation having only regular sin-
gularities at t = 0, 1, and ∞ and monodromies of order r at 0 and 1 and
quasi-unipotent monodromy (with eigenvalue −1 for the odd Frey represen-
tation, and 1 for the even Frey representation) at t = ∞.
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2. Katz’s proof, which is based on his analysis of the behaviour of the local
monodromy of sheaves under the operation of “convolution on Gm”, is sig-
nificantly more general than the rank 2 case is used in our application. It
also gives a motivic construction of rigid local systems over P1 − {0, 1,∞}
of any rank. Katz’s “hypergeometric motives” suggest the possibility of con-
necting equation (1) to higher-dimensional Galois representations, for which
questions of modularity are less well understood.

3. In computing finer information such as the conductors of the Frey rep-
resentations %±r,r(a

r/cp) at the “bad primes”, it may be desirable to have a
direct proof of theorem 1.13 along the lines of the proof of theorem 1.10. The
details, which are omitted, will be given in [DK].

The equation xp + yq = zr

The notion of “hypergeometric abelian variety” explained in [Ka], th. 5.4.4
and [CW], sec. 3.3 also yields a construction of the (r − 1)(q − 1)/2 Frey
representations of characteristic p over K = Q(ζq, ζr)

+ associated to xp+yq =
zr, when p, q, r are distinct primes and p is odd. We will not describe the
construction here, referring instead to [Ka], sec. 5.4 for the details. All that
will be used in the sequel is the following theorem:

Theorem 1.14 If q, r 6= 2 (resp. q = 2), there exist abelian varieties J−q,r

and J+
q,r (resp. J2,r) over Q(t) of dimension (r − 1)(q − 1)/2 satisfying

EndK(J±q,r) = OK , (resp. End(J2,r) = OK)

whose mod p representations give rise to all the Frey representations in char-
acteristic p associated to xp + yq = zr. More precisely, fix a residue field F
of K at p, and let ϕ be a homomorphism of Q(ζq)

+Q(ζr)
+ to F. There are

(r− 1)(q− 1)/4 (resp. (r− 1)/2) such ϕ’s. Extending ϕ to a homomorphism
OK −→ F, let %±q,r (resp. %2,r) be the Galois representation obtained from
the action of GK(t) on J±q,r[p] ⊗ϕ F (resp. J2,r[p] ⊗ϕ F). Then the represen-
tations %±q,r (resp. %2,r) are the distinct Frey representations of characteristic
p attached to xp + yq = zr. The representations %−q,r (resp. %+

q,r) are odd
(resp. even).

Frey abelian varieties
We may now assign to each solution (a, b, c) of equation (1) a “Frey abelian
variety”, obtained as a suitable quadratic twist of the abelian variety J(ap/bp)
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for xp + yp = zp, J±r (ap/cr) for xp + yp = cr, J±r,r(a
r/cp) for xr + yr = zp, and

J±q,r(a
p/cr) for xp + yq = zr. These twist are chosen in such a way as to make

the corresponding mod p representations as “little ramified” as possible, in
accord with lemma 1.2.

The equation xp + yp = zp

If (a, b, c) is a solution to the Fermat equation xp + yq = zr, the elliptic curve
J(ap/cp) has equation y2 = x(x − 1)(x − ap/cp), which is a quadratic twist
(over Q(

√
c)) of the familiar Frey curve

J(a, b, c) : y2 = x(x + ap)(x− bp).

Let ρ be the associated mod p representation of GQ.

The equation xp + yp = zr

When r = 2, we associate to a solution (a, b, c) of equation (1) the following
twist of C2(a

p/c2)):

C2(a, b, c) : y2 = x3 + 2cx2 + apx. (9)

When r is odd, the Frey hyperelliptic curves C−
r (a, b, c) and C+

r (a, b, c) are
given by the equations

C−
r (a, b, c) : y2 = crf(x/c)− 2(ap − bp), (10)

C+
r (a, b, c) : y2 = (x + 2c)(crf(x/c)− 2(ap − bp)). (11)

Note that C−
r (a, b, c) is a non-trivial quadratic twist of C−

r (ap/cr) (over the
field Q(

√
c)), while C+

r (a, b, c) is isomorphic to C+
r (ap/cr) over Q.

Here are the equations of C−
r (a, b, c) for the first few values of r:

r = 3 : y2 = x3 − 3c2x− 2(ap − bp).

r = 5 : y2 = x5 − 5c2x3 + 5c4x− 2(ap − bp).

r = 7 : y2 = x7 − 7c2x5 + 14c4x3 − 7c6x− 2(ap − bp).

Let J±r (a, b, c) be the Jacobian of C±
r (a, b, c), and let ρ±r be the corresponding

mod p Galois representations (which depend, as always, on the choice of a
homomorphism ϕ from OK to F). The representation ρ±r is a quadratic twist
of %±r (ap/cr).

We do not write down the equations for J±r,r(a, b, c) or J±q,r(a, b, c), as we
will have no further use for them in this article. A more careful study of the
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Frey abelian varieties J±r,r(a, b, c) associated to xr + yr = zp is carried out in
[DK].

Conductors
We say that a Galois representation ρ : GK −→ GL2(F) is finite at a prime λ
if its restriction to a decomposition group at λ comes from the Galois action
on the points of a finite flat group scheme over OK,λ. When ` 6= p, this is
equivalent to ρ being unramified. Let N(ρ) denote the conductor of ρ, as
defined for example in [DDT]. In particular, N(ρ) is divisible precisely by
the primes for which ρ is not finite.

The equation xp + yp = zp

By interchanging a, b and c and changing their signs if necessary so that a
is even and b ≡ 3 (mod 4), one finds that the conductor of ρ := %(a, b, c) is
equal to 2 (cf. [Se2]). The presence of the extraneous prime 2 in the conductor
(in spite of the fact that all the exponents involved in the Fermat equation
are odd) can be explained by the fact that the Frey representation used to
construct ρ is odd, so that one of the monodromies of %(t) is necessarily of
order 2p. In contrast, we will see that the Galois representations obtained
from even Frey representations are unramified at 2.

The equation xp + yp = zr

Let r = (2− ω) be the (unique) prime ideal of K above r.

Proposition 1.15 1. The representation ρ−r is finite away from r and the
primes above 2.

2. The representation ρ+
r is finite away from r.

Proof: The discriminants ∆± of the polynomials used in equations (10) and
(11) to define C±

r (a, b, c) are

∆− = (−1)
r−1
2 22(r−1)rr(ab)

r−1
2

p; ∆+ = (−1)
r+1
2 22(r+1)rra

r+3
2

pb
r−1
2

p.

If ` is a prime which does not divide ∆±, then C±
r (a, b, c) has good reduction

at ` and hence ρ±r is finite at all primes above `. So it is enough to consider
the primes which divide 2ab. Suppose first that ` 6= 2 divides a, and let λ
denote any prime of K above `. Let Kλ be the completion of K at λ and Oλ

its ring of integers, and denote by ρ±r,λ the restriction of ρ±r to an inertia group

Iλ ⊂ Gal(K̄λ/Kλ) at λ. We observe that ρ±r,λ = %±r (ap/cr)|Iλ
, since ` does not
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divide c. To study ρ±r,λ, we consider the curve C±
r over Spec(Oλ[[t]]). From

the proof of theorem 1.10, one knows that C±
r is a Mumford curve over Kλ[[t]].

Hence its Jacobian J±r is equipped with a (t)-adic analytic uniformization

1 −→ Q −→ T −→ J±r (Kλ((t))) −→ 1,

where T ' (Kλ((t))
×)d is a torus and Q is the sublattice of multiplicative

periods.
Because J±r (t) extends to an abelian scheme over Spec(Oλ[t, 1/t, 1/(t− 1)]),
the lattice Q is generated by power series q1, . . . , qd in Kλ[[t]] whose leading
coefficients α1, . . . , αd belong to O×

λ . It follows that the extension of Kλ

cut out by ρ±r,λ is contained in Kλ(ζp, α
1/p
1 , . . . , α

1/p
d , t1/p) where t = ap/cr.

Since ord`(t) ≡ 0 (mod p), this extension is unramified at λ when ` 6= p, and
comes from a finite flat group scheme over Oλ when ` = p. The proof when
` 6= 2 divides b proceeds in an identical manner, considering this time C±

r (t)
over Spec(Oλ[[(t− 1)]]) and using the fact that ord`(

ap

cr − 1) = ord`(
−bp

cr ) ≡ 0
(mod p) to conclude. Consider finally the case where ` = 2. If 2 does
not divide ab, then c is even. Making the substitution (x, y) = (1/u, (2v +
1)/u(r+1)/2), the equation of C+

r (a, b, c) becomes

v2 + v = 4c(ap − bp)ur+1 − (ap − bp)

2
ur + (lower order terms in u).

The coefficients involved in this equation are integral at 2, and ap−bp

2
is odd;

hence C+
r (a, b, c) has good reduction at 2, and therefore ρ+

r is unramified at
λ. If 2 divides ab, suppose without loss of generality that it divides a. Then
the equation (6) for C+

r (t) also shows that C+
r (a, b, c) is a Mumford curve

over Kλ, and the result follows by the same analysis as above.

Remark: The reader will find in [Ell] a more general criterion for the Galois
representations arising from division points of Hilbert-Blumenthal abelian
varieties to be unramified, which relies on Mumford’s theory in an analogous
way.

Proposition 1.15 implies that the conductor of ρ+
r is a power of r, and

that the conductor of ρ−r is divisible only by r and by primes above 2. We
now study the exponent of r that appears in these conductors.

Proposition 1.16 1. If r divides ab, then the conductor of ρ−r and ρ+
r at

r divides r.
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2. If r does not divide ab, then the conductor of ρ−r and ρ+
r at r divides r3.

Proof: We treat the case of ρ+
r , since the calculations for ρ−r are similar. By

making the change of variable x = (2− ω)u− 2, y = (2− ω)d+1v in equation
(6) one finds the new equation for C+

r :

C+
r : v2 + u

∏
j

(u− 2− ωj

2− ω
)v +

t

(2− ω)d
u = 0. (12)

Setting t̃ = t
(2−ω)d , one sees that C+

r (t̃) is a Mumford curve over Spec(Or[[t̃]]).

(The singular points in the special fiber have coordinates given by (u, v) =
(0, 0) and (

2−ωj

2−ω
, 0), which are distinct since

2−ωj

2−ω
≡ j2 (mod r).) One con-

cludes that when ordr(t) > d, then the representation %+
r (t) is ordinary at r,

and its conductor divides r. When r divides a one has ordr(a
p/cr) ≥ pd > d.

A similar reasoning works when r divides b, and so part 1 of proposition 1.16
follows.

Part 2 is proved by analyzing J±r (t) over Spec(Or[t, 1/(1− t), 1/t]). The
conductor of J±r over this base is constant, and one finds that the conductor
of ρ±r is equal to r3.

By combining the analysis of propositions 1.15 and 1.16, we have shown:

Theorem 1.17 1. The conductor of ρ−r is of the form 2urv, where u = 1 if
ab is even. One has v = 1 if r divides ab, and v ≤ 3 otherwise.

2. The conductor of ρ+
r divides r if r divides ab, and r3 otherwise.

2 Modularity

2.1 Hilbert modular forms

Let K be a totally real field of degree d > 1, and let ψ1, . . . , ψd be the
distinct real embeddings of K. They determine an embedding of the group

Γ = SL2(OK) into SL2(R)d by sending a matrix

(
a b
c d

)
to the d-tuple

((
ai bi

ci di

))d

i=1

where aj = ψj(a) and likewise for bj, cj and dj. Through

this embedding, the group Γ acts on the product Hd of d copies of the
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complex upper half plane by Möbius transformations. More precisely, if
τ = (τ1, . . . , τd) belongs to Hd, then

Mτ :=

(
aiτi + bi

ciτi + di

)d

i=1

.

If f is a holomorphic function on Hd and γ ∈ GL2(K) we define

(f |2γ)(τ) = det(γ)
∏

(ciτi + di)
−2f(γτ).

Let Γ be a discrete subgroup of GL2(K).

Definition 2.1 A modular form of weight 2 on Γ is a holomorphic function
on Hd which satisfies the transformation rule

f |2γ = f,

for all γ in Γ.

A function that vanishes at the cusps is called a cusp form on Γ. The space
of modular forms of weight 2 on Γ is denoted M2(Γ), and the space of cusp
forms is denoted S2(Γ).

Let n be an ideal of K. We now introduce the space S2(n) of cusp forms
of weight 2 level n, as in [W2], sec. 1.1. For this, choose a system c1, c2, . . . , ch

of representative ideals for the narrow ideal classes of K. Let d denote the
different of K, and assume that the ci have been chosen relatively prime to
nd. Define

Γi(n) := {M =

(
a b
c d

)
∈ GL+

2 (K) | a, d ∈ OK , b ∈ (cid)−1,

c ∈ cidn, ad− bc ∈ O×
K}.

Definition 2.2 A cusp form of weight 2 and level n is an h-tuple of functions
(f1, . . . , fh) where fi ∈ S2(Γi(n)).

Denote by S2(n) the space of cusp forms of weight 2 and level n.
To the reader acquainted with the case K = Q, the definition of S2(n) may

appear somewhat contrived. It becomes more natural when one considers the
adelic interpretation of modular forms of level n as a space of functions on
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the coset space GL2(AK)/GL2(K). As in the case where K = Q, the space
S2(n) is a finite-dimensional vector space and is endowed with an action of
the commuting self-adjoint Hecke operators Tp for all prime ideals p of K
which do not divide n. (Cf. [W2], sec. 1.2.)

A modular form f ∈ S2(n) is called an eigenform if it is a simultaneous
eigenvector for these operators. In that case one denotes by ap(f) the eigen-
value of Tp acting on f . Let Kf be the field generated by the coefficients
ap(f). It is a finite totally real extension of Q. If λ is any prime of Kf , let
Kf,λ be the completion of Kf at λ and let Of,λ be its ring of integers.

Eigenforms are related to Galois representations of GK thanks to the
following theorem:

Theorem 2.3 Let f be an eigenform in S2(n). There is a compatible system
of λ-adic representations

ρf,λ : GK −→ GL2(Of,λ)

for each prime λ of Kf , satisfying:

trace(ρf,λ(frobq)) = aq(f), det(ρf,λ(frobq)) = Norm(q),

for all primes q of K which do not divide nλ.

Proof: When K is of odd degree, or when K is of even degree and there
is at least one finite place where f is either special or supercuspidal, this
follows from work of Shimura, Jacquet-Langlands, and Carayol. (Cf. [Ca].)
In this case the representation ρf,λ can be realized on the λ-adic Tate module
of an abelian variety over K. (It is a factor of the Jacobian of a Shimura
curve associated to a quaternion algebra over K which is split at exactly one
infinite place.) In the general case the theorem is due to Wiles [W1] (for
ordinary forms) and to Taylor [Tay] for all f . The constructions of [W1] and
[Tay] are more indirect than those of [Ca]: they exploit congruences between
modular forms to reduce to the situation that is already dealt with in [Ca],
but do not realize ρf,λ on the division points of an abelian variety (or even
on the étale cohomology of an algebraic variety).

Let A be an abelian variety over K with real multiplications by a field E.
More precisely, one requires that E is a finite extension of Q whose degree is
equal to the dimension of A, and that A is equipped with an inclusion:

E −→ EndK(A)⊗Q.
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Following a terminology of Ribet, call A an abelian variety of GL2-type over
K. It gives rise to a compatible system ρA,λ of λ-adic representations of GK

for each prime λ of E by considering the action of GK on (T`(A)⊗Q`)⊗E Eλ.
The conductor of A is defined to be the Artin conductor of ρA,λ for any prime
λ of good reduction for A. (One can show that this does not depend on the
choice of λ.) The following conjecture is the natural generalization of the
Shimura-Taniyama conjecture in the setting of abelian varieties of GL2-type:

Conjecture 2.4 (Shimura-Taniyama) If A is an abelian variety of GL2-
type over K of conductor n, then there exists a Hilbert modular form f over
K of weight 2 and level n such that

ρf,λ ' ρA,λ

for all primes λ of E.

If A satisfies the conclusion of conjecture 2.4, one says that A is modular.
Conjecture 2.4 appears to be difficult in general, even with the powerful new
techniques introduced by Wiles in [W3]. In connection with equation (1),
one is particularly interested in conjecture 2.4 for hypergeometric abelian
varieties.

Conjecture 2.5 For all t ∈ Q, the hypergeometric abelian variety J(t),
(resp. J±r (t), J±r,r(t), J±q,r(t)) attached to the equation xp + yp = zp (resp.
xp + yp = zr, xr + yr = zp, xp + yq = zr) is modular over Q (resp. Q(ζr)

+,
Q(ζr)

+, Q(ζq, ζr)
+).

2.2 Modularity of hypergeometric abelian varieties

The modularity of J
The modularity of the curves in the Legendre family J follows from Wiles’
proof of the Shimura-Taniyama conjecture for semistable elliptic curves. To
prove that J is modular, Wiles begins with the fact that the mod 3 represen-
tation J [3] is modular; this follows from results of Langlands and Tunnell on
base change, the key fact being that GL2(F3) is solvable. Wiles then shows
(at least when the representation J [3] is irreducible and semi-stable) that
every “sufficiently well-behaved” lift of J [3] is also modular. This includes
the representation arising from the 3-adic Tate module of J , and hence J
itself is modular.
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The modularity of J±r and J±r,r
When r = 2 the abelian variety J2 is an elliptic curve (which arises from the
universal family on X0(2)) and its modularity follows from the work of Wiles
and its extensions [Di1].

Likewise when r = 3, the abelian varieties J±r and J−r,r are elliptic curves,
so that their modularity follows from the Shimura-Taniyama conjecture. It
is still conjectural in this case, in spite of the progress made toward the
Shimura-Taniyama conjecture in [Di1] and [CDT]: for many values of t, the
conductors of J±3 (t) and J−3,3(t) are divisible by 27.

For r > 3, the prime 3 is never split in Q(ζr)
+, so that the image of the

Galois representation acting on J±r [3] or J±r,r[3] is contained in a product of
groups isomorphic to GL2(F3s) with s > 1. Because GL2(F3s) is not solvable
when s > 1, it seems difficult to directly prove the modularity of J±r [3] or
J±r [3] and use the prime 3 as in Wiles’ original strategy.

Consider instead the prime r of norm r. Since GQ fixes r, it acts naturally
on the modules J±r [r] and J±r,r[r] of r-torsion points of J±r and J±r,r. Further-
more, these modules are two-dimensional Fr-vector spaces and the action of
GQ on them is Fr-linear.

Theorem 2.6 1. The modules J−r [r] and J−r,r[r] are isomorphic to a quadratic
twist of the mod r representation associated to the Legendre family J .

2. The modules J+
r [r] and J+

r,r[r] are reducible Galois representations.

Proof: By the same arguments as in the proof of theorem 1.10 one shows
that the representations attached to J−r [r] and J−r,r[r] (resp. J+

r [r] and J+
r,r[r]),

if irreducible, are Frey representations associated to the Fermat equation
xr + yr = zr which are odd (resp. even). By theorem 1.5, there is a unique
odd Frey representation (up to twisting by a quadratic character) associated
to xr + yr = zr, which is the one associated to the r-torsion points on the
Legendre family J(t). Part 1 follows. Since there are no even Frey represen-
tations associated to xr + yr = zr, the reducibility of J+

r [r] and J+
r,r[r] follows

as well. (Alternately, in [DMs], prop. 2.3, an explicit r-isogeny from J+
r (t) to

J+
r (−t) defined over K is constructed, which shows that the corresponding

representation is reducible, and in fact that J+
r has a K-rational torsion point

of order r.)

Let N±
r and N±

r,r be the conductors of the GQ-representations J±r [r] and
J±r,r[r].
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Corollary 2.7 The GQ-representations J±r [r] and J±r,r[r] arise from a classi-
cal modular form f0 on Γ0(N

±
r ) and Γ0(N

±
r,r).

Proof: Since the elliptic curve J : y2 = x(x−1)(x−t)is modular for all t ∈ Q,
it is associated to a cusp form on Γ0(NJ) where NJ is the conductor of J(t).
The lowering the level result of Ribet [Ri2] ensures that there is a form f0 of
level N−

r (resp. N−
r,r) attached to J−r [r] (resp. J−r,r[r]). In the case of the even

Frey representations, the appropriate modular form f0 can be constructed
directly from Eisenstein series.

Consider now the restriction of the Galois representations J±r [r] and J±r,r[r]
to GK , which we denote with the same symbol by abuse of notation.

Theorem 2.8 There are Hilbert modular forms f over K giving rise to J±r [r]
or J±r,r[r].

Proof: This is a consequence of cyclic base change, taking f to be the base
change lift of f0 from Q to K.

In light of theorem 2.8, what is needed now is a “lifting theorem” in the
spirit of [TW] and [W3] for Hilbert modular forms over K, which would allow
us to conclude the modularity of the r-adic Tate module of J±r and J±r,r. The
methods of [TW] are quite flexible and have recently been partially extended
to the context of Hilbert modular forms over totally real fields by a number of
mathematicians, notably Fujiwara [Fu] and Skinner and Wiles [SW]. Certain
technical difficulties prevent one from concluding the modularity of J±r and
J±r,r in full generality:

1. When r does not divide ab, the r-adic Tate module of J±r is neither flat
nor ordinary at r. One needs lifting theorems that take this into ac-
count. The work of Conrad, Diamond and Taylor [CDT] is a promising
step in this direction, but many technical difficulties remain to be re-
solved. Even when r = 3, one cannot yet prove that the elliptic curves
J±3 (t) and J−3,3(t) are modular for all t ∈ Q.

2. The reducibility of the representation J+
r [r] may cause some technical

difficulties, although the recent results of Skinner and Wiles [SW] go a
long way toward resolving these difficulties in the ordinary case.

As an application of the results of [SW], we have the following theorem:
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Theorem 2.9 1. If r divides ab, then the abelian varieties J±r (a, b, c) are
modular.

2. If r divides c, then the abelian varieties J±r,r(a, b, c) are modular.

Proof: The abelian varieties J±r (a, b, c) and J±r,r(a, b, c) have multiplicative re-
duction at r, by the proof of proposition 1.16. Hence the r-adic Tate modules
T±

r and T±
r,r of these varieties, viewed as a representation of GK , are ordinary

at r. Since the residual representations J±r [r] and J±r,r[r] come from a Hilbert
modular form over K, the main theorem of [SW] asserts that this property
is inherited by all of their ordinary deformations, including T±

r and T±
r,r. The

result follows.

The modularity of J±q,r

Let K = Q(ζq, ζr)
+, and let q be a prime of K above q. This prime is totally

ramified in K/Q(ζr)
+. Denote by q also the unique prime of Q(ζr)

+ below
q, and let F be the common residue field of Q(ζr)

+ and K at q.
As in the previous section, one notes that the action of GK on the module

J±q,r[q] extends to an F-linear action of GQ(ζr)+ .

Theorem 2.10 The module J±q,r[q] is isomorphic to a quadratic twist of
J±r [q] as a GQ(ζr)+-module.

Proof: The proof is exactly the same as the proof of theorem 2.6.

Corollary 2.11 If J±r is modular, then so is J±q,r[q].

Proof: The same as for corollary 2.7 and theorem 2.8, applying this time
cyclic base change from Q(ζr)

+ to K.
Corollaries 2.7 and 2.11 suggest an inductive strategy for establishing the

modularity of J , J±r , J±r,r and J±q,r, combining a series of base changes with
successive applications of Wiles-type lifting theorems (at the last step, for
Hilbert modular forms over Q(ζq, ζr)

+). This strategy, and its connections
with Fermat’s equation and its variants, is summarized in the flow chart
below:
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Modularity of J [3] ←− Base change
|
| ←− Wiles lifting
↓

Modularity of J

↓
Modularity of J [r] −→ xr + yr = zr

|
| ←− Theorem 2.6 & Theorem 2.6
↓ base change ↓

Modularity of J−r [r]
and J−r,r[r]

Modularity of J+
r [r]

and J+
r,r[r]

| |
| ←− Generalized −→ |
↓ Wiles lifting? ↓

Modularity of J−r
and J−r,r

Modularity of J+
r

and J+
r,r

↓ ↓
Modularity of J−r [q]

and J−r,r[q]
−→ xq + yq = zr,

xr + yr = zq ←− Modularity of J+
r [q]

and J+
r,r[q]

| |
| ←− Theorem 2.10 & −→ |
↓ base change ↓

Modularity of J−q,r[q] Modularity of J+
q,r[q]

| |
| ←− Generalized −→ |
↓ Wiles lifting? ↓

Modularity of J−q,r Modularity of J+
q,r

↓ ↓
Modularity of J−q,r[p] −→ xp + yq = zr ←− Modularity of J+

q,r[p]
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3 Lowering the level

3.1 Ribet’s theorem

Let ρ : GK −→ GL2(F) be a Galois representation of GK with values in
GL2(F) where F is a finite field.

Definition 3.1 We say that ρ is modular if there exists a Hilbert modular
form f over K and a homomorphism j : Of −→ F such that, for all primes
q which are unramified for ρ,

trace(ρ(frobq)) = j(aq(f)).

If f can be chosen to be of weight k and level n, we say that ρ is modular of
weight k and level n.

The following is a generalization of Serre’s conjectures [Se2] to totally real
fields, in a simple special case.

Conjecture 3.2 Suppose that

ρ : GK −→ GL2(F)

is an absolutely irreducible Galois representation, where F is a finite field of
characteristic p. Suppose also that:

1. ρ is odd, and its determinant is the cyclotomic character.

2. ρ is finite at all primes p dividing p.

3. The conductor of ρ in the sense of [Se2] is equal to n.

Then ρ is modular of weight 2 and level n.

This conjecture also seems quite difficult. (For example, the argument in
[Se2], sec. 4, th. 4 shows that conjecture 3.2 implies the generalized Shimura-
Taniyama conjecture 2.4.) The following conjecture, which extends a result
of Ribet [Ri2] to totally real fields, should be more approachable:

Conjecture 3.3 Suppose that ρ satisfies the assumptions of conjecture 3.2,
and that it is modular of weight 2 and some level. Then ρ is modular of
weight 2 and level n.
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The following partial result is proved in [Ja] and [Ra], building on the meth-
ods of [Ri2]:

Theorem 3.4 Let ρ : GK −→ GL2(F) be an irreducible mod p representa-
tion associated to a Hilbert cuspidal eigenform f of weight 2 and level nλ,
where n, λ and p are mutually relatively prime. If [K : Q] is even, assume
that f is either special or supercuspidal at a finite prime q not dividing p and
λ. Then if ρ is unramified at λ, ρ comes from a Hilbert cuspidal eigenform
g of weight 2 and level n.

3.2 Application to xp + yp = zr

In the remainder of this article we will focus our attention on the equation
xp + yp = zr and attack it by studying the representations ρ+

r = %+(ap/cr)
(and, towards the end, ρ−r ) attached to the p-torsion of J±r (a, b, c).

Theorem 3.5 1. If r divides ab then ρ+
r (resp. ρ−r ) comes from a modular

form of weight 2 and level dividing r (resp. 2ur, for some u).
2.If r does not divide ab, assume further that J±r (t) is modular and that

conjecture 3.3 holds for Hilbert modular forms over K. Then ρ+
r (resp. ρ−r )

comes from a modular form of weight 2 and level dividing r3 (resp. 2ur3, for
some u).

Proof: The modularity of J±r (a, b, c) (which when r divides ab follows from
theorem 2.9) implies that ρ±r is modular of weight 2 and some level. By
theorem 1.17, ρ+

r has conductor dividing r when r|ab and dividing r3 in
general, and satisfies all the other hypotheses in conjecture 3.2; a similar
statement holds for ρ−r . Conjecture 3.3 implies the conclusion. Note that
when r|ab, the Hilbert modular form f associated to J+

r (a, b, c) is special or
supercuspidal at r, so that the hypotheses of theorem 3.4 are satisfied. Hence
theorem 3.4 can be applied to prove part 1 of theorem 3.5 unconditionally.

Remark: Theorem 3.5 suggests that the analysis of the solutions (a, b, c) to
xp + yp = zr splits naturally into two cases, depending on whether or not r
divides ab. The following definition is inspired by Sophie Germain’s classical
terminology:

Definition 3.6 A primitive solution (a, b, c) of xp + yp = zr is called a first
case solution if r divides ab, and a second case solution otherwise.
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Remark: As with Fermat’s Last Theorem, the first case seems easier to deal
with than the second case. (Cf. theorem 3.22.)

Our hope is that theorem 3.5 forces the image of ρ±r to be small (at
least for some values of r). Before pursuing this matter further, observe that
equation (1) has (up to sign) three trivial solutions: (0, 1, 1), (1, 0, 1) and
(1,−1, 0).

Proposition 3.7 1. If (a, b, c) = (0, 1, 1) or (1, 0, 1), then J+
r and J−r

have degenerate reduction, and the representations ρ±r are therefore re-
ducible.

2. If (a, b, c) = (1,−1, 0), then J±r have complex multiplication by Q(ζr),
and hence the image of ρ±r is contained in the normalizer of a Cartan
subgroup of GL2(F).

Proof: This can be shown by a direct calculation. For example, the curve
C+

r (1,−1, 0) has equation

y2 = xr+1 − 4x.

Making the substitution (x, y) = (−1/u, (2v + 1)/u(r+1)/2, one obtains the
equation

v2 + v = ur,

and one recognizes this as the equation for the hyperelliptic quotient of the
Fermat curve xr + yr = zr which has complex multiplication by Q(ζr).

Proposition 3.7 suggests the following question:

Question 3.8 Can one show that the image of ρ±r (a, b, c) is necessarily con-
tained in a Borel subgroup or in the normalizer of a Cartan subgroup of
GL2(F)?

The case r = 2 and 3
For r = 2 (resp. r = 3) one can answer this question in the affirmative,
by noting that ρ2(a, b, c) (resp. ρ+

3 (a, b, c)) is modular of level dividing 32
(resp. 27). (One needs to assume the Shimura-Taniyama conjecture for r =
3.) The space of classical cusp forms of weight 2 and level 32 (resp. 27)
is one-dimensional. In fact X0(32) (resp. X0(27)) is an elliptic curve with
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complex multiplication by Q(i) (resp. Q(ζ3)). (It is also a quotient of the
Fermat curve x4+y4 = z4 (resp. x3+y3 = z3).) So the Galois representations
arising from non-trivial primitive solutions of xp + yp = z2 and xp + yp = z3

are either reducible or of dihedral type. This was proved in [Da2]. (See also
[DMr].)

To answer question 3.8 for specific values of r > 3 and p requires a
computation of all the Hilbert modular forms over K of weight 2 and level
dividing r3. We will limit ourselves to the simpler case where K has narrow
class number one.

Remark: It is known that K has narrow class number one for all r < 100
except r = 29, when the narrow class number is equal to 8. (The author is
grateful to Cornelius Greither for pointing out these facts.)

We now give a formula for the dimension of S2(1) and S2(r
k), with k =

1, . . . , 3 under the narrow class number one assumption. To do this we need
to introduce some notations:

• Recall that d = (r − 1)/2 denotes the degree of K over Q.

• Set δ2 = 2 if r ≡ 1 (mod 4) and δ2 = 0 if r ≡ 3 (mod 4). Likewise let
δ3 = 2 if r ≡ 1 (mod 3) and δ3 = 0 if r ≡ 2 (mod 3).

• Let ζK(s) be the Dedekind zeta-function of K. The main contribution
to the dimension of S2(r

k) is given by the special value ζK(−1), a rational
number which can be computed from the formula:

ζK(−1) =
(−1)d

12

∏
χ

B2,χ

2
, B2,χ =

1

r

r∑
a=1

χ(a)a2,

where the product is taken over all non-trivial even Dirichlet characters χ :
(Z/rZ)×/〈±1〉 −→ C× of conductor r.

• Let h− be the minus part of class number of Q(ζr). This number can be
evaluated also as a product of generalized Bernouilli numbers:

h− = (−1)d2r
∏
χ

B1,χ

2
, B1,χ =

1

r

r∑
a=1

χ(a)a,

where the product this time is taken over the odd Dirichlet characters of
conductor r.
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• Let h(a) be the class number of the quadratic extension K(
√

a), and (for
d < 0) let q(a) be the index of O×

KO×
Q(
√

a)
in OK(

√
a)
×
. One has q(a) = 1

or 2, and q(a) = 1 if r ≡ 3 (mod 4). Only the ratios h(−1)/q(−1) and
h(−3)/q(−3) are involved in the formula for the dimension of S2(r

k). Let χ4

and χ3 denote the non-trivial Dirichlet character mod 4 and 3 respectively.
When K has narrow class number one, these ratios are given by the formulae:

h(−1)

q(−1)
= (−1)d+1

∏
χ

B1,χχ4

2
,

h(−3)

q(−3)
= (−1)d+1

∏
χ

B1,χχ3

2
,

where the products are taken over the non-trivial even Dirichlet characters
of conductor r. (Recall that

B1,χχ4 =
1

4r

4r∑
a=1

aχχ4(a), B1,χχ3 =
1

3r

3r∑
a=1

aχχ3(a).)

The following table lists these invariants for the first few values of r:

r d ζK(−1) h− h(−1)/q(−1) h(−3)/q(−3)
5 2 1/30 1 1 1
7 3 −1/21 1 1 1
11 5 −20/33 1 1 1
13 6 152/39 1 3 2
17 8 18688/51 1 8 5
19 9 −93504/19 1 19 9

Let
χ(n) = 1 + (−1)d dim(S2(n)).

Under the assumption that K has narrow class number one, this is the arith-
metic genus of the Hilbert modular variety Hd/Γ0(n); cf. [Fr], ch. II, sec. 4,
th. 4.8.

Theorem 3.9 Assume that K has narrow class number 1. Then χ(rk) (and
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hence, the dimension of S2(r
k)) is given by the formula:

χ(1) =
ζK(−1)

2d−1
+

r − 1

2r
h− +

h(−1)

4q(−1)
+

h(−3)

3q(−3)
,

χ(r) = (r + 1)
ζK(−1)

2d−1
+

r − 1

2r
h− + δ2

h(−1)

4q(−1)
+ δ3

h(−3)

3q(−3)
,

χ(rk) = rk−1(r + 1)
ζK(−1)

2d−1
+ δ2

h(−1)

4q(−1)
+ δ3

h(−3)

3q(−3)
.

Proof: The formula for χ(1) is given in [We], theorem 1.14 and 1.15. A
routine calculation then yields the formula for χ(rk), after noting that:

1. An elliptic fixed point of order 2 (resp. 3) on Hd for the action of
SL2(OK) lifts to δ2 (resp. δ3) elliptic fixed points on Hd/Γ0(r

k) for
k ≥ 1.

2. An elliptic fixed point of order r lifts to a unique elliptic fixed point
modulo Γ0(r), and there are no elliptic fixed points of order r on
Hd/Γ0(r

k) when k > 1.

Noting that K has narrow class number one when r < 23, theorem 3.9
allows us to compute the dimensions for the relevant spaces of cusp forms:

r dim(S2(1)) dim(S2(r)) dim(S2(r
2)) dim(S2(r

3))
5 0 0 0 2
7 0 0 1 5
11 0 1 6 56
13 1 4 24 290
17 6 55 879 14895
19 12 379 7300 138790

The case r = 5 and 7:
When r = 5, the action of the Hecke operators on the spaces S2(n) over K =
Q(
√

5) can be calculated numerically by exploiting the Jacquet-Langlands
correspondence between forms on GL2(K) and on certain quaternion alge-
bras. Let B be the (unique, up to isomorphism) totally definite quaternion
algebra over K which is split at all finite places. The algebra B can be
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identified with the standard Hamilton quaternions over K, since 2 is inert in
K:

B = {x + yi + zj + wk, x, y, z, w ∈ Q(
√

5)}.
The class number of B is equal to one: the maximal orders in B are all
conjugate to the ring of icosians

R = Z[ω, i, j, k,
1

2
(1 + i + j + k),

1

2
(i + ωj + ω̄k)],

whose unit group R× is isomorphic to the binary icosahedral group of order
120. (Cf. for example [CS], ch. 8, sec. 2.1.) Let Rn be an Eichler order of
level n in R, and write

R̂n := Rn ⊗ Ẑ, B̂ = B ⊗ Ẑ.

The Jacquet-Langlands correspondence shows that S2(n) is isomorphic as a
Hecke module to the space

L2(R̂×
n \B̂×/B×),

on which the Hecke operators act in the standard way.

The following table lists the eigenvalues of the Hecke operators Tp acting
on S2(r

3), for all the primes p of K of norm ≤ 50. It turns out that the two
eigenforms in S2(r

3) are conjugate to each other over Q(
√

5), so we have only
displayed the eigenvalues of one of the two eigenforms.

p (2) (3) (3− ω) (4 + ω) (4− ω) (5 + ω) (5− ω)

ap(f) 0 0 −1−5
√

5
2

−1+5
√

5
2

0 0 0

p (6 + ω) (7 + 2ω) (5− 2ω) (7 + ω) (6− ω) (7)

ap(f) 0 −11+5
√

5
2

−11−5
√

5
2

9+5
√

5
2

9−5
√

5
2

0

Observe that ap(f) = 0 for all the primes p which are inert in the quadratic
extension Q(ζ5)/Q(ω). This suggests that f is actually of CM type, and
corresponds to an abelian variety of dimension 2 with complex multiplication
by Q(ζ5).

In fact, this can be proved: the abelian variety

J+
5 (1,−1, 0) = Jac(y2 + y = x5)
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has complex multiplication by Q(ζ5), and its Hasse-Weil L-function is a prod-
uct of Hecke L-series attached to Grossencharacters of Q(ζ5) of conductor
(1 − ζ5)

2. A direct calculation shows that J+
5 (1,−1, 0) is associated to the

two eigenforms in S2(
√

5
3
) over GL2(Q(

√
5)).

When r = 7, we did not carry out a numerical investigation of the Hecke
eigenforms of level r2 and r3, but this turns out to be unecessary in identify-
ing the modular forms that arise in these levels. Let A be the (unique, up to
isogeny) elliptic curve over Q of conductor 49, which has complex multipli-
cation by Q(

√−7). It corresponds to a cusp form over Q of level 49. Its base
change lift to K = Q(cos(2π/7)) is the unique modular form of level r2. The
space S2(r

3) contains a two-dimensional space of old forms, and hence there
are three eigenforms of level r3. These must consist of the Hilbert modular
forms associated to the Fermat quotient

J+
7 (1,−1, 0) : y2 + y = x7.

So when r = 5 and 7, the spaces S2(r
3) contain only eigenforms of

CM type associated to hyperelliptic Fermat quotients or CM elliptic curves.
Hence:

Theorem 3.10 Let r = 5 or 7, and let (a, b, c) be a non-trivial primitive
solution to the equation xp + yp = zr, where p 6= r is an odd prime. Let p be
any prime of K = Q(cos(2π/r)) above p, and write F := OK/p. Then

1. If (a, b, c) is a first case solution, the mod p representation associated
to J+

r (a, b, c) is reducible;

2. If (a, b, c) is a second case solution, assume further that J+
r (a, b, c) is

modular, and that Ribet’s lowering the level theorem (conjecture 3.3)
holds for Hilbert modular forms over K. Then the mod p representation
associated to J+

r (a, b, c) is either reducible, or its image is contained in
the normalizer of a Cartan subgroup of GL2(F).

Following [Se4], one can use the fact that J+
r is semistable to obtain more

precise information in the first case.

Proposition 3.11 If r = 5 or 7 and (a, b, c) is a first case solution to xp +
yp = zr, then J+

r (a, b, c) is Q-isogenous to an abelian variety having a rational
point of order p.
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Proof: Choose a prime p of K above p, and let χ1 : GK −→ F× be the
character giving the action of GK on the K-rational one-dimensional F-vector
subspace L of J+

r [p]. Let χ2 be the character of GK describing its action on
J+

r [p]/L. The local analysis in [Se4], sec. 5.4., lemme 6, shows that χ1 and
χ2 are unramified outside the primes above p. Also, the set of restrictions
{χ1|Ip′ , χ1|Ip′} to an inertia group Ip′ at a prime p′ above p is equal to {χ, 1},
where χ is the cyclotomic character giving the action of Ip′ on the pth roots
of unity. (Use the corollary to prop. 13 of [Se4].) Hence one of χ1 or χ2 is
everywhere unramified. (When there is a single prime of K above p, this
is immediate. If p is split in K, one observes, by analyzing the image of
the map O×

K −→ (OK ⊗ Fp)
× and using class field theory, that the inertia

groups at the various p′ in the maximal tamely ramified abelian extension of
K unramified outside p have non-trivial intersection, and in fact are equal
for all but finitely many p.) Since K has class number 1, one of χ1 or χ2

is trivial. If χ1 = 1, then J+
r [p] has a K-rational point whose trace gives

a point of order p in J+
r (a, b, c). If χ2 = 1, the module L̃ generated by the

OK [GQ]-translates of L is a Q-rational subgroup of J+
r [p] which is of rank

one over OK ⊗ Fp. The quotient J+
r /L̃ has a rational point of order p.

Corollary 3.12 If ` is a prime satisfying ` < p1/d−2p1/2d+1, then ` divides
ab.

Proof: If ` does not divide ab, then J+
r has good reduction at ` and #J+

r (F`) <
(1 +

√
`)2d by the Weil bounds. Hence p > #J+

r (F`). This contradicts
proposition 3.11, since the prime-to-` part of the torsion subgroup of of J+

r (Q)
injects into J+

r (F`) (and likewise for any abelian variey isogenous to J+
r ).

Theorem 3.13 Suppose r = 5 or 7. There exists a constant C−
r depending

only on r such that, if p ≥ C−
r and (a, b, c) is a first case solution to xp+yp =

zr, the Galois representation ρ−r is reducible. (In this case there is a quotient
of J−r (a, b, c) over Q which has a rational point of order p.)

Proof: By corollary 3.12, if p is large enough then 2 divides ab, so that
J−r (a, b, c) is semistable. The mod p representation associated to J−r (a, b, c),
if irreducible, is therefore equal to the mod p rerpesentation associated to a
Hilbert modular form f over K in S2(2r). Corollary 3.12 further implies that
if ` is a prime of Q and λ a prime of K above it, we have

aλ(f) ≡ norm(λ) + 1 (mod p), for all ` ≤ p1/d − 2p1/2d + 1.
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For each f there is a constant C−
f such that this statement fails whenever

p > C−
f , since the mod p representations attached to f are irreducible for

almost all p. Now take C−
r to be the maximum of the C−

f as f runs over the
normalized eigenforms in S2(2r). The statement in parentheses follows by
applying to J−r the same arguments used in the proof of proposition 3.11.

Remark: Although the statement of theorem 3.13 involves only ρ−r , note the
crucial role played in its proof by the representation ρ+

r via corollary 3.12.
This illustrates how information gleaned from one Frey representation may
sometimes be used to yield insights into a second a priori unrelated Frey
representation associated to the same generalized Fermat equation.

The case r = 11
When r = 11, there is a 44-dimensional space of new forms of level r3, and
studying the equation xp + yp = z11 would require computing the Fourier
coefficients associated to these newforms. We content ourselves with the
following result, which requires only dealing with S2(r).

Theorem 3.14 Let (a, b, c) be a first case solution to the equation xp + yp =
z11, where p > 19 is prime, and let p be any prime of K = Q(cos(2π/11))
above p Then the mod p representation associated to J+

11(a, b, c) is reducible,
and in fact J+

11(a, b, c) has a rational point of order p.

Proof: Let p be any ideal of K above p, and let ρp denote the mod p represen-
tation associated to J+

11(a, b, c). Suppose that it is irreducible. By exploiting
the action of Gal(K/Q), it follows that ρp is irreducible for all choices of
p. Theorem 3.5 implies that ρp is modular of level dividing r. The table
above shows that the space of cusp forms of this level is one-dimensional.
In fact, the unique normalized eigenform f of level r is the base change lift
to K = Q(cos(2π/11)) of the modular form f = η(z)2η(11z)2 of level 11
associated to the elliptic curve X0(11). Consider the prime ideal (2) of K
above 2, of norm 32. Then

a(2)(f) = a32(f) = 8.

This implies that

a(2) := a(2)(J
+
11(a, b, c)) ≡ 8 (mod p)
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for all primes p above p. Taking norms, one finds:

p5 divides normK/Q(a(2) − 8).

By the Weil bounds, we have

|normK/Q(a(2) − 8)| ≤ (2
√

32 + 8)5.

Since p > 20 > 8(1 +
√

2), we must have a(2) = 8. But this leads to a
contradiction. For, if 2 divides ab, then J+

11(a, b, c) has purely toric reduction
at 2 and a(2) = ±1. If ab is odd, then J+

11(a, b, c) has good reduction at (2),
and 11 divides norm(32 + 1 − a(2)) = 255 since J+

11(a, b, c) has a K-rational
point of order 11 (by theorem 2.6). It follows that the mod p representations
associated to J+

11 are reducible. The proof of prop. 3.11 now shows that
J+

11(Q) has a point of order p, since Q(cos(2π/11)) has class number one.

Corollary 3.15 If ` is a prime satisfying ` < p1/5−2p1/10+1, then ` divides
ab.

The proof of this corollary is the same as for corollary 3.12. Finally, we
record:

Theorem 3.16 There exists a constant C−
11 such that, if p ≥ C−

11 and (a, b, c)
is a first case solution to xp + yp = z11, the Galois representation ρ−11 is
reducible. (In this case there is a quotient of J−11(a, b, c) over Q which has a
rational point of order p.)

The proof is the same as for theorem 3.13.

The case r = 13:
When r = 13 there is a unique normalized cusp form of level 1, which is
the base change lift of the cusp form associated to the elliptic curve X1(13).
(Note that this curve acquires good reduction over Q(cos(2π/13)).) This
modular form does not pose any obstructions to studying first case solutions
to xp + yp = z13, since the representation attached to a solution of the
equation is ramified at r.

On the other hand, the two-dimensional space of new forms of level r

would have to be studied more carefully in order to understand the (first case)
solutions to xp + yp = z13. The numerical calculation of eigenforms in S2(r)
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becomes increasingly difficult as r gets larger, and it has not been carried
out even for r = 13. One can go further without such explicit numerical
calculations, (cf. theorem 3.22 below) by studying congruences (modulo r)
for modular forms.

General r:
Let ` be a rational prime. The `-adic Tate module T`(J

±
r (t))⊗Q` is a two-

dimensional K` := K⊗Q`-vector space. When t is rational, the linear action
of GK on this vector space extends to a GQ-action which is GK-semilinear,
i.e., satisfies

σ(αv) = ασσ(v), for all α ∈ K`, σ ∈ GQ.

Letting aq(J
±
r ) := trace(ρJ,`(frobq)), it follows that

aq(J
±
r )σ = aqσ(J±r ). (13)

This motivates the following definition:

Definition 3.17 A Hilbert modular form over K of level n is called a Q-form
if for all ideals q of K which are prime to n it satisfies the relation

aq(f)σ = aqσ(f), for all σ ∈ GQ.

(In particular, this implies that the Fourier coefficients aq(f) belong to K.)

Equation (13) implies the following lemma, which reflects the fact that the
abelian varieties J±r (t) with t ∈ Q are defined over Q (even though their
endomorphism rings are only defined over K).

Lemma 3.18 For all t ∈ Q, if the abelian varieties J−r (t) and J+
r (t) are

modular, then they are associated to a modular Q-form over K.

Let f be an eigenform in S2(n) and let λ be a prime in the ring of Fourier
coefficients Of . Denote by ρf,λ the λ-adic representation associated to f by
theorem 2.3 and let V be the underlying Kf,λ-vector space. Choose a GK-
stable Of,λ-lattice Λ in V . The space Λ̄ := Λ/λΛ gives a two-dimensional
representation ρ̄f,λ for GK over the residue field kf,λ := Of,λ/λ. In general,
this representation depends on the choice of lattice, but its semi-simplification
does not. One says that ρf,λ is residually irreducible if ρ̄f,λ is irreducible for
some (and hence all) choices of lattice Λ. Otherwise one says that ρf,λ is
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residually reducible. In the latter case, the semi-simplification of ρ̄f,λ is a
direct sum of two one-dimensional characters

χ1, χ2 : GK −→ k×f,λ,

whose product is the cyclotomic character

χ : GK −→ (Z/`Z)× ⊂ k×f,λ

giving the action of GK on the `-th roots of unity.
Let f be a Q-form over K in the sense of definition 3.17, so that in

particular its Fourier coefficients are defined over K. We say that f is r-
Eisenstein if its associated r-adic representation ρf,r is residually reducible.

Proposition 3.19 There exists a constant C+
r depending only on r such

that, for any first case solution (a, b, c) to equation (1) with p > C+
r , one of

the following holds:

1. The representation ρ+
r is reducible, or

2. it is isomorphic to the mod p representation attached to an r-Eisenstein
Q-form in S2(r).

Proof: Let g be any eigenform in S2(r). If g is not a Q-form, then there exists
a prime q of Og and a σ ∈ GQ such that aq(g)σ 6= aqσ(g). If g is a Q-form,
but is not r-Eisenstein, then there is a prime q of K such that r does not
divide aq(g)−Nq− 1. In either case, one has

aq(g) 6= aq(f),

for all modular forms f which correspond to a J+
r (t) with t ∈ Q. Indeed,

such an f is a Q-form and is r-Eisenstein by theorem 2.6. If f ≡ g for some
prime p of OgK above p then taking norms gives

p divides NormKgK/Q(aq(g)− aq(f)) 6= 0.

Let dg := [Kg : Q]. Applying the Weil bounds one finds:

|NormKgK/Q(aq(g)− aq(f))| ≤ (16NormK/Q(q))(r−1)dg/4,
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so that
p ≤ Cg := (16NormK/Q(q))(r−1)dg/4.

In particular, if p > Cg, the representation ρ+
r is not equivalent to ρ̄g,p for

any prime of OgK above p. Now set C+
r := maxg Cg, where the maximum is

taken over all eigenforms g in S2(r) which are either not Q-forms or are not
r-Eisenstein.

In light of proposition 3.19, it becomes important to understand whether
there exist r-Eisenstein Q-forms in S2(r).

Proposition 3.20 Suppose that r is a regular prime. Then there are no
r-Eisenstein Q-forms over K of level 1 or r.

Proof: Suppose on the contrary that f is a Q-form in S2(r) and that ρf,r is
residually reducible. Let χ1 and χ2 be the characters of GK which occur in
the semi-simplification of Λ̄, for some (and hence all) GK-stable lattices Λ
in V . Because f is a Q-form, it follows that χ1 and χ2 are powers of the
cyclotomic character χ with values in 〈±1〉 ⊂ F×r . Furthermore, χ1χ2 = χ.
Hence we may assume without loss of generality that χ1 = 1 and χ2 = χ.
By proposition (2.1) of [Ri1], there exists a GK-stable lattice Λ for which

ρ̄f,r '
(

χ1 Ψ0

0 χ2

)
=

(
1 Ψ0

0 χ

)
, (14)

and is not semi-simple. This implies that Ψ := Ψ0/χ is a non-trivial cocycle
in H1(K,Z/rZ(−1)). Proposition 3.20 now follows from the following lemma:

Lemma 3.21 The cocycle Ψ is unramified.

Proof of lemma: The cocycle Ψ is unramified at all places v 6= r because v
does not divide the level of f . It is also unramified at r: if f is of level 1,
this is because ρ̄f,r comes from a finite flat group scheme over K. If f is of
level r, then by theorem 2 of [W1], the restriction of the representation ρ̄f,r
to a decomposition group Dr at r is of the form

ρ̄f,r|Dr '
(

χ Ψ
0 1

)
.

But the restriction of χ to Dr is non-trivial. Comparing the equation above to
equation (14), it follows that the local representation ρ̄f,r|Dr splits. Therefore
the cocycle Ψ is locally trivial at r. This completes the proof of lemma 3.21.
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Proposition 3.20 now follows directly: the cocycle Ψ cuts out an unrami-
fied cyclic extension of Q(ζr) of degree r, which does not exist if r is a regular
prime.

Theorem 3.22 Let r be a regular prime. Then there exists a constant C+
r

(depending only on r) such that, for all p > C+
r , and all first case solutions

(a, b, c) to xp + yp = zr, the mod p representation associated to J+
r (a, b, c) is

reducible.

Proof: Combine propositions 3.19 and 3.20.

Remarks:
1. The value of the constant C+

r depends on the structure of the space of
Hilbert modular forms over Q(cos(2π/r)) of level r. It would be possible in
principle to write down a crude estimate for C+

r by using the Chebotarev
density theorem and known estimates for the size of fourier coefficients of
Hilbert modular eigenforms, but we have not attempted to do this.

2. The consideration of r-Eisenstein Q-forms so crucial for the proof of the-
orem 3.22 is only likely to be of use in studying first case solutions. Indeed,
there typically exist r-Eisenstein Q-forms on S2(r

3) – for example, the base
change lifts from Q to K of certain r-Eisenstein forms on X0(r

2), or (more
germane to the present discussion) the form in S2(r

3) asociated to the CM
abelian variety J+

r (1,−1, 0).

3. The arguments based on r-EisensteinQ-forms yield no a priori information
about the Galois representations ρ−r , since the mod r representation attached
to J−r (a, b, c) is irreducible. (It is isomorphic to a twist of the representation
coming from the r-torsion of the Frey curve y2 = x(x−ap)(x+bp), by theorem
2.6.) Nonetheless, one can still show:

Theorem 3.23 Assume further that K has class number one. Then
1. J+

r (a, b, c) has a rational point of order p.
2. There exists a further constant C−

r such that if p > C−
r , the abelian variety

J−r (a, b, c) also has a rational point of order p.

Proof: The proof of 1 is the same as for proposition 3.11, and 2 follows from
the same reasoning as for proposition 3.13.
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4 Torsion points on abelian varieties

Ultimately one wishes to extract a contradiction from theorems like theorems
3.10, 3.13, 3.14, 3.16, 3.22 and 3.23 by proving that when p is large enough
(relative to r perhaps), the image of ρ±r is large - for example, that this image
contains SL2(F); or, at the very least, that the abelian varieties J±r (a, b, c),
when semistable, cannot contain a rational point of order p. The following
folklore conjecture can be viewed as a direct generalization of a conjecture
of Mazur for elliptic curves.

Conjecture 4.1 Let E be a totally real field and K a number field. There
exists a constant C(K,E) depending only on K and E, such that for any
abelian variety A of GL2-type with EndK(A)⊗Q = EndK̄(A)⊗Q ' E, and
all primes p of E of norm greater than C(K, E), the image of the mod p

representation associated to A contains SL2(F).

This conjecture seems difficult: the set of abelian varieties of GL2-type with
End(A)⊗Q ' E is parametrized by a d-dimensional Hilbert modular variety,
and very little is known about the Diophantine properties of these varieties.

When r = 2 and r = 3, one has K = E = Q since the representations ρ±r
arise from elliptic curves. Much of conjecture 4.1 can be proved thanks to
the ideas of Mazur [Ma1], [Ma2]:

• Theorem 8 of [Ma1] implies that the image of ρ±r is not contained in a Borel
subgroup of GL2(Fp) when p > 5.

• A result of Momose [Mo] building on the ideas in [Ma1] implies that this
image is not contained in the normalizer of a split Cartan subgoup if p > 17.

• Finally, a result of Merel and the author [DMr] implies that the image of
ρ+

r is not contained in the normalizer of a non-split Cartan subgroup. (We
were unable to prove a similar result for ρ−r .)

Combining these results with an ad-hoc study (carried out by Bjorn Poonen
[Po], using traditional descent methods) of the equations xp + yp = zr (r =
2, 3) for small values of p yields the desired contradiction. Thus the main
result of [DMr] provides an (essentially) complete analogue of Fermat’s Last
Theorem for equation (1) when r = 2 or 3, which one would like to emulate
for higher values of r.
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Theorem 4.2 ([DMr]) 1. The equation xp + yp = z2 has no non-trivial
primitive solutions when p ≥ 4.

2. Assume the Shimura-Taniyama conjecture. Then the equation xp+yp =
z3 has no non-trivial primitive solutions when p ≥ 3.

Return now to the case r > 3. The following special case of conjecture 4.1,
which is suficient for the applications to equation (1), seems more tractable:

Conjecture 4.3 There exists a constant Br depending only on r, such that
for any t ∈ Q, and all primes p of K = Q(ζr)

+ of norm greater than Br,
the image of the mod p representation of GK associated to J±r (t) is neither
contained in a Borel subgroup or in the normalizer of a Cartan subgroup of
GL2(F).

A natural approach to this conjecture is to study the curves X±
0 (p), X±

s (p)
and X±

ns(p) which classify the abelian varieties J±r (t) with a rational sub-
group, a “normalizer of split Cartan subgroup” structure, and a “normalizer
of non-split Cartan subroup structure” on the p-division points, where p is
an ideal of the field K.

For the moment, we know very little about the arithmetic of these curves,
except when r = 2 and r = 3 when they are closely related to classical
modular curves. When r > 3, they appear as quotients of the upper half
plane by certain non-arithmetic Fuchsian groups described in [CW]. We will
content ourselves here with giving a formula for the genus of these curves.
Let ε = ±1 be defined by the condition Np ≡ ε (mod r).

Lemma 4.4 1. The genus of X±
0 (p) is equal to

1

2
(1− 1

r
− 2

p
)Np− ε

2
(1− 1

r
).

2. The genus of X±
s (p) is equal to

1

4
(1− 1

r
− 2

p
)Np(Np + 1)− ε + 1

4
(1− 1

r
) + 1.

3. The genus of X±
ns(p) is equal to

1

4
(1− 1

r
− 2

p
)Np(Np− 1) +

ε− 1

4
(1− 1

r
) + 1.
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Example: When r = 5 and p = (3), one finds that the curves X−
0 (3) and

X+
0 (3) are of genus 1, i.e., they are elliptic curves over Q. A direct calculation

reveals that X+
0 (3) is an elliptic curve of conductor 15, denoted by 15E in

Cremona’s tables. By looking up the curve 15E twisted by Q(
√

5), one finds
that 15E has finite Mordell-Weil group over Q(

√
5. Does J+

0 (p) always have
a non-zero quotient with finite Mordell-Weil group over Q(ζr)

+, at least when
p is large enough?
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