Model theory and diophantine geometry Lectures 3, 4 & 5: A Drinfeld module version of the Mordell-Lang conjecture

Thomas Scanlon

(scanlon@math.berkeley.edu)

1

Twisted polynomials

Definition 0.1 Let R be a ring and $\sigma : R \to R$ an endomorphism of R. The ring of twisted polynomials in σ over R is the ring $R\{\sigma\}$ generated by R and the (non-commuting) indeterminate σ subject to the commutation rule $\sigma a = \sigma(a)\sigma$ for $a \in R$.

There is a natural homomorphism $R{\sigma} \rightarrow \text{End}(R, +)$ given by sending $a \in R$ to scalar multiplication by a and σ to σ .

Every nonzero element f of $R\{\sigma\}$ may be written uniquely as $\sum_{i=0}^{d} a_i \sigma^i$ for some $d \in \mathbb{N}$, $a_i \in R$ (for $i \leq d$), and $a_d \neq 0$. We define the *degree* of f to be $\deg(f) := d$.

 $\mathbf{2}$

Additive polynomials

Let R be a commutative ring of characteristic p > 0. We write the p-power Frobenius morphism $x \mapsto x^p$ as $\tau : R \to R$.

There is a function $\rho: R\{\tau\} \to R[X]$ defined by

$$\sum_{i=0}^{d} a_i \tau^i \to \sum_{i=0}^{d} a_i X^{p^i}$$

Giving the image of ρ a ring structure with addition of polynomials for + and composition of polynomials for ×, ρ becomes an isomorphism between $R{\tau}$ and its image.

Scheme-theoretically, this ring of additive polynomials over R may be identified with the endomorphism ring of the additive group scheme over R, $\operatorname{End}(\mathbb{G}_{a/R})$.

3

Drinfeld modules

By way of notation, we write $\mathbf{A} := \mathbb{F}_p[t]$ for the ring of polynomials in one variable over the field of p elements. We write $\mathbf{K} := \mathbb{F}_p(t)$ for the field of fractions of \mathbf{A} .

Definition 0.2 Let K be a field of characteristic p > 0. A Drinfeld module over K is a homomorphism $\varphi : \mathbf{A} \to K\{\tau\}$ for which $\deg(\varphi(t)) > 0$.

4

For $a \in \mathbf{A}$ we write φ_a for $\varphi(a)$ thought of as an element of $\operatorname{End}(\mathbb{G}_{a/K})$.

A-modules from Drinfeld modules

If $\varphi : \mathbf{A} \to K\{\tau\}$ is a Drinfeld module and L is a K algebra, then φ gives L an \mathbf{A} -module structure via $a * x = \varphi_a(x)$ for $a \in \mathbf{A}$ and $x \in L$.

Via the identification of $K\{\tau\}$, φ expresses **A** as a subring of $\operatorname{End}(\mathbb{G}_{a/K})$. Via the diagonal action, **A** acts on each Cartesian power $\mathbb{G}_a{}^g$ as well.

Definition 0.3 An algebraic subgroup $G \leq \mathbb{G}_a^g$ is an algebraic **A**-module if for every $a \in \mathbf{A}$ we have $\varphi_a G \leq G$.

Torsion of a Drinfeld module

Definition 0.4 Let $\varphi : \mathbf{A} \to K\{\tau\}$ be a Drinfeld module and $a \in \mathbf{A}$ an element of \mathbf{A} . The a-torsion group is the group scheme $\varphi[a] := \ker \varphi_a$.

The torsion module is the ind-group scheme $\varphi_{tor} := \lim_{i \to a \in \mathbf{A}} \varphi[a].$

As the degree of $\rho(\varphi_a)$ is $p^{\deg \varphi_a}$, the group scheme $\varphi[a]$ is finite of size $p^{\deg \varphi_a}$. If φ_a is separable, then the group $\varphi[a](K^{\text{sep}})$ is a vector space of dimension deg φ_a over \mathbb{F}_p .

Characteristic of a Drinfeld module

For any commutative ring R of characteristic p, reduction modulo the two-sided ideal generated by τ gives a natural map $\pi: R\{\tau\} \to R.$

Definition 0.5 If $\varphi : \mathbf{A} \to K\{\tau\}$ is a Drinfeld module, then we set $\iota := \pi \circ \varphi : \mathbf{A} \to K.$

 $\overline{7}$

We say that φ has generic characteristic if ι is injective. Otherwise, we say that φ has finite characteristic.

Denis' Conjecture

Conjecture 0.6 (Denis) Let $\varphi : \mathbf{A} \to K\{\tau\}$ be a Drinfeld module of generic characteristic. Let $\Gamma \leq K^g$ be an \mathbf{A} -submodule with $\dim_{\mathbf{K}}(\Gamma \otimes_{\mathbf{A}} \mathbf{K}) < \infty$. If $X \subseteq \mathbb{G}_a{}^g$ is an algebraic subvariety, then $X(K) \cap \Gamma$ is a finite union of translates of \mathbf{A} -submodules of Γ .

The special case of $\Gamma = \varphi_{tor}(K^{sep})^g$ is the analogue of the Manin-Mumford conjecture.

Finite characteristic variant

Definition 0.7 Let $\varphi : \mathbf{A} \to K\{\tau\}$ be a Drinfeld module. The modular transcendence degree of φ is the minimum d such that there is some field L of absolute transcendence degree d and a nonzero scalar $\lambda \in (K^{\text{alg}})^{\times}$ such that $\lambda^{-1}\varphi\lambda : \mathbf{A} \to L\{\tau\}$.

Theorem 0.8 Let K be a finitely generated field of characteristic p. Let $\varphi : \mathbf{A} \to K\{\tau\}$ be a Drinfeld module of finite characteristic and postive modular transcendence degree. If $\Gamma \leq \mathbb{G}_a{}^g(K^{\mathrm{alg}})$ is a finitely generated \mathbf{A} -module and $X \subseteq \mathbb{G}_a{}^g$ is any subvariety, then $X(K^{\mathrm{alg}}) \cap \Gamma$ is a finite union of cosets of subgroups of Γ .

9

Generalizations?

In Theorem 0.8 we assert only that $X(K) \cap \Gamma$ is a finite union of cosets of subgroups of Γ , but we do not assert that the subgroups in question are **A**-modules. A complete version of this theorem should include this extra assertion.

Theorem 0.8 is *not* a special case of Denis' conjecture as we require φ to have finite characteristic. However, the following special case of Denis' conjecture should follow.

Conjecture 0.9 (Function-field Denis-Mordell-Lang) Let Kbe a field of characteristic p > 0 and $\varphi : \mathbf{A} \to K\{\tau\}$ a Drinfeld module of generic characteristic over K. Suppose that φ has modular transcendence degree of at least two and that $\Gamma \leq \mathbb{G}_a{}^g(K)$ is a finitely generated \mathbf{A} -module. Then for $X \subseteq \mathbb{G}_a{}^g$ an algebraic subvariety of $\mathbb{G}_a{}^g$, the set $X(K) \cap \Gamma$ is a finite union of cosets of subgroups of Γ .

Reduction to the case of $\varphi_t \in K\{\tau\}\tau$

To say that φ has finite characteristic means that there is some nonzero $s \in \mathbf{A}$ with $\varphi_s \in K\{\tau\}\tau$. Let $\mathbf{A}' := \mathbb{F}_p[s] \subseteq \mathbf{A}$ and $\varphi' := \varphi \upharpoonright_{\mathbf{A}'} : \mathbf{A}' \to K\{\tau\}$. Then, every algebraic \mathbf{A} -module is naturally an algebraic \mathbf{A}' -module and every finitely generated \mathbf{A} -module is a finitely generated \mathbf{A}' -module.

Thus, replacing t with s and A with A' we may assume that $\varphi_t \in K\{\tau\}\tau$ is inseparable.

11

Modular groups

Definition 0.10 Let G be a group definable in some structure and $\Psi \leq G$ an abstract subgroup. We say that Ψ is (quantifier-free) modular if for any quantifier free definable subset $X \subseteq G^n$ of some Cartesian power of G there is another set Y which is a finite Boolean combination of cosets of definable subgroups of G^n for which $X \cap \Psi^n = Y \cap \Psi^n$.

We drop the phrase *quantifier-free* throughout the rest of these lectures.

Modular subgroups of algebraic groups

Theorem 0.8 may be interpreted as saying that every finitely generated **A**-submodule of some power of the additive group of K is modular.

Proposition 0.11 Let K be a field, G an algebraic group over K, and $\Gamma \leq G(K)$ a subgroup of the K-rational points of G. Then Γ is modular if and only if for every $n \in \mathbb{Z}_+$ and every subvariety $X \subseteq G^n$ the set $X(K) \cap \Gamma^n$ is a finite union of cosets of subgroups of Γ^n .

Proof: (\Rightarrow) Take $X \subseteq G^n$ a subvariety of G^n . By hypothesis, there is a set $Y \subseteq G^n(K)$ which is a finite Boolean combination of quantifier-free cosets of definable subgroups of $G^n(K)$ such that

13

 $X(K) \cap \Gamma^n = Y \cap \Gamma^n$. Write

$$Y = \bigcup_{i=1}^{d} (a_i H_i(K) \setminus (\bigcup_{j=1}^{m_i} b_{i,j} L_{i,j}(K)))$$

where $H_i = H_i^0$ is a connected algebraic subgroup of G^n , $L_{i,j} < H_i$ is a proper algebraic subgroup of H_i , $[H_i(K) : L_{i,j}(K)] \ge \aleph_0$, and $b_{i,j}L_{i,j} \subseteq a_iH_i$. Considering each irreducible subvariety of Xseparately, one sees that we may assume that d = 1 and $a_1 = 1$. Find $h \in H(K)$ such that $hb_jL_j(K) \cap b_\ell L_\ell(K) = \emptyset$ for all i, j. Then

l nen

$$(hX) \cup X = h(Y(K) \cap \Gamma^n) \cup Y(K) \cap \Gamma^n$$

$$= \overline{(h(Y(K) \cap \Gamma^n)) \cup (Y(K) \cap \Gamma^n)}$$

$$= \overline{H(K) \cap \Gamma^n}$$

$$= H$$

As $H = H^0$, we have X = H or hX = H (which implies that X = H).

(\Leftarrow) Almost immediate.

15

Modularity is Hereditary

Proposition 0.12 Let G be a definable group and $\Gamma \leq \Xi \leq G$ subgroups of G. If Ξ is modular, then so is Γ .

Proof: Immediate

Reduction to $\Gamma = \Xi^g$

Let $\pi_i : \mathbb{G}_a^g \to \mathbb{G}_a$ be the i^{th} coordinate projection. Let $\Xi := \sum_{i=1}^g \pi_i(\Gamma)$. Then $\Xi \leq \mathbb{G}_a(K)$ is a finitely **A**-module and $\Gamma \leq \Xi^g$.

Compactness and modularity

Proposition 0.13 Let G be a definable group in some \aleph_1 -saturated structure. Let $\Gamma \leq G$ be a subgroup. Suppose that $\langle H_n \rangle_{n \in \omega}$ is some descending chain of definable subgroups of G for which $\Gamma/(\Gamma \cap H_n)$ is finite for each n and $H^{\sharp} := \bigcap H_n$ is modular. Then, Γ is modular.

Proof: Let $\{X_b\}_{b\in B}$ be a quantifier-free definable family of subsets of G^m . We show that there is a natural number n and quantifier-free definable family $\{Y_c\}_{c\in C}$ of finite Boolean combinations of cosets of definable subgroups of G^m such that for each coset $a(H_n)^m$ of $(H_n)^m$ we have for each $b \in B$ some $c \in C$ with $X_b \cap a(H_n)^m = Y_c \cap a(H_n)^m$.

If this were to fail, then by \aleph_1 -saturation we could find some $b \in B$ and $a \in G$ such that $X_b \cap a(H^{\sharp})^m$ cannot be expressed as

 $Y \cap a(H^{\sharp})^m$ for any set $Y \subseteq G^m$ which is a finite Boolean combination of cosets of definable subgroups of G^m . Translating by a^{-1} , this contradicts modularity of H^{\sharp} .

Covering Γ by finitely many cosets of $(H_n)^m$, we finish the proof.

19

Γ lies in finitely many cosets of $\varphi_{t^n}(L)$

Proof: As $L \geq K^{\text{sep}} \geq K \geq \Gamma$, we have $\varphi_{t^n}(L) \geq \varphi_{t^n}(\Gamma)$. Thus, $|\Gamma/(\Gamma \cap \varphi_{t^n}(L))| \leq |\Gamma/\varphi_{t^n}(\Gamma)|$. As Γ is a finitely generate **A**-module, the module $\Gamma/\varphi_{t^n}(\Gamma)$ is a finitely generated $\mathbf{A}/t^n\mathbf{A}$ -module and therefore a finite set.

21

Zilber dichotomy for separably closed fields

Definition 0.14 An ∞ -definable group G in some sufficiently saturated structure is c-minimal if whenever H < G is a definable subgroup of infinite index, then H is finite.

Theorem 0.15 (Bouscaren-Delon) Let G be a c-minimal ∞ -definable group in an \aleph_1 -saturated separably closed field L of finite imperfection degree $([L:L^p] < \aleph_0)$. Let $k := \bigcap_{n \ge 0} L^{p^n}$. If G is not modular, then there is an algebraic group H over k and a surjective definable homomorphism $\psi: G \to H(k)$.

Definable sets in separably closed fields

Let $L = L^{\text{sep}}$ be a separably closed field of characteristic p with $[L:L^p] = p^e$ finite. Fix a basis $B \subseteq L$ of L over L^p . Then with these with this basis named, we have definable functions $\lambda_b: L \to L$ defined by the equation

$$x = \sum_{b \in B} \lambda_b(x)^p b$$

Theorem 0.16 The theory of L eliminates quantifiers in the language $\mathcal{L}(+, \times, 0, 1, \{b : b \in B\}, \{\lambda_b : b \in B\}).$

For any finite sequence $\vec{b} = \langle b_1, \ldots, b_n \rangle \in {}^{<\omega}B$ we write $\lambda_{\vec{b}} := \lambda_{b_n} \circ \cdots \circ \lambda_{b_1}$ and $\vec{b}^* := \prod_{i=1}^n b_i^{p^{i-1}}$.

0	9
4	о

φ^{\sharp} is c-minimal

An analogous calculation occurs in Hrushovski's proof of the function field Mordell-Lang conjecture.

Using the quantifier elimination theorem, it suffices to show that for any $x \in \varphi^{\sharp}(L)$ (as L ranges over elementary extensions of K^{sep}) the field $K(\{\lambda_{\vec{b}}(x)\}_{\vec{b}\in {}^{<\omega}B})$ has transcendence degree at most one over K. For this it suffices to consider \vec{b} of length N (for each $N \in \omega$). Write $x = \varphi_{t^N}(y)$. As φ_t is inseparable, we may write $\varphi_{t^N} = \psi \tau^N$ for some $\psi \in K\{\tau\}$. Write $\psi = \sum_{\vec{b}\in B^N} \vec{b}^* \psi_{\vec{b}}$ for some $\psi_{\vec{b}} \in K^{p^N}\{\tau\}$. Note that $\psi_{\vec{b}}\tau^N(y) \in L^{p^N}$. Thus, $\lambda_{\vec{b}}(x) = y \sqrt[p^N]{\psi_{\vec{b}}(y)} \in K(y)$.

$$\varphi^{\sharp}$$
 non-modular $\Rightarrow \lambda^{-1}\varphi_t \lambda \in L^p\{\tau\}$ for some $\lambda \in L^{\times}$

This is Lemme 3.4.28 of Thomas Blossier's thesis and is proved via a calculation involving λ -functions.

25

φ^{\sharp} is modular

Proof: Iterating Blossier's Lemma and using the saturation of L, we find $\lambda \in L^{\times}$ such that $\lambda^{-1}\varphi_t \lambda \in L^{p^{\infty}} \{\tau\}$.

From a theorem of A. Robinson it follows that $(K^{\text{alg}}, \mathbb{F}_p^{\text{alg}}) \preceq (L^{\text{alg}}, L^{p^{\infty}})$. Thus, there is some $\lambda \in (K^{\text{alg}})^{\times}$ such that $\lambda^{-1} \varphi_t \lambda \in \mathbb{F}_p^{\text{alg}} \{\tau\}$.

So, $\lambda^{p^d-1}a_d \in (\mathbb{F}_p^{\mathrm{alg}})^{\times}$ implying that actually $\lambda \in K^{\mathrm{sep}}$ showing that φ has modular transcendence degree zero.

Conclusion for Drinfeld Mordell-Lang

Thus, φ^{\sharp} is modular so that Γ is also modular.

Can we conclude that if $G \leq \mathbb{G}_a{}^g$ is a connected algebraic subgroup of $\mathbb{G}_a{}^g$ for which $G(K) \cap \Gamma$ is Zariski dense, then G is an algebraic **A**-module? This should be true and it should be related to a recent result of Dragos Ghioca that every point in $\varphi^{\sharp}(K^{\text{sep}})$ is torsion.

27

Drinfeld Manin-Mumford

Theorem 0.17 Let $K = K^{\text{alg}}$ be a field of characteristic p > 0 and $\varphi : \mathbf{A} \to K\{\tau\}$ a Drinfeld module of generic characteristic. If $X \subseteq \mathbb{G}_a{}^g$ be a closed subvariety of a power of the additive group. Then $X(K) \cap \varphi_{\text{tor}}(K)^g$ is a finite union of cosets of **A**-modules.

Difference equations to capture the torsion

As in the case of abelian varieties over number fields, it is a routine matter to find a polynomial $P(X) \in \mathbf{A}[X]$ and an automorphism σ such that $P(\sigma)$ vanishes on "most" of the torsion (precisely the \mathfrak{p} -prime torsion for some prime ideal $\mathfrak{p} \subseteq \mathbf{A}$ where $x \in \varphi(K)_{\text{tor}}$ is \mathfrak{p} -prime torsion if $\operatorname{ann}_{\mathbf{A}}(x) + \mathfrak{p} = \mathbf{A}$).

The polynomial P is obtained as the minimal polynomial of a Frobenius on a reduction of φ and σ is a relative Frobenius.

Patching two such equations coming from two different (appropriately chosen primes) we may find a single difference polynomial vanishing on all the torsion.

29

Zilber dichotomy for ACFA

Theorem 0.18 (Chatzidakis-Hrushovski-Peterzil) Let $(K, \sigma) \models \text{ACFA}$ be an existentially closed difference field of characteristic p. Let G be a commutative algebraic group over K and $\Gamma \leq G(K)$ a c-minimal definable subgroup. Then, either Γ is modular or there there integers $n, m \in \mathbb{Z}$ with either m = 0 and n = 1 or $m \neq 0$ and (n, m) = 1, and an algbraic group H over $k := \text{Fix}(\sigma^n \tau^m)$ and a definable infinite subgroup $\Upsilon \leq H(k) \times \Gamma$ for which the projections in each direction have finite kernel and image of finite index.

Modularity of ker $P(\sigma)$

After analyzing the splitting of P(X) over \mathbf{K}^{alg} , one shows that if ker $P(\sigma)$ were not modular, then it must contain a c-minimal non-modular group.

In this case, it would mean that there is a fixed field $k = \operatorname{Fix}(\sigma^n \tau^m)$ and additive maps $\alpha, \beta \in \mathfrak{U}\{\tau\}$ such that $\alpha(\mathbb{G}_a(k)) \cap \beta(\ker P(\sigma))$ is infinite.

From this we find that in the division ring of quotients of $\mathfrak{U}\{\tau\} P$ have specific roots whose sizes contradict the Weil conjectures for Drinfeld modules.

31

From groups to A-modules

We show that every definable subgroup of ker $P(\sigma)^n$ is commensurable with an **A**-module.

- Case n = 1 follows from Galois theory
- Case n = 2 uses nonarchimedian analysis
- Case n > 2 is proved by induction using the dimension theory of supersimple theories

Questions

- Can one show that every definable subgroup of some power of φ^{\sharp} is an **A**-module?
- Are there proofs along the lines of Pillay's proof of Manin-Mumford for these theorems?