Model theory and diophantine geometry Lectures 3, $4 \& 5$: A Drinfeld module version of the Mordell-Lang conjecture

Thomas Scanlon
(scanlon@math.berkeley.edu)

Twisted polynomials

Definition 0.1 Let R be a ring and $\sigma: R \rightarrow R$ an endomorphism of R. The ring of twisted polynomials in σ over R is the ring $R\{\sigma\}$ generated by R and the (non-commuting) indeterminate σ subject to the commutation rule $\sigma a=\sigma(a) \sigma$ for $a \in R$.

There is a natural homomorphism $R\{\sigma\} \rightarrow \operatorname{End}(R,+)$ given by sending $a \in R$ to scalar multiplication by a and σ to σ.

Every nonzero element f of $R\{\sigma\}$ may be written uniquely as $\sum_{i=0}^{d} a_{i} \sigma^{i}$ for some $d \in \mathbb{N}, a_{i} \in R$ (for $i \leq d$), and $a_{d} \neq 0$. We define the degree of f to be $\operatorname{deg}(f):=d$.

Additive polynomials

Let R be a commutative ring of characteristic $p>0$. We write the p-power Frobenius morphism $x \mapsto x^{p}$ as $\tau: R \rightarrow R$.
There is a function $\rho: R\{\tau\} \rightarrow R[X]$ defined by

$$
\sum_{i=0}^{d} a_{i} \tau^{i} \rightarrow \sum_{i=0}^{d} a_{i} X^{p^{i}}
$$

Giving the image of ρ a ring structure with addition of polynomials for + and composition of polynomials for \times, ρ becomes an isomorphism between $R\{\tau\}$ and its image.

Scheme-theoretically, this ring of additive polynomials over R may be identified with the endomorphism ring of the additive group scheme over $R, \operatorname{End}\left(\mathbb{G}_{a / R}\right)$.

Drinfeld modules

By way of notation, we write $\mathbf{A}:=\mathbb{F}_{p}[t]$ for the ring of polynomials in one variable over the field of p elements. We write $\mathbf{K}:=\mathbb{F}_{p}(t)$ for the field of fractions of \mathbf{A}.

Definition 0.2 Let K be a field of characteristic $p>0$. A Drinfeld module over K is a homomorphism $\varphi: \mathbf{A} \rightarrow K\{\tau\}$ for which $\operatorname{deg}(\varphi(t))>0$.

For $a \in \mathbf{A}$ we write φ_{a} for $\varphi(a)$ thought of as an element of $\operatorname{End}\left(\mathbb{G}_{a / K}\right)$.

A-modules from Drinfeld modules

If $\varphi: \mathbf{A} \rightarrow K\{\tau\}$ is a Drinfeld module and L is a K algebra, then φ gives L an A-module structure via $a * x=\varphi_{a}(x)$ for $a \in \mathbf{A}$ and $x \in L$.

Via the identification of $K\{\tau\}, \varphi$ expresses \mathbf{A} as a subring of $\operatorname{End}\left(\mathbb{G}_{a / K}\right)$. Via the diagonal action, \mathbf{A} acts on each Cartesian power $\mathbb{G}_{a}{ }^{g}$ as well.

Definition 0.3 An algebraic subgroup $G \leq \mathbb{G}_{a}{ }^{g}$ is an algebraic A-module if for every $a \in \mathbf{A}$ we have $\varphi_{a} G \leq G$.

Torsion of a Drinfeld module

Definition 0.4 Let $\varphi: \mathbf{A} \rightarrow K\{\tau\}$ be a Drinfeld module and $a \in \mathbf{A}$ an element of \mathbf{A}. The a-torsion group is the group scheme $\varphi[a]:=\operatorname{ker} \varphi_{a}$.
The torsion module is the ind-group scheme $\varphi_{\mathrm{tor}}:=\underline{\lim }_{a \in \mathbf{A}} \varphi[a]$.
As the degree of $\rho\left(\varphi_{a}\right)$ is $p^{\operatorname{deg} \varphi_{a}}$, the group scheme $\varphi[a]$ is finite of size $p^{\operatorname{deg} \varphi_{a}}$. If φ_{a} is separable, then the group $\varphi[a]\left(K^{\text {sep }}\right)$ is a vector space of dimension $\operatorname{deg} \varphi_{a}$ over \mathbb{F}_{p}.

Characteristic of a Drinfeld module

For any commutative ring R of characteristic p, reduction modulo the two-sided ideal generated by τ gives a natural map
$\pi: R\{\tau\} \rightarrow R$.
Definition 0.5 If $\varphi: \mathbf{A} \rightarrow K\{\tau\}$ is a Drinfeld module, then we set $\iota:=\pi \circ \varphi: \mathbf{A} \rightarrow K$.

We say that φ has generic characteristic if ι is injective.
Otherwise, we say that φ has finite characteristic.

Denis' Conjecture

Conjecture 0.6 (Denis) Let $\varphi: \mathbf{A} \rightarrow K\{\tau\}$ be a Drinfeld module of generic characteristic. Let $\Gamma \leq K^{g}$ be an \mathbf{A}-submodule with $\operatorname{dim}_{\mathbf{K}}\left(\Gamma \otimes_{\mathbf{A}} \mathbf{K}\right)<\infty$. If $X \subseteq \mathbb{G}_{a}{ }^{g}$ is an algebraic subvariety, then $X(K) \cap \Gamma$ is a finite union of translates of \mathbf{A}-submodules of Γ.

The special case of $\Gamma=\varphi_{\mathrm{tor}}\left(K^{\text {sep }}\right)^{g}$ is the analogue of the Manin-Mumford conjecture.

Finite characteristic variant

Definition 0.7 Let $\varphi: \mathbf{A} \rightarrow K\{\tau\}$ be a Drinfeld module. The modular transcendence degree of φ is the minimum d such that there is some field L of absolute transcendence degree d and a nonzero scalar $\lambda \in\left(K^{\text {alg }}\right)^{\times}$such that $\lambda^{-1} \varphi \lambda: \mathbf{A} \rightarrow L\{\tau\}$.

Theorem 0.8 Let K be a finitely generated field of characteristic p. Let $\varphi: \mathbf{A} \rightarrow K\{\tau\}$ be a Drinfeld module of finite characteristic and postive modular transcendence degree. If $\Gamma \leq \mathbb{G}_{a}{ }^{g}\left(K^{\text {alg }}\right)$ is a finitely generated \mathbf{A}-module and $X \subseteq \mathbb{G}_{a}{ }^{g}$ is any subvariety, then $X\left(K^{\mathrm{alg}}\right) \cap \Gamma$ is a finite union of cosets of subgroups of Γ.

Generalizations?

In Theorem 0.8 we assert only that $X(K) \cap \Gamma$ is a finite union of cosets of subgroups of Γ, but we do not assert that the subgroups in question are A-modules. A complete version of this theorem should include this extra assertion.

Theorem 0.8 is not a special case of Denis' conjecture as we require φ to have finite characteristic. However, the following special case of Denis' conjecture should follow.

Conjecture 0.9 (Function-field Denis-Mordell-Lang) Let K be a field of characteristic $p>0$ and $\varphi: \mathbf{A} \rightarrow K\{\tau\}$ a Drinfeld module of generic characteristic over K. Suppose that φ has modular transcendence degree of at least two and that $\Gamma \leq \mathbb{G}_{a}{ }^{g}(K)$ is a finitely generated \mathbf{A}-module. Then for $X \subseteq \mathbb{G}_{a}{ }^{g}$ an algebraic subvariety of $\mathbb{G}_{a}{ }^{g}$, the set $X(K) \cap \Gamma$ is a finite union of cosets of subgroups of Γ.

Reduction to the case of $\varphi_{t} \in K\{\tau\} \tau$

To say that φ has finite characteristic means that there is some nonzero $s \in \mathbf{A}$ with $\varphi_{s} \in K\{\tau\} \tau$. Let $\mathbf{A}^{\prime}:=\mathbb{F}_{p}[s] \subseteq \mathbf{A}$ and $\varphi^{\prime}:=\varphi \upharpoonright_{\mathbf{A}^{\prime}}: \mathbf{A}^{\prime} \rightarrow K\{\tau\}$. Then, every algebraic \mathbf{A}-module is naturally an algebraic \mathbf{A}^{\prime}-module and every finitely generated \mathbf{A}-module is a finitely generated \mathbf{A}^{\prime}-module.

Thus, replacing t with s and \mathbf{A} with \mathbf{A}^{\prime} we may assume that $\varphi_{t} \in K\{\tau\} \tau$ is inseparable.

Modular groups

Definition 0.10 Let G be a group definable in some structure and $\Psi \leq G$ an abstract subgroup. We say that Ψ is (quantifier-free) modular if for any quantifier free definable subset $X \subseteq G^{n}$ of some Cartesian power of G there is another set Y which is a finite Boolean combination of cosets of definable subgroups of G^{n} for which $X \cap \Psi^{n}=Y \cap \Psi^{n}$.

We drop the phrase quantifier-free throughout the rest of these lectures.

Modular subgroups of algebraic groups

Theorem 0.8 may be interpreted as saying that every finitely generated \mathbf{A}-submodule of some power of the additive group of K is modular.

Proposition 0.11 Let K be a field, G an algebraic group over K, and $\Gamma \leq G(K)$ a subgroup of the K-rational points of G. Then Γ is modular if and only if for every $n \in \mathbb{Z}_{+}$and every subvariety $X \subseteq G^{n}$ the set $X(K) \cap \Gamma^{n}$ is a finite union of cosets of subgroups of Γ^{n}.

Proof: (\Rightarrow) Take $X \subseteq G^{n}$ a subvariety of G^{n}. By hypothesis, there is a set $Y \subseteq G^{n}(K)$ which is a finite Boolean combination of quantifier-free cosets of definable subgroups of $G^{n}(K)$ such that
$X(K) \cap \Gamma^{n}=Y \cap \Gamma^{n}$. Write

$$
Y=\bigcup_{i=1}^{d}\left(a_{i} H_{i}(K) \backslash\left(\bigcup_{j=1}^{m_{i}} b_{i, j} L_{i, j}(K)\right)\right)
$$

where $H_{i}=H_{i}^{0}$ is a connected algebraic subgroup of $G^{n}, L_{i, j}<H_{i}$ is a proper algebraic subgroup of $H_{i},\left[H_{i}(K): L_{i, j}(K)\right] \geq \aleph_{0}$, and $b_{i, j} L_{i, j} \subseteq a_{i} H_{i}$. Considering each irreducible subvariety of X separately, one sees that we may assume that $d=1$ and $a_{1}=1$. Find $h \in H(K)$ such that $h b_{j} L_{j}(K) \cap b_{\ell} L_{\ell}(K)=\varnothing$ for all i, j.

Then

$$
\begin{aligned}
(h X) \cup X & =\overline{h\left(Y(K) \cap \Gamma^{n}\right)} \cup \overline{Y(K) \cap \Gamma^{n}} \\
& =\overline{\left(h\left(Y(K) \cap \Gamma^{n}\right)\right) \cup\left(Y(K) \cap \Gamma^{n}\right)} \\
& =\overline{H(K) \cap \Gamma^{n}} \\
& =H
\end{aligned}
$$

As $H=H^{0}$, we have $X=H$ or $h X=H$ (which implies that $X=H)$.
(\Leftarrow) Almost immediate.

Modularity is Hereditary

Proposition 0.12 Let G be a definable group and $\Gamma \leq \Xi \leq G$
subgroups of G. If Ξ is modular, then so is Γ.
Proof: Immediate

Reduction to $\Gamma=\Xi^{g}$

Let $\pi_{i}: \mathbb{G}_{a}{ }^{g} \rightarrow \mathbb{G}_{a}$ be the $i^{\text {th }}$ coordinate projection. Let $\Xi:=\sum_{i=1}^{g} \pi_{i}(\Gamma)$. Then $\Xi \leq \mathbb{G}_{a}(K)$ is a finitely A-module and $\Gamma \leq \Xi^{g}$.

Compactness and modularity

Proposition 0.13 Let G be a definable group in some \aleph_{1}-saturated structure. Let $\Gamma \leq G$ be a subgroup. Suppose that $\left\langle H_{n}\right\rangle_{n \in \omega}$ is some descending chain of definable subgroups of G for which $\Gamma /\left(\Gamma \cap H_{n}\right)$ is finite for each n and $H^{\sharp}:=\bigcap H_{n}$ is modular. Then, Γ is modular.

Proof: Let $\left\{X_{b}\right\}_{b \in B}$ be a quantifier-free definable family of subsets of G^{m}. We show that there is a natural number n and quantifier-free definable family $\left\{Y_{c}\right\}_{c \in C}$ of finite Boolean combinations of cosets of definable subgroups of G^{m} such that for each coset $a\left(H_{n}\right)^{m}$ of $\left(H_{n}\right)^{m}$ we have for each $b \in B$ some $c \in C$ with $X_{b} \cap a\left(H_{n}\right)^{m}=Y_{c} \cap a\left(H_{n}\right)^{m}$.

If this were to fail, then by \aleph_{1}-saturation we could find some $b \in B$ and $a \in G$ such that $X_{b} \cap a\left(H^{\sharp}\right)^{m}$ cannot be expressed as
$Y \cap a\left(H^{\sharp}\right)^{m}$ for any set $Y \subseteq G^{m}$ which is a finite Boolean
combination of cosets of definable subgroups of G^{m}. Translating by a^{-1}, this contradicts modularity of H^{\sharp}.

Covering Γ by finitely many cosets of $\left(H_{n}\right)^{m}$, we finish the proof.

$$
\varphi^{\#}
$$

Let $L \succeq K^{\text {sep }}$ be an \aleph_{1}-saturated elementary extension of $K^{\text {sep }}$. We set $\varphi^{\sharp}:=\varphi^{\sharp}(L):=\bigcap_{n \geq 0} \varphi_{t^{n}}(L)$.
Theorem 0.8 then follows from the assertions

- $\Gamma /\left(\Gamma \cap \varphi_{t^{n}}(L)\right)$ is finite for each $n \in \mathbb{Z}_{+}$
- φ^{\sharp} is modular
Γ lies in finitely many cosets of $\varphi_{t^{n}}(L)$
Proof: As $L \geq K^{\text {sep }} \geq K \geq \Gamma$, we have $\varphi_{t^{n}}(L) \geq \varphi_{t^{n}}(\Gamma)$. Thus, $\left|\Gamma /\left(\Gamma \cap \varphi_{t^{n}}(L)\right)\right| \leq\left|\Gamma / \varphi_{t^{n}}(\Gamma)\right|$. As Γ is a finitely generate
A-module, the module $\Gamma / \varphi_{t^{n}}(\Gamma)$ is a finitely generated
$\mathbf{A} / t^{n} \mathbf{A}$-module and therefore a finite set.

21

Zilber dichotomy for separably closed fields

Definition 0.14 An ∞-definable group G in some sufficiently saturated structure is c-minimal if whenever $H<G$ is a definable subgroup of infinite index, then H is finite.

Theorem 0.15 (Bouscaren-Delon) Let G be a c-minimal ∞-definable group in an \aleph_{1}-saturated separably closed field L of finite imperfection degree $\left(\left[L: L^{p}\right]<\aleph_{0}\right)$. Let $k:=\bigcap_{n \geq 0} L^{p^{n}}$. If G is not modular, then there is an algebraic group H over k and a surjective definable homomorphism $\psi: G \rightarrow H(k)$.

Definable sets in separably closed fields

Let $L=L^{\text {sep }}$ be a separably closed field of characteristic p with $\left[L: L^{p}\right]=p^{e}$ finite. Fix a basis $B \subseteq L$ of L over L^{p}. Then with these with this basis named, we have definable functions $\lambda_{b}: L \rightarrow L$ defined by the equation

$$
x=\sum_{b \in B} \lambda_{b}(x)^{p} b
$$

Theorem 0.16 The theory of L eliminates quantifiers in the language $\mathcal{L}\left(+, \times, 0,1,\{b: b \in B\},\left\{\lambda_{b}: b \in B\right\}\right)$.

For any finite sequence $\vec{b}=\left\langle b_{1}, \ldots, b_{n}\right\rangle \in{ }^{<\omega} B$ we write $\lambda_{\vec{b}}:=\lambda_{b_{n}} \circ \cdots \circ \lambda_{b_{1}}$ and $\vec{b}^{*}:=\prod_{i=1}^{n} b_{i}^{p^{i-1}}$.

φ^{\sharp} is c-minimal

An analogous calculation occurs in Hrushovski's proof of the function field Mordell-Lang conjecture.

Using the quantifier elimination theorem, it suffices to show that for any $x \in \varphi^{\sharp}(L)$ (as L ranges over elementary extensions of $K^{\text {sep }}$) the field $K\left(\left\{\lambda_{\vec{b}}(x)\right\}_{\vec{b} \in<\omega_{B}}\right)$ has transcendence degree at most one over K. For this it suffices to consider \vec{b} of length N (for each $N \in \omega$). Write $x=\varphi_{t^{N}}(y)$. As φ_{t} is inseparable, we may write $\varphi_{t^{N}}=\psi \tau^{N}$ for some $\psi \in K\{\tau\}$. Write $\psi=\sum_{\vec{b} \in B^{N}} \vec{b}^{*} \psi_{\vec{b}}$ for some $\psi_{\vec{b}} \in K^{p^{N}}\{\tau\}$. Note that $\psi_{\vec{b}} \tau^{N}(y) \in L^{p^{N}}$.

Thus, $\lambda_{\vec{b}}(x)=y \sqrt[p^{N}]{\psi_{\vec{b}}(y)} \in K(y)$.

$$
\begin{aligned}
\varphi^{\sharp} \text { non-modular } \Rightarrow & \lambda^{-1} \varphi_{t} \lambda \in L^{p}\{\tau\} \text { for some } \\
& \lambda \in L^{\times}
\end{aligned}
$$

This is Lemme 3.4.28 of Thomas Blossier's thesis and is proved via a calculation involving λ-functions.

φ^{\sharp} is modular

Proof: Iterating Blossier's Lemma and using the saturation of L, we find $\lambda \in L^{\times}$such that $\lambda^{-1} \varphi_{t} \lambda \in L^{p^{\infty}}\{\tau\}$.

From a theorem of A. Robinson it follows that
$\left(K^{\text {alg }}, \mathbb{F}_{p}^{\text {alg }}\right) \preceq\left(L^{\text {alg }}, L^{p^{\infty}}\right)$. Thus, there is some $\lambda \in\left(K^{\text {alg }}\right)^{\times}$such that $\lambda^{-1} \varphi_{t} \lambda \in \mathbb{F}_{p}^{\text {alg }}\{\tau\}$.
So, $\lambda^{p^{d}-1} a_{d} \in\left(\mathbb{F}_{p}^{\text {alg }}\right)^{\times}$implying that actually $\lambda \in K^{\text {sep }}$ showing that φ has modular transcendence degree zero.

Conclusion for Drinfeld Mordell-Lang

Thus, φ^{\sharp} is modular so that Γ is also modular.
Can we conclude that if $G \leq \mathbb{G}_{a}{ }^{g}$ is a connected algebraic subgroup of $\mathbb{G}_{a}{ }^{g}$ for which $G(K) \cap \Gamma$ is Zariski dense, then G is an algebraic A-module? This should be true and it should be related to a recent result of Dragos Ghioca that every point in $\varphi^{\sharp}\left(K^{\text {sep }}\right)$ is torsion.

27

Drinfeld Manin-Mumford

Theorem 0.17 Let $K=K^{\text {alg }}$ be a field of characteristic $p>0$ and $\varphi: \mathbf{A} \rightarrow K\{\tau\}$ a Drinfeld module of generic characteristic. If $X \subseteq \mathbb{G}_{a}{ }^{g}$ be a closed subvariety of a power of the additive group. Then $X(K) \cap \varphi_{\text {tor }}(K)^{g}$ is a finite union of cosets of \mathbf{A}-modules.

Difference equations to capture the torsion

As in the case of abelian varieties over number fields, it is a routine matter to find a polynomial $P(X) \in \mathbf{A}[X]$ and an automorphism σ such that $P(\sigma)$ vanishes on "most" of the torsion (precisely the \mathfrak{p}-prime torsion for some prime ideal $\mathfrak{p} \subseteq \mathbf{A}$ where $x \in \varphi(K)_{\text {tor }}$ is \mathfrak{p}-prime torsion if $\left.\operatorname{ann}_{\mathbf{A}}(x)+\mathfrak{p}=\mathbf{A}\right)$.

The polynomial P is obtained as the minimal polynomial of a Frobenius on a reduction of φ and σ is a relative Frobenius.

Patching two such equations coming from two different (appropriately chosen primes) we may find a single difference polynomial vanishing on all the torsion.

Zilber dichotomy for ACFA

Theorem 0.18 (Chatzidakis-Hrushovski-Peterzil) Let $(K, \sigma) \models$ ACFA be an existentially closed difference field of characteristic p. Let G be a commutative algebraic group over K and $\Gamma \leq G(K)$ a c-minimal definable subgroup. Then, either Γ is modular or there there integers $n, m \in \mathbb{Z}$ with either $m=0$ and $n=1$ or $m \neq 0$ and $(n, m)=1$, and an algbraic group H over $k:=\operatorname{Fix}\left(\sigma^{n} \tau^{m}\right)$ and a definable infinite subgroup $\Upsilon \leq H(k) \times \Gamma$ for which the projections in each direction have finite kernel and image of finite index.

Modularity of ker $P(\sigma)$

After analyzing the splitting of $P(X)$ over $\mathbf{K}^{\text {alg }}$, one shows that if ker $P(\sigma)$ were not modular, then it must contain a c-minimal non-modular group.

In this case, it would mean that there is a fixed field $k=\operatorname{Fix}\left(\sigma^{n} \tau^{m}\right)$ and additive maps $\alpha, \beta \in \mathfrak{U}\{\tau\}$ such that $\alpha\left(\mathbb{G}_{a}(k)\right) \cap \beta(\operatorname{ker} P(\sigma))$ is infinite.

From this we find that in the division ring of quotients of $\mathfrak{U}\{\tau\} P$ have specific roots whose sizes contradict the Weil conjectures for Drinfeld modules.

31

From groups to A-modules

We show that every definable subgroup of $\operatorname{ker} P(\sigma)^{n}$ is commensurable with an A-module.

- Case $n=1$ follows from Galois theory
- Case $n=2$ uses nonarchimedian analysis
- Case $n>2$ is proved by induction using the dimension theory of supersimple theories

Questions

- Can one show that every definable subgroup of some power of φ^{\sharp} is an A-module?
- Are there proofs along the lines of Pillay's proof of Manin-Mumford for these theorems?

