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1 Introduction

This paper provides a detailed explanation of Serre’s method for using class
field theory to construct curves over finite fields with many rational points.
This method can be implemented in a systematic way to generate curves over
any finite field with many rational points. The power of the method is clear
from the fact that it produces or reproduces most of the best existing curves.
For example, we give here the ray class field description of the Deligne-Lusztig
curves: Hermitian, Suzuki, and Ree. These families are important because each
member has the maximum number of points possible for its genus. The ray class
field descriptions of these three families are remarkably similar to each other:

Theorem 1 The Hermitian, Suzuki, and Ree curves can be realized by splitting
the q places of degree one different from (co) of F,(T), q = p’, in the ray class
field of conductor D = k(oo), where

[ plI21 42 if qis a square or p=2
=1 P21 43 ifp=3

(The Hermitian curves are defined when q is a square; the Suzuki (resp. Ree)
curves are defined when q is not a square and the characteristic is 2 (resp. 3).)

From this theorem, we derive interesting results on the order of the group of
units of quotitents of polynomial rings.

Corollary 1 If g = p/ and either q is a square or p =2 or 3, then

|(B [T])/T*)" /T /(1 — oT o € )]

1 ifk<plf/?2l 42
=< Vva ifk =plf/21 £ 2 ¢ is a square
q if k= plf/21 12, q not a square, p=2 or 8

An excellent survey of the progress in constructing curves with many points is
contained in the introduction to [9]. These authors use explicit class field theory,
and have further demonstrated the power of Serre’s method by generating many
new examples of curves which come close to the bounds on the number of points.



Section 2 summarizes the known bounds on the number of points. Section 3
consists of a detailed explanation of the application of class field theory to con-
structing curves with many points. It includes examples of curves constructed
via this method which meet the bounds on the number of points. Section 4
gives the ray class field descriptions of the Deligne-Lusztig curves.
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2 Bounds

This section gives a brief summary of the best known bounds for the number of
rational points on a smooth curve of genus g over the field F,. A rational point
is a prime which has residue field isomorphic to F,. When refering to points,
we will always mean rational points. The best-known bound on the number of
points is the Hasse-Weil bound:

#X(F,) <q+1+29./4.

For each g and ¢, N,(g) is defined as the maximum number of points on a
curve of genus g over F,. When ¢ is an even power of a prime, N, (g) can actually
be equal to the Hasse-Weil bound. If a curve meets the Hasse-Weil bound, we
say it is Hasse- Weil mazimal. Any curve over F;, which is Hasse- Weil mazimal
has the property that ([14])

Valva-1)

<
9= 2

Furthermore, [1], either the curve is isomorphic to the Hermitian curve, or else
we have g < (/g — 1)2/4. In the case where ¢ is not a square, the situation is
much more difficult to determine.

When g is an odd power of a prime, the Hasse-Weil bound was improved by
J.P. Serre to the bound:

#X(Fy) < q+1+g[2/4],

where [z] denotes the integer part of z.

Neither of these bounds is effective when the genus is large compared to
g, and the improvements on this bound using Weil’s ”explicit formulae” are
significant. To state these bounds, we introduce several auxiliary functions. If
{¢n}n>1 are real numbers, put

f@)=1+2 Z cpcos(nd) =1+ Z cn(emo + e—mo)
n=1 n=1



for 8 € R, and

lI/d(t) = Z Cndtnd
n=1

ford € N, t € R. Now the bounds arise in the following circumstances: Suppose
the {c,} have the following properties:

1. ¢, >0,not all ¢, =0
2. f(#) >0forallfeR

Then X
<_ 9 ¥1(g2)
T li(g2)  Ta(g?)
This method will yield different bounds depending on the choice of {¢,}. The
Weil bound, for example, is obtained by choosing ¢; = 1/2, ¢; = 0, ¢ > 1. It was
shown by Oesterle that there exists an optimal choice for the {¢,}. Oesterle’s
optimization of this method is described in [13] as follows: ”A genus g curve
over F, with L + 1 rational points satisfies:

+1

. L—-1),/qgcosby+q—L

> sup{L¥(g~/2) — B(g2)} >

g 2 sup{L¥(q™ ") = (¢} 2 4+ 1—2ygooste

Moreover, if ¢ > 3 the second inequality is actually an equality, where ¥(T') =
> ¢, T™ with ¢, non-negative and ¥(¢) + ¥(f) +1>0,fort € C, |[t| =1, as in
conditions 1 and 2 above. The value of 6y is defined as follows: Let m be the
unique integer for which

\/am<LS\/am+1‘
Put "
mrt L

and let 6y denote the unique solution of the equation

m—+1 m—1

cos 6 + u cos 5 6=0

in the interval [2, 7).

Example 1 Over Fy, a curve with 65 points must have genus g > 32

Proof: Since L = 64, we find that m = 5, u = 0. Then §y = 7/6, and
g > 31.9808....

Example 2 Over Fy, a curve with 66 points must have genus g > 33

Proof: Since L = 65, we find that m = 6, u = 63/65. Then 6§, = 0.522207,
and g > 32.5743....



Example 3 Over Fy, a curve with 67 points must have genus g > 34

Proof: Since L = 66, we find that m = 6, v = 31/34. Then 6y = 0.51951,
and g > 33.283....
These examples establish the following corollary:

Corollary 2 N4(33) < 66

This section surveyed the techniques for obtaining upper bounds for N,(g).
To obtain lower bounds for N,(g), we must construct curves with many points.

3 Serre’s method

In this section we explain Serre’s method for using class field theory for function
fields over finite fields to construct curves with many points. We have benefited
greatly from the expoosition in [13] to understand Serre’s original results [11].

Let K be the function field of a smooth, irreducible curve X over F,. Abelian
covers of X correspond to abelian extensions of K, which correspond by class
field theory to subgroups of finite index of Ck, the idele class group of K. Class
field theory ensures that for each finite quotient of C'x, there exists an abelian
extension of K having this quotient as its Galois group. Ck is the quotient of
the idele group Ay by K*. Let U denote the quotient of the units of A} by
F;. The group of units of Ay, 4, consists of all elements of Az which have
valuation zero everywhere.

So in order to construct curves over F, as covers of X, it suffices to consider
the finite quotients of C'x. To accomplish this, begin by defining a subgroup,
Up, of U, for each divisor D on X.

Definition 1 If D = ) n,v is a divisor on X, let
Up={(z,)€eU|z, =1 (modt™)}.
The definition of {p is analogous.

Definition 2 A Ray class field of conductor D is an extension of K whose
Galois group is a finite quotient of Cx /Up.

Finite quotients of Cx /Up are obtained by taking the quotient by the subgroup
generated by the uniformizer of at least one place of degree one outside the
support of D. This can be seen by considering the following exact sequence:

0—-U/Up = Ckg/Up — Pic(X) — 0.

where the second map sends an element (z,) € Ck to > v,(z,)v. For any v,
a place of degree one outside the support of D, let K} denote the multaplica-
tive group of the completion of K at v, suitably embedded in Ck. Since v is
not in the support of D, the entire unit group O} is trivial in Cx/Up. Thus
the image of K} in Ck /Up is generated by a uniformizer at v, embedded as



(1,1,...,t,,1,..). It is a copy of Z, which coincides with the infinite factor in
Ck/Up = Pic(X) x U/Up. As we will see below, the quotient of Cx/Up by
K is the Galois group of a finite extension in which at least v is totally split.
The next task is to determine the degree and the ramification of the extension,
and the outcome of splitting additional places.

The curve constructed via this process depends on the initial choice of three
parameters: the base field (or curve) K, the divisor D, which determines the
ramification, and the number of places of degree one in the base which we require
to be split. In what follows, we will explain how to determine the genus and the
number of rational points of the outcome based on the various choices for the
input.

3.1 Degree of the extension

The curve corresponding to a finite extension L/K has at least as many points
as the degree of the extension, nr,, times the number of places of degree one of
the base which are totally split, plus any places of degree one of the base which
are totally ramified in the extension:

#X1,(Fy) > nr(# totally split places ) + (# totally ramified places)

The importance of computing the degree of the extension is clear. If the degree
is large, so is the number of rational points, but so also is the genus. Good
results are obtained for example when extra places are split without changing
the degree. We first consider the situation when D consists of a multiple of just
one place, where P, denotes a place of degree d. We also restrict ourselves to
the case where K is the function field of the projective line, Fy (T'). In this case,
Pic(X) = Z, so if one place of degree one is split, the Galois group is isomorphic
to U/Up, which is described in the following lemma:

Lemma 1 Let D = k(Py), k € N, d > 1. Then U/Up = (F,[T]/(Pa(T))*)* /F;.

Proof: D has only one place in its support, and Up is the entire unit group
at every place outside its support, so

$/8p = R* /(1 + (Py)*R)

, where R is the completion of K = F,(X) at P;. (We use the symbol Py to
denote both the place and a uniformizer at that place: an irreducible polynomial
of degree d.) Now if R is a complete discrete valuation ring with maximal ideal
I and k£ > 1 is an integer, then the group homomorphism:

R* - (R/M*R)*
is surjective (R* is the complement of 901), and has kernel 1+ 9t*R. In our case,

R/M*R =T, [T]/Py(T)*,



(R/MER)™ = (F, [T]/Pa(T)*)",

which quotiented by the global units in U gives the desired result. O

Remark 1 When the support of D contains more than one place, we can apply
this lemma to each prime separately, and the quotient U/Up will be the direct
sum of the factors obtained in this manner.

When K = F,(T), splitting one place of degree one yields a Galois group
which is isomorphic to U/Up, but splitting more than one place yields a Galois
group which is a quotient of U/Up.

Lemma 2 Let D = k(P;), k € N. Let K =TF,(T). Then
G 2 (B [T/ (PuT)) ) /(B < T — 1, T — )

is the Galois group of the extension in which vy,...,v., v places of degree one of
K, are totally split. Here the notation v; denotes the place of degree one with
uniformizer (T — v;), where v; also denotes an element of F,.

Proof: A place of K is totally split if and only if the decomposition group
at that place is trivial. Since the decomposition group is generated by the
”Frobenius substitution” of the prime, we can ensure that a place of degree one
splits by taking the quotient by this element. Locally, we quotient K by the
prime ideal corresponding to v, and this is compatible with the embeddings of
K} into Ck and of D, into G. The prime corresponding to a place v of K is
generated by a polynomial of the form T'— v, v € ;. The first place split will
cancel out the factor of Z from Ck /Up. From the description of U/Up given in
Lemma 1, we obtain the desired result after taking the quotient by the subgroup
generated by the elements T' — va, ..., T — v,. O

3.2 Computation of the genus

It is possible to compute the genus of a curve corresponding to an abelian
extension because the information about the ramification of the extension can
be extracted from the knowledge of the Galois group. By a theorem of class field
theory, a place, v, is unramified in an extension L/K if and only if O} C N(CL).
This translates into the fact that the coefficient of v is zero in D, the conductor
of the extension. In other words, ramification only occurs at the places in the
support of D. To understand thls we recall that locally, the conductor of a
finite extension I, v/ K,, is defined to be the smallest integer n, such that the
reciprocity map R A
0: K, — Gal(L,/K,)
is trivial on U™. Here U = O}, and U = {u € U [u=1 (mod ti)} defines a
decreasing filtration of U with U® = U. Since the kernel of 6 is N(L,), we see
that
O, C N(CL) < n, =0.



To understand the ramification at places where the reciprocity map is not
trivial on O}, we introduce the notion of the Artin conductor of a character. The
Artin conductor of a character coincides with the conductor as defined above
when the character has degree one, which is the case here since the extensions
are abelian. We give here the definitions of the Artin class function and the
local and global Artin conductor and the derivation of a type of Hurwitz genus
formula from the conductor-discriminant formula. This presentation has been
extracted largely from [12].

3.2.1 Local case

If G is the Galois group of a finite Galois extension L/K, where K is a field
complete with respect to a discrete valuation, and L/K has separable residue
field extension, then the Artin class function, ag(s), is defined for all s € G as:

Definition 3
ag(s) = —f-ig(s), s#1

ag(1) = [ ic(s).

s#1

where ig(s) = vi(s(w) — ), 7 is a uniformizer for L, and f is the residue degree.
We can also define a filtration on the inertia group at the prime as follows:

G; ={s€eGlig(s) >i+1}
The ramification is said to be tame if G; = {1}.

Definition 4 The Artin conductor of a character x of G is given by

00 = (eaa(s) = 5 3 ac(s)x(s ),

seG

where g = |G|. This is equivalent to letting f(x) be the coefficient of x in the
expression for ag(s) as a linear combination of irreducible characters.

It is known that ag is the character of a linear representation of G, called
the Artin representation. The proof of this statement relies on the Hasse-Arf
theorem and implies that f(x) is a non-negative integer for every character x of

G.

3.2.2 Global case

The above definitions apply to extensions of function fields after localisation
and completion at a prime. If L/K is a Galois extension of a global field with
group G, and x is a character of G, then the global conductor of x is:

Fo0 =[] p'®,

p



where f(x, p) is defined as follows. If Dy is the decomposition group of a prime
B lying over p, ags is the Artin class function associated to this group, and ay
is the character of G induced by agp for any P | p, then

fOp) = (x,ap) = §(x | D)

As in the local case, f(x,p) = 0 if p is unramified, since then a,(s) = 0, for all
s €G.

3.2.3 Genus formulas

The purpose of introducing the Artin conductors is to make use of a relation
called the conductor-discriminant formula. If 97,k is the discriminant of a
Galois extension L/K, then

Op/k = H FOX ™.

If all characters have degree 1, then we have

Or/k = H -

Now from this relation we obtain a formula for the genus in terms of the
Artin conductors of the characters:

Proposition 1 If L/K is a finite Galois extension with Galois group G, and
x are the irreducible characters of G, then the genus of the cover is related to
the genus of the base as follows:

291, — 2 = [L : K)(29x — 2) + deg(] [ £(x)),
X
where the last term indicates the degree of the divisor associated to the prime
decompostion of the ideal which is the product of the global conductors over the
irreducible characters x of G:

deg(IT £00) =D > (degp)(§(x,p))-
X X p

Proof: This formula follows directly from the Hurwitz genus formula once
we show that deg([], f(x)) = deg R, where R is the ramification divisor of the
associated cover of curves. If Y — X is the covering of curves corresponding to
the extension L/K, then

deg R =" (degQ)(£((Qy/x)q))
Q

where the sum is taken over all points on Y, and £((Qy,x)q) is the length
of the stalk at ) of the relative sheaf of Kahler differentials. We claim that
deg R is equal to the degree of the different of the extension. Since both the



different and the module of Kahler differentials commute with localisation and
completion, we can prove this claim in the case of an extension of a complete
discrete valuation ring. If 3 is the prime of L lying over p, the prime of K, and
B and A are the corresponding valuation rings of these primes, then ([12], p.

57) B can be written B = A[X]/(f), where f is a monic polynomial. If z = X,
then dz generates (15,4 as a B-module and

(fl(x)) = DB/A = Ann(QB/A).

If Dg/a = P4, then we write d = vy(Dy, k), and what we are trying to
show is that d = £5(Q2p/4). Since Qg4 is generated by one element, we have

QB/A = B/Ann(QB/A).
So it follows that

t5(Qp/a) = Lp(B/Dp/a) = Lp(B/P?) = d.

Now this establishes the claim that deg R = deg(Dy,/k ), since for each prime
B we have:

vp(Dr/k) = d=LB(02p/a) = the coefficient of P in R.
We have the relation between the different and the discriminant of an extension:
at each prime ‘B lying over p,

vp(Dpya) = iVP(NB/A(DB/A)) = le(DB/A),
fo fo

where the f, in this formula denotes the residue degree at this prime. Applying
the conductor-discriminant formula and noting that

deg(mxfip) — deg(p)

we can write

degR =" (degp)(f(x,p)). O
X p

As a simple example we compute the Artin conductors in the case D = Py.

Lemma 3 Let D = P;. Then the Artin conductor of a non-trivial character x
of G =2 U/Up, is equal to f, the residue degree of the extension.

Proof: In this case, we have e = |G| = (¢¢ —1)/(g—1). Since the order of G
is prime to the characteristic, we have no wild ramification, or G; = {1}. Since
no non-trivial element of G is in G, we have that ig(s) = 1, for all s € G,
s # 1. To compute f(x) we write:

0 = 2 (ac(x(1) + Y ag(s)x(s™))

s#1



1
= 2161 = )+ 3 (=x).
s#£1
This implies that f(x) = 0 if x is the trivial character. If x is not the
trivial character, then we have 3 .o x(s) =0, so }° ., x(s) = —x(1) = -1
Substituting this in to the above formula for f(x), we get

00 = 271G - 1) + (1) = f T

Corollary 3 The degree of the ramification divisor of an extension of degree n
with conductor D = Py is deg R = (n— 1)df. If the extension is totally ramified
at Py, then the degree is (n — 1)d.

So far we have obtained an expression for the genus of an extension in terms
of the conductors of the characters of the Galois group; in the next lemma we
will express the genus purely in terms of the degrees of the extension and its
subextensions. More precisely,

Lemma 4 Let K =F,(T), D = kPy, k > 1. For each 1 <i <k, let n; be the
degree of the extension obtained by splitting a fixed set of r places of degree one
of the base when D = iPy. Let L be the extension obtained when i = k. Then

k
29;, — 2= (2 + »_(ni —ni_1)i
i=1

Proof: Ramification occurs at only one prime, so we can consider question
locally. For any positive integers m, n, with m < n we have the following exact
sequence of groups:

0->U™/U" >U/U" -U/U™ -0

Any character of U/U™ is also a character of U/U™ which happens to be trivial
on U™ /U™ and which has conductor m. So it suffices to count the number of
non-trivial characters for each m < k. O

3.3 Examples

It may be useful to give some examples at this point, in order to see how to
implement Lemmas 1, 2, and 4. The purpose of this section is to demonstrate
the technique. Numerous examples were produced in [6], which contains tables
for different choices of ¢, k, d, and number of places split.

Example 4 Let q = 4, D = kP1, k = 4. Then splitting all four of the other
rational points of K = T4 (T), we obtain an extension of degree 2 in which
the non-trivial character has conductor 4. This is the elliptic curve with the
mazimal number of points over Fy: g =1, N = 9; it is also the Hermtian curve
for q = 4, which will be discussed in Section 4.

10



Proof: If we choose P; to be the place corresponding to 0, or T'+ 0, then the
four places to be split are the place at infinity and T+ 1, T + =, T + (z + 1),
where 0, 1, , and z + 1 are the elements of Fy, and 22 = z + 1. If we choose the
place at infinity to kill the infinite factor in the product U/Up x Pic(X), then it
remains to determine the image of the other three elements in (Fy [T]/T*)* /F;
for each 1 < k < 4.

First note that if J; = (F,[T']/T*)*/F;, then the order of J is ¢* ', and the
order of an element of the form 1 — a7 in J; is p!, where p is the characteristic
and [ is the smallest power of p such that p! > k.

When k = 1, J; is already trivial. When k& = 2, J, has order 4, and each
element has order two, so quotienting by all three will leave the trivial group.
When k = 3, Ji, has order 16, but each element has order 4, so we are again left
with the trivial group. Finally, when k = 4, Jj has order 64, and each element
has order 4, but the second power of the third element is in the group generated
by the other two:

(T+1D)*(T+z)?=(T+(z+1))* (modT?).

Thus the degree of the desired extension is 2. To compute the genus, we know
that the only non-trivial character has conductor 4, so the genus formula gives
us

29—2=(-2)2+4,

so g = 1. Since one place is totally ramified and the other four places are totally
split, the curve has 9 rational points, which meets the Hasse-Weil bound. When
q = 4, @ = 1, so this is the highest genus for which the Hasse-Weil
bound can be met over Fy.

Example 5 Let g =4, k = 6. Then splitting all four of the other rational points
of K = F,(T), we obtain an extension of degree 8 in which one character has
conductor 4 and six characters have conductor 6. This extension corresponds to
a curve of genus 13 with 33 points, which is the maximum possible according to
the Oesterle bound, so N4(13) = 33. This result was also obtained by van der
Geer and van der Viugt [16], who consider equations of Artin-Screier curves.

Proof: We must first determine if there are any characters of conductor 5.
When k = 5, |Ji| = 4* and [ = 3, so each element has order no more than 8.
We know that the quotient has order at least 2, since it contains the extension
corresponding to k = 4 as a subextension. In fact, the second power of the third
element is again contained in the group generated by the other two:

(T —(z+1)? =T -1)%T —-2)°% (mod T°).

The order of the quotient by these three elements cannot be greater than two.
If it were equal to 4, we would have a curve of genus 4 with 17 points, which is
not possible according to the Oesterlé bounds. Since the degree of the extension
did not increase from k = 4 to k = 5, there are no characters of conductor 5.

11



The order of Jg is 4%, and each element has order 8, but again the second
power of the third element is in the group generated by the other two, since

(T+1)%T+2)°=(T+(z+1))* (modT).

Again we cannot have the degree of the extension in which all four points split
be any bigger than 8 because if the degree were 16, we would have a curve of
genus 29 with 65 points, which violates the bounds. The degree of the extension
is 8, so we obtain a curve with 4 * 8 + 1 = 33 rational points of genus

29 —2=28(—2)+ 4+ 36.

Example 6 Letq =4, k = 7. Then splitting all four of the other rational points
of K, we obtain an extension of degree 16 in which one character has conductor
4, six characters have conductor 6, and eight characters have conductor 7. This
gives a curve of genus 33 with 65 points. Since the Oesterle bound is 66 in this
case (Corollary 1), we obtain: N4(33) = 65 or 66. This was the first example
found for this genus over Fy. [6]

Proof: |J7| = 48, and the fourth power of the third element is in the subgroup
generated by the other two, since

T+ T+ =@+ DT +2=T" +(z+1) =T+ (z + 1))~

The extension has degree 16; if it had degree 32, we would have a genus 73 curve
with 129 points, which is not possible. The genus is given by

20-2=(-2)164+4+6%6+8x7.

Since we have only five rational points on K, one of which is in the support
of D, we cannot split more than four points. Splitting three points, we obtain
at least one example of interest:

Example 7 For q =4, k = 6, we obtain the best known example of a curve of
genus 27. It has 49 points and was also obtained by van der Geer and van der
Viugt [16] via their methods.

Proof: The first non-trivial characters arise when k = 4, and the degree is 4.
The degree jumps again to 16 when & = 6. This extension has 3 * 16 + 1 = 49
rational points, and genus given by:

29— 2=(—2)16+3%4+ 12 6.

Note: The examples in [16] can always be obtained via Serre’s method
by choosing the ramification and splitting the appropriate number of places of
F,(T) and then taking the quotient of the Galois group by the p-th powers.
Thus their methods are limited in that they produce only covers of exponent p,
which explains why they do not obtain curves of the type in Example 5.

12



4 Deligne-Lusztig Curves

To attack the problem of finding curves with many rational points compared to
the genus Hansen and Stichtenoth focused on families of curves with large auto-
morphism groups, in particular the family of groups giving rise to the Deligne-
Lusztig varieties. The curves constructed from the Hermitian, Suzuki, and Ree
groups are irreducible and have the maximal number of points for their genus.
In this section, we give the ray class field descriptions of these three families.
The Deligne-Lusztig varieties were originally defined as a tool for construct-
ing representations of connected reductive algebraic groups. Hansen introduces
these varieties in [3] as follows: “Let G be a connected reductive algebraic group
defined over F, with Frobenius map F': G —+ G. Let X be the F,-scheme of
all Borel subgroups of G. For w € W in the Weyl group, define X(w) C Xg
to be the subscheme of all Borel subgroups B of G such that B and F(B) are
in relative position w. If w = (s1,...,$,) is a minimal expression for w, then
X (81, ..., 8n) is the space of sequences such that B, = FBy and B;_; and B; are
in relative position e or s;. The scheme X (s, ..., 8,) is of dimension n and it
is a compactification of X (w). The group of F,-rational points of X (s1, ..., y)
is X (e) and the finite group G¥" of Lie type acts as F,-rational automorphisms
on X (81, ..., 8n), X (w), and the F,-rational points X (e).” Much work was done
to establish the properties of such varieties, including a criteria for irreducibil-
ity. The genus can be computed from the Euler characteristic. The variety
constructed from a connected, reductive, algebraic group G is an irreducible
variety of dimension one if and only if G is one of the following three groups:
(i) G is the projective special unitary group 2A45(q?); (ii) G is the Suzuki group
2Bs(q), g = 22+, m € N; (iii) G is the Ree group 2G»(q), ¢ = 3°™*t!, m e N.

4.1 Hermitian Curves

The study of the examples of conductor k(P ) in Section 3.3 above was motivated
by the Hermitian curves, a family of maximal curves described by Stichtenoth.
The Hermitian curves are of Artin-Schreier type, defined over fields of even-
power order, and meet the Hasse-Weil bound for their genus. They have a large
automorphism group and arise as the Deligne-Lusztig variety associated to the
groups of type 24,. They are the unique maximal function fields of their genus,
and no function field of higher genus can be maximal. Furthermore, Stichtenoth
and Garcia [2] were able to use a modification of the equations for these curves
to construct function field towers meeting the Drinfeld-Vladut bound over fields
of even-power order. The Hermitan curves are characterized by Lemma 5:

Lemma 5 Let K = Fp(y), ¢ = p™, and let L/K be the extension defined by
the equation x9 + x = y9t'. This extension has degree q, is totally ramified at
00, totally split at all places of degree one, and has filtration of its ramification
group at 0o as follows:

G=G=Gy=..=G,py
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Gq+2 = {1}

This lemma is a special case of the following one, which is valid also for fields
of odd-power-order:

Lemma 6 Let K = Fy- (y), and let L/ K be the extension defined by the equa-
tion 29 +..+2l+z=y? F0+l p > 1. This extension has degree ¢" ", is
totally ramified at 0o, totally split at all places of degree one, and has filtration
of its ramification groups as follows:

G = Gl = G2 = ... = qu—1+...q+1

Gyr-14..q+2 = {1}

Proof: All but the calculation of the ramification groups is written down in
[2], [14]. The preceeding lemma is the special case corresponding to r = 2.

To simplify notation, we set n, = ¢" 1 +¢" 2+ ... + ¢+ 1. We need to show
that vr(s(z) —2) =n, + 1, for all s € G, s # 1, where z is a uniformizer at the
place of L which lies over oo. First we must determine z. Let T = % denote a

uniformizer at the place at co. Then vk (T) = 1 and v (T) = ¢"~!. From the
equation defining the extension we deduce that

rflyL(ynr)

which implies that
vr(xz) = —n,.

Now since (n,,q"~') = 1, there exist a, b € Z such that a(—n,)+b(¢g"~!) = 1.
Then vy (z%T?) = 1 and we can set z = z°T?. Now for any s € G, we must
determine vy, (s(z®T?) — z*T®). We have

v (s(z°T?) — 2°T°) = v ((s(@°T®) — 2°T%)z T %) — vy (x°T?)

=v((z+p)'Tle T P —1)+1

where § € Fyr is an element whose trace in F, is zero. Each s € G corresponds
to such a 8. Then

@+p)° —a*

vr(s(z°T?) — 29T°) = v ( —a

)+1

=vp((z+5)* —z%) —vp(x®) +1
We treat the cases a < 0 and a > 0 separately. First suppose a > 0. Then

vi((z +8)* —2%) —vp(z®) + 1 = v (@ '+ 2% 282 + .. + %) —vr(z?) + 1

14



= v (e" 7 f) —vi(2?) + 1

since v, (8) =0 and v (z) <0, so

=vp(z® ) +vr(B) —vi(z®) + 1

=(a—1-a)vp(x)+1=—-vr(x)+1=mn,+1
The case where a < 0 is similar:
1—(z+p) 2

vil(@+B)" = o) — v (o) + 1= (s

—vp(z®) +1
=v(l=-(xz+B8)%*) —v((x+8)"%) —vp(z®) +1

=vp(@'f+ ..+ 27 +avp(x+ f) —avp(z) +1

Since a < 0, we have v (z71) < vr(2%), so

=vr(z ) +1=n,+1

Thus we conclude that vr(s(z) —2) =n, +1forall s€ G. O

These curves will be referred to as trace-norm curves because of their defini-
tion. Note that the proof of Lemma 5 by itself would be much simpler because
in that case we have: a = —1, b = —1. Lemma 5 will be needed to prove the fol-
lowing theorem, which gives the ray class field characterization of the Hermitian
curves.

Theorem 2 Let K = Fp(y), D = (¢ + 2)(c0) Then the abelian extension of
K obtained by splitting all other places of degree one of K has degree q. The
corresponding curve is the Hermitian curve; it has genus g(q — 1)/2 and the
mazimal number of points for this genus: ¢° + 1.

Proof: Let L/K be the Hermitian curve defined by the Artin-Schreier-type
equation above. To find D minimal s.t. Up C N(CL), first note that from [14],
we know that all places of K are unramified in L except oco. As explained in
Section 3.2 above, this implies that the conductor D is of the form D = k(o0),
for some k. It remains to determine k. We conclude from the characterization
of the ramification groups at co in Lemma 5 that all characters have conductor
g + 2 and k must be ¢ + 2. This is due to the fact that the reciprocity map
must be trivial on UZ? since it maps into G2, which is trivial. No non-trivial
character can have conductor less than ¢ 4+ 2 or the genus would be too small.
We claim that the quotient of Cx/Up by the Frobenius at the ¢ places of
degree one is isomorphic to the Galois group of L/K, Cx/N(CL), which has
order g. In fact, we know that Up K}, K;Z...K,’jq2 is contained in N(Cp), and if

it were strictly smaller than N(Cp), then we would have

|C’K/UDK:1K:2...K:q2| =qxp", r>1,
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which would lead to a contradiction to the fact that there are no maximal
function fields over Fj» of genus greater than @, where "maximal” here
means attaining the Weil bound. In fact, if the extension were of degree ¢ * p”,
then the number of points would be N = ¢?(g*p") + 1, and the genus would be

g= ‘M"QJ. Over F2 the Weil bound for this genus is

N<@+1+29¢g=¢ +1+¢*(gxp" — 1) =¢*(g*p") + 1.

Since our curve would meet this bound we must have g < ‘1(‘12—4), which implies

r=20.0

Corollary 4 Let Fp2 be the finite field with ¢* elements, ¢ a power of a prime.
Letk =q+2. Then

|(F2[T]/T*)* [F;2/ <1—aT|a €Fz > | =q.

Furthermore, this quotient is trivial if k < q + 2, in which case all polynomials
split completely into factors of degree one.

Example 8 When ¢®> = 4, k = 4, we obtain the example of the elliptic curve
with 9 points. The fact that the extension has degree 2 was determined in Section
2.8 above by computing the order of the quotient of (F4[T]/T*)* by T+1, T +x,
and T + x4+ 1, where 0,1,z,z + 1 are the elements of Fy .

The computations for larger square fields would almost have to be done by
computer, since it is necessary to split all g2 points for each conductor up to g+2
and to determine the order of the quotient at each stage. The theorem, however,
implies immediately that the degree of (F,2 [T]/T7%)*/ IF;= after quotienting by
the other g2 places is g.

The Hermitian curves are only maximal over fields of order an even power of
a prime. When the order of the finite field is not a square the trace-norm curves
are a natural generalisation. However, they are not maximal. Their ray class
field descriptions can be determined using the computation of their ramification
groups from Lemma 6 above. They arise from splitting all places of degree one
when D = (¢" ' 4+ ¢" "2 + ... + ¢ + 2)(0).

4.2 Suzuki Curves

It remains to determine the correct generalization of Hermitian curves to fields
of odd-power-order in order to obtain families of curves meeting the Oesterle
bounds. As a partial solution, in characteristics 2 and 3, we have the Suzuki
and the Ree curves which are maximal for their genus. Their ray class field
descriptions are remarkably similar to the description for the Hermitian curves.
While the Hermitian curves are obtained by splitting all ¢ = p?>™ points of the
projective line with conductor D = (p™ + 2) Py, the Suzuki curves and the first
stage of the Ree curves are obtained by splitting all ¢ points when g = p?>™*!
and D = (p™*! + 2) Py
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The Suzuki curves are the Deligne-Lusztig varieties constructed from the
linear algebraic group 2Bs. They are defined over F,, where ¢ = 22+1, by the
equation:

y'+y =22+ 1),

with go = 2™ [5]. They are irreducible of genus go(q — 1), having 1 + ¢ rational
points, the maximum possible number for this genus according to the bounds
from the explicit formulae. The fact that this is the maximum number possible
is shown by chosing the trigonometric polynomial

f0) =1+ 2(? cos(f) + icos(ZG)).

Theorem 3 Let K = F,(z), D = (p™*! + 2)(oc0), where ¢ = 22™+1. Then the
abelian extension of K obtained by splitting all q other places of degree one of K
inside the ray class field of conductor D has degree q. This is a curve of genus
go(q — 1) having the mazimal number of points for this genus: ¢*> + 1.

Proof: This proof is similar to the proof for the Hermitian curves. We use
an analog of Lemma 5 which was calculated by Hansen and Stichtenoth in [5].

Lemma 7 Let K = F,(z), ¢ = 22!, and let L/K be the extension defined by
the equation y? —y = z%(z% — x), qo = 2™. This extension has degree q, is
totally ramified at 0o, totally split at all places of degree one, and has filtration
of its ramification group at oo as follows:

G = G1 == G2 = ... = G2q0+1,

G2110+2 = {1}

Let L/ K be the extension defined by this equation. It is an abelian extension,
and we need to find D minimal s.t. Up C N(Cr) We know from the lemma
that the only ramification occurs at oo, so the coefficient which is minimal at
all other places is zero and D = k(oo). To determine k, we conclude from the
characterization of the ramification groups that all characters have conductor
2m+1 42 50 k = 2™+ +2. We claim that the quotient of Cx /Up by the ¢ places
of degree one is isomorphic to the Galois group of the extension, Cx /N(CL),
which has order g. We know that Up K}, K7, ...K;, is contained in N(CL). If the
two were not equal, we would again have an extension whose genus and number
of points would contradict the known bounds. Indeed, suppose the order of the
extension were ¢2°%, s > 1. Then we would have an extension with N = ¢22° +1
points, of genus no greater than g < go(¢2° — 1). (If all non-trivial characters
had conductor k¥ we would have equality; if some conductors were less than k,
the genus would be smaller.) Now we can show that this is impossible by using
the polynomial f which was chosen to show the maximality of the Suzuki curves,

FO) =1+ 2(? cos(8) + %cos(ze))
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The bound we obtain from this choice is a line with slope
4q
24/2q +1
and intercept
20v2q +¢°
24/2q +1

so it follows that for ¢ = 22™*! g < go(¢2° — 1), and s > 1, we must have
N<@2+1.0

+1

Corollary 5 Let F, be the finite field with ¢ = 2°™+1 = 2¢2 elements. Let
k =2qgo + 2. Then

|(F, [T)/T*)" /iy / <1-oTla €Ty >|=q

Furthermore, this quotient is trivial if k < 2qo + 2, in which case all polynomials
split completely into factors of degree one.

Example 9 When q = 8, qo = 2, we have the degree 8 cover of P! in the ray
class field of conductor D = 6(00) in which all 8 points are split. The curve is
of genus 14 with 65 rational points.

4.3 Ree Curves

The Deligne-Lusztig varieties arising from the Ree group 2G4 (¢q) when g = 32m+!
are irreducible curves defined over IF,. They can be viewed as abelian covers of
P! of degree 2. They have genus

3
9= 5%(¢-1)(g+q+1),
where go = 3™, and ¢* + 1 rational points, which is maximal for this genus [3].
The trigonometric polynomial which is chosen to show that this is maximal is

) =1+ Qch cos(nd),

where

V3 7 V3 1

7;02 = E;C3 = ?,04 = E’

Based on our findings in the previous two cases, we might expect that the Ree
curve be obtained when splitting all ¢ points in the ray class field of conductor
D = (3™*! 4+ 2)(00) over PL. In the previous cases, however, we obtained an
extension of P! of degree ¢ from this process, and what we need here is an
extension of degree ¢>. In fact, Pedersen [10] determined the equations for the
function field corresponding to the Ree curve: F = F, (z,y1,y2), with equations

cy = ¢ =0, 7> 4.

yi —y1 = 2% (2’ - z)
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and
Y3 —y2 =% (y{ —y1)-

We refer to Fy = Fy(x,y1), as defined by the first equation, as the first stage
of the Ree function field. It is a cover of P! of degree q and genus

3
= Zqolg=1).
g 2qo(q )

From the work of Hansen and Pedersen [4], we can extract the following
lemma, changing the notation to agree with [12].

Lemma 8 If F is the function field of the Ree curve as defined in the paragraph
above, then the filtration of its ramification group at oo is as follows:

Go=G1=G2 = ... = G3gp41,

Gsgo+2 = - = Gg3g0+15

Gq+3qo+2 = {1}a
|Go| = ¢* and |Gz 42| = ¢

Lemma 8 leads us to the following characterization of F' as an abelian cover of
P! of degree ¢°.

Theorem 4 Let K = F,(z), D = (3™*! + 3)(c0), where ¢ = 3>™*1. Then the
abelian extension of K obtained by splitting all q other places of degree one of
K inside the ray class field of conductor D has degree q*>. This is a curve of
genus

3
g= 5Q0(q— 1)(g+q +1)

having the mazimal number of points for this genus: ¢° + 1.

Proof: This proof is similar to the proof for the Hermitian and Suzuki curves.
As in those cases, we show that the Ree curve must have the stated description
as a ray class field. Let G = Gal(F/K), H = Gal(F/F;) < G. Then G/H =
Gal(F1/K). Actually, the subgroup Gsg,+2 has Fi as its fixed field, so G = Gy,
and H = G34y42. We need an argument to show that the characters of G have
Artin conductor at most 3gg + 3. We use the formula for the transitivity of the
discriminant:

Proposition 2 (Transitivity of the discriminant)
Op/k = (aFl/K)[F:FllNFl/K(aF/Fl)

Applying the conductor discriminant formula, we get the relation

I r0=CII re¥ " INgp(T] £00)

x€G x€G/H xeH
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For x € CT/?I, x # 1, we know that f(x) = 3qgo + 2, and each character
of G/H is also a character of G of the same conductor. We also know that
|H| = [F : F1] = ¢, and that all the non-trivial characters of H have conductor
q + 3qo + 2. Putting this information in to the last formula, we see that the
other g% — ¢ characters of G cannot have conductor greater than 3¢y + 3, or the
left hand side would be greater than the right hand side. The formula becomes:

(¢—1)Bao +2) + (¢ — 9)(3g0 + 3) = ¢(g — 1)(3g0 + 2) + (g — 1)(g + 30 + 2)

Next we need to show that the degree of the ray class field extension with
this splitting and ramification cannot be greater than ¢2, the degree of the Ree
extension. This is achieved again by means of the polynomial which was chosen
to show that the Ree curves are maximal.

fO) =1+ 2(? cos(6) + 1—72 cos(26) + ? cos(30) + % cos(46))

so in this case
1, 18qqo + 7q +6qo + 1

T (a4
1((] 2) 12q2
1
Ty (q7) = ﬁ(l&lo + 7q + 6qq0 + ¢°)
and )
g Uy(q2)

+ +1

< 1 1
T Ui(gmz)  Ui(g2)

Suppose that the degree of the extension is equal to ¢?3", r > 1. Still we have
only g — 1 characters of conductor 3gy + 2, and the other ¢?3" — g must have
conductor 3¢gp + 3. So the genus is determined by:

29—2=(-2)¢"3"+ (¢ — 1)(3q0 + 2) + (¢°3" — ¢)(3q0 + 3)

or
29=(¢"3"-1)(3go+ 1) — (¢ — 1)
Then we must have:
11(g?3" — 1)(3g0 + 1) — (g — 1)]12¢> + (180 + 7q + 6qqo + ¢2)
18¢qo + 7q + 6go + 1

N< +1
18¢qe3" + (6p" + 1)g + 6qo + 1
18qqo + 7q + 6qp + 1

But the number of points on the curve is 1 + ¢®37, which does not satisfy this
inequality unless r = 0. O

This completes the ray class field descriptions of the Deligne-Lusztig curves
and thus the proof of the main theorem of the paper as stated in the introduc-
tion. It should be noted that we used only the existence, not the uniqueness of

1+ ¢%(
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the Hermitian, Suzuki, and Ree curves (as discussed in [4]). The uniformity of
the descriptions indicates that it would be interesting to study the correspon-
dance between the Deligne-Lusztig construction of these varieties and the rami-
fication structure of their equations as covers of PL. It is natural to ask whether
we can obtain further families of maximal curves via the Deligne-Lusztig con-
struction from some of the other connected, reductive, algebraic groups. None
of them give rise to irreducible curves, but the irreducible components could
be studied. Finally, the ray class field description of these curves lends itself
to generalization in other characteristics, which may produce other families of
maximal curves.
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