Arizona Winter School 2000
Anderson's Course Description

Introduction to fermionic Fock space for number theorists

Lectures:

  1. Commuting differential operators and infinite determinants
  2. A tour of fermionic Fock space
  3. Schur multipliers and reciprocity laws
  4. Calculation of Jacobians of genus 1 curves

Prerequisites:

I am assuming that audience members have a good grip on graduate level algebra, particularly of the linear sort, and are familiar with curve technology up to and including adeles and the Riemann-Roch theorem. I am *not* assuming any familiarity with mathematical physics or representation theory. As advertised, I'm trying to pitch this material to people who already feel at home in number theory.

As far as preliminary reading goes, the list of references on the project description may be helpful. But again, let me emphasize that knowing one's way around the Riemann-Roch theorem and the adele technology is the main thing.

I'm trying *really* hard to make this gentle and accessible. Perhaps I have gone too far in my quest to turn class field theory and abelian function theory into patterned matrix manipulation....