
PAWS 2025: MATHEMATICAL CRYPTOGRAPHY

PROBLEM SET 4

GIACOMO BORIN, JOLIJN COTTAAR, ELI ORVIS, GABRIELLE SCULLARD

The goal for the exercises in Problem Set 4 is to give you practice with ECDLP and attacks on it. The
problems are divided into three parts: beginner, intermediate, and advanced.

(1) (Beginner) Now that we know the group structure of elliptic curves, we can discuss Elliptic Curve
Diffie Hellman.
(a) Describe Elliptic Curve Diffie Hellman (ECDH), i.e., give the scheme of the key exchange method

that does Diffie Hellman on an elliptic curve.
(b) ( ) Implement ECDH in SageMath and do some tests to show that Alice and Bob will

get the same secret.

(2) (Beginner, ) Consider the elliptic curve (Curve25519) defined by the equation

y2 = x3 + 486662x2 + x

over the prime field Fp where

p = 2255 − 19.

Using SageMath (see here for references on how to input a curve not in Short Weierstrass form), do
the following:
(a) Show that the curve is non-singular.
(b) Compute the number of points on the curve over Fp.
(c) Find a point with x-coordinate x = 9 and use it as a base point for the Diffie-Hellman key

exchange.
(d) Time your implementation as you did for Exercise 7 in Problem Set 1. How does it compare to

your previous implementation?

(3) (Beginner) Consider the elliptic curve E : y2 = x3+1 over F41. E(F41) is cyclic of order 42 = 2 · 3 · 7
and generated by P = (11, 15).
(a) Let Q = (25, 13). Compute N (mod 42) such that [N ]P = Q, using the following computations

to compute N mod 2,3, and 7.
• [21]P = [21]Q = (40, 0)
• [14]P = (0, 40), [14]Q = ∞
• [6]P = (7, 37), [6]Q = (7, 4)

(b) ( ) Write code which solves the ECDLP in E(F41), with base point P = (11, 15). Ran-
domly generate some points Q = [N ]P in E(F41) to check that your code works.

(4) (Beginner, ) Let E be the elliptic curve E : y2 = x3−3x+1 defined over F13. E(F13) is cyclic
of order 19 and generated by (0, 1). Let Q = (4, 1) ∈ E(F13).
(a) Use Baby-Step Giant-Step to compute N such that [N ]P = Q.
(b) Use the adaptation of Pollard’s Rho algorithm to elliptic curves (as described in Section 3.2.1)

to compute N such that [N ]P = Q.

(5) (Intermediate) Prove the remaining properties of Lemma 3.24 of the lecture notes.
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(6) (Beginner) Let eN : E[N ]×E[N ] → µN be a pairing satisfying the properties from Proposition 3.27
of the lecture notes. Show that:

eN (P,Q) = eN (Q,P )−1,

for all P,Q ∈ E[N ].

(7) (Intermediate) Let eN : E[N ] × E[N ] → µN be the Weil pairing, and det : E[N ] × E[N ] → Z/NZ
be the determinant pairing with respect to some basis (T1, T2). Further denote

µ = eN (T1, T2) ∈ µN.

Show that:

eN (P,Q) = µdet(P,Q) for all P,Q]inE[N ].

Hint: Use the properties of the Weil pairing from Proposition 3.27 in the lecture notes.

(8) (Intermediate) Let E : y2 = x3 + 1 over Fp for some p ≡ 2 mod 3. Consider some point P ∈ E(Fp)
of order ord(P ) = N . Determine the embedding degree of N in Fp.
Hint: Use Lemma 3.17 of the lecture notes.

(9) (Intermediate) Let P ∈ E[N ] a point of order N on an elliptic curve over a finite field Fp with p ∤ N .
(a) First assume that N is prime. show that:

#{T ∈ E[N ]|ord(g) = N where g = eN (P, T )} = N(N − 1),

and conclude that the probability that eN (P, T ) is a primitive root of unity for a point T ∈ E[N ]
chosen uniformly at random is (N − 1)/N .

(b) Now let N ∈ Z be an arbitrary positive integer. Compute the proportion of points T ∈ E[N ]
so that eN (P, T ) is a primitive N -th root of unity.

(10) (Intermediate, ) In this exercise, you are Mallory and your goal is to recover Alice’s key using
the invalid curve attack. You are using the elliptic curve

E : y2 = x3 + x+ 25, over Fp

with parameters p = 18446744073709551629 and P = (100, 6701093164194334038) ∈ E(Fp) with
prime order ord(P ) = 18446744070571455341.

Alice’s public key is A = (10301126922579099648, 17157096027455143833)
(a) You (Mallory) send the point P1 = (18165116349323561130, 6150811377566577555). Check that

P1 /∈ E(Fp). Find the (unique) parameter b1 so that P1 is on the curve E1 : y2 = x3 + x+ b1.
What is the order of P1? Compute all possible values for [a]P1 (without computing the secret
key a).

(b) By checking all possible values for [a]P1, you find that Alice computed the “shared” session key
KAB,1 = (18446744073709551626, 5458368549901343073). What can you conclude about the
value of a?

(c) You continue sending more maliciously generated public keys. The points Pi sent by you and
the value of Alice’s corresponding session keys KAB,i are collected in the table below. What is
Alice’s secret key?
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Point Pi shared key KAB,i

(18165116349323561130, 6150811377566577555) (18446744073709551626, 5458368549901343073)

(16395352116619970353, 6034018393034262788) (16718172481871216672, 1183835131033830123)

(12524092530016578390, 5123067425181934705) (14160835454605074121, 3060569204740460707)

(4516937973540258973, 7005509288484349242) (8040943336447228867, 13169014645599232942)

(15975665384073761733, 11032318707512935771) (13311443695356568982, 15843145926225201761)

(7142461303424024564, 6616795770963544980) (15087812134455913873, 4833814421951071352)

(15087812134455913873, 4833814421951071352) (5030474179534288684, 4948558071821812509)

(9450845281388796607, 5731912410853213485) (7134676168471120217, 6089059990139022202)

(5131031356309480317, 13835549974890579026) (13275501062262900275, 10650377260320625285)

(11) (Intermediate) Let y2 = x3+ax+ b be an elliptic curve. Find a formula that computes x([3]P ) from
x(P ) and the curve constants a, b.

(12) (Intermediate) Let K be a field with characteristic different from 2. Let A,B ∈ K and B ̸= 0. Then
an elliptic curve given by the equation

E : By2 = x3 +Ax2 + x

is said to be in Montgomery form. Curves in Montgomery form are particularly useful for efficient
implementations of elliptic curve cryptography, in particular when working in projective coordinates.
(a) Show that a curve E in Montgomery form is non-singular if and only if B(A2 − 4) ̸= 0.
(b) Show that there is a unique point at infinity on the Montgomery model of an elliptic curve.

Show that this point is not singular, and is always defined over the base field K.
(c) ( ) You can look at the addition formulas for Montgomery curves here 1. Implement point

addition and point doubling for Montgomery curves in projective coordinates in SageMath.
(d) Bonus question: when do these formulas fail, i.e., when do they require a division by zero?

Compare this with the Short Weierstrass model case? Can you find a point of (conjectured)
order 2 on a Montgomery curve?

(13) (Advanced) Let E be an elliptic curve in Montgomery form given by the equation By2 = x3+Ax2+x
over a field K with characteristic different from 2. Let P1 = (x1, y1) and P2 = (x2, y2) be points on
E such that x1 ̸= x2 and x1x2 ̸= 0. Then P1 + P2 = (x3, y3) where

x3 =
B(x2y1 − x1y2)

2

x1x2(x2 − x1)2
.

Writing P1 − P2 = (x4, y4) one finds

x3x4 =
(x1x2 − 1)2

(x1 − x2)2
.

For the case P2 = P1 we have [2](x1, y1) = (x3, y3) where

x3 =
(x2

1 − 1)2

4x1(x2
1 +Ax1 + 1)

.

(This is Lemma 9.12.5 in Mathematics of Public Key Cryptography by Steven Galbraith.)
(a) Let P = (xP , yP ) ∈ E(K) be a point on an elliptic curve given in a Montgomery model. Define

X1 = xP , Z1 = 1, X2 = (X2
1 − 1)2, Z2 = 4x1(x

2
1 + Ax1 + 1). Given (Xn, Zn), (Xm, Zm),

1https://hyperelliptic.org/EFD/g1p/auto-montgom.html
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(Xm−n, Zm−n) define

Xn+m = Zm−n(XnXm − ZnZm)2

Zn+m = Xm−n(XnZm −XmZn)
2

and

X2n = (X2
n − Z2

n)
2

Z2n = 4XnZn(X
2
n +AXnZn + Z2

n).

Show that the x-coordinate of [m]P is Xm/Zm. In other words, show that these recursive
formulas correctly compute the x-coordinate of multiples of the point [m]P . Note that, since
these are recursive formulas, you can do a proof by induction on the addition formulas.

(b) Write a “double and add” algorithm to compute the x-coordinate of [n]P using the projective
Montgomery addition formula.

(14) (Advanced) (From material by Tanja Lange) The Elliptic Curve Digital Signature Algorithm works
as follows: The system parameters are an elliptic curve E over a finite field Fp, a point P ∈ E(Fp)
on the curve, the number of points n = |E(Fp)|, and the order ℓ of P . Furthermore a hash function
h is given along with a way to interpret h(m) as an integer.

Alice creates a public key by selecting an integer 1 < a < ℓ and computing PA = [a]P ; a is Alice’s
long-term secret and PA is her public key.

To sign a message m, Alice first computes h(m), then picks a random integer 1 < k < ℓ and
computes R = [k]P . Let r be the x coordinate of R considered as an integer and then reduced
modulo ℓ; for primes p you can assume that each field element of Fp is represented by an integer in
[0, p − 1] and that this integer is then reduced modulo ℓ. If r = 0 Alice repeats the process with a
different choice of k. Finally, she calculates

s = k−1(h(m) + r · a) mod ℓ.

If s = 0 she starts over with a different choice of k.
The signature is the pair (r, s).
To verify a signature (r, s) on a message m by user Alice with public key PA, Bob first computes

h(m), then computes w ≡ s−1 mod ℓ, then computes u1 ≡ h(m) · w mod ℓ and u2 ≡ r · w mod ℓ
and finally computes

S = [u1]P + [u2]PA.

Bob accepts the signature as valid if the x coordinate ofS matches r when computed modulo ℓ.
(a) Show that a signature generated by Alice will pass as a valid signature by showing that S = R.
(b) Show how to obtain Alice’s long-term secret a when given the random value k for one signature

(r, s) on some message m.
(c) You find two signatures made by Alice. You know that she is using an elliptic curve over F1009

and that the order of the base point is ℓ = 1013. The signatures are for h(m1) = 345 and
h(m2) = 567 and are given by (r1, s1) = (365, 448) and (r2, s2) = (365, 969). Compute (a
candidate for) Alice’s long-term secret a based on these signatures, i.e. break the system.
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