PAWS 2025: MATHEMATICAL CRYPTOGRAPHY
PROBLEM SET 4

GIACOMO BORIN, JOLIJN COTTAAR, ELI ORVIS, GABRIELLE SCULLARD

The goal for the exercises in Problem Set 4 is to give you practice with ECDLP and attacks on it. The
problems are divided into three parts: beginner, intermediate, and advanced.

(1) (Beginner) Now that we know the group structure of elliptic curves, we can discuss Elliptic Curve
Diffie Hellman.
(a) Describe Elliptic Curve Diffie Hellman (ECDH), i.e., give the scheme of the key exchange method
that does Diffie Hellman on an elliptic curve.
(b) (5BYE) Implement ECDH in SageMath and do some tests to show that Alice and Bob will
get the same secret.

(2) (Beginner, SDJE) Consider the elliptic curve (Curve25519) defined by the equation
y? = 23 + 48666222 +

over the prime field F,, where
p =22 _19.

Using SageMath (see for references on how to input a curve not in Short Weierstrass form), do
the following:
(a) Show that the curve is non-singular.
(b) Compute the number of points on the curve over F,,.
(¢) Find a point with a-coordinate x = 9 and use it as a base point for the Diffie-Hellman key
exchange.
(d) Time your implementation as you did for Exercise 7 in Problem Set 1. How does it compare to
your previous implementation?

(3) (Beginner) Consider the elliptic curve E : y? = 23+ 1 over Fyy. FE(Fy) is cyclic of order 42 =2-3-7
and generated by P = (11,15).
(a) Let @ = (25,13). Compute N (mod 42) such that [N]P = @, using the following computations
to compute N mod 2,3, and 7.
o [21]P = [21]Q = (40,0)
o [14]P = (0,40), [14]Q = oo
® [G]P = (7537)7 [G}Q = (77 4)
(b) (5BE) Write code which solves the ECDLP in E(Fy;), with base point P = (11,15). Ran-
domly generate some points @ = [N]P in E(F4;) to check that your code works.

(4) (Beginner, SDJE) Let E be the elliptic curve E : y? = 2® — 3z +1 defined over F13. E(Fi3) is cyclic
of order 19 and generated by (0,1). Let Q = (4,1) € E(Fy3).
(a) Use Baby-Step Giant-Step to compute N such that [N]P = Q.
(b) Use the adaptation of Pollard’s Rho algorithm to elliptic curves (as described in Section 3.2.1)
to compute N such that [N]P = Q.

(5) (Intermediate) Prove the remaining properties of Lemma 3.24 of the lecture notes.
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(6) (Beginner) Let ey : F[N] x E[N] — py be a pairing satisfying the properties from Proposition 3.27
of the lecture notes. Show that:

6N(P7 Q) = eN(Q7P)717
for all P,Q € E[N].

(7) (Intermediate) Let ey : E[N]| x E[N] — un be the Weil pairing, and det : E[N]| x E[N]| — Z/NZ
be the determinant pairing with respect to some basis (77, 7%). Further denote

pw=en(Th,T2) € un.

Show that:

en(P,Q) = pdtPQ) for all P,QlinE[N].
Hint: Use the properties of the Weil pairing from Proposition 3.27 in the lecture notes.

(8) (Intermediate) Let E : y*> = 23 + 1 over F, for some p =2 mod 3. Consider some point P € E(F,)
of order ord(P) = N. Determine the embedding degree of N in ).
Hint: Use Lemma 3.17 of the lecture notes.

9) (Intermediate) Let P € E[N| a point of order N on an elliptic curve over a finite field F,, with p 1 IV.
P
(a) First assume that N is prime. show that:

#{T € E[N]|ord(g) = N where g = eny(P,T)} = N(N — 1),

and conclude that the probability that e (P, T') is a primitive root of unity for a point ' € E[N]
chosen uniformly at random is (N — 1)/N.

(b) Now let N € Z be an arbitrary positive integer. Compute the proportion of points T' € E[N]
so that ey (P,T) is a primitive N-th root of unity.

(10) (Intermediate, SOXJEL) In this exercise, you are Mallory and your goal is to recover Alice’s key using
the invalid curve attack. You are using the elliptic curve

E:y* =242 +25, over Iy,

with parameters p = 18446744073709551629 and P = (100, 6701093164194334038) € E(F,) with
prime order ord(P) = 18446744070571455341.
Alice’s public key is A = (10301126922579099648, 17157096027455143833)

(a) You (Mallory) send the point P1 = (18165116349323561130, 6150811377566577555). Check that
Py ¢ E(Fp). Find the (unique) parameter by so that Py is on the curve Ej : y*> = a3 + z + by.
What is the order of P;? Compute all possible values for [a]P; (without computing the secret
key a).

(b) By checking all possible values for [a] Py, you find that Alice computed the “shared” session key
Kap1 = (18446744073709551626, 5458368549901343073). What can you conclude about the
value of a?

(¢) You continue sending more maliciously generated public keys. The points P; sent by you and
the value of Alice’s corresponding session keys K4p ; are collected in the table below. What is
Alice’s secret key?
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Point P; ‘ shared key Kap;

(18165116349323561130, 6150811377566577555) 18446744073709551626, 5458368549901343073)
(16395352116619970353, 6034018393034262788) 16718172481871216672, 1183835131033830123)
(12524092530016578390, 5123067425181934705) 14160835454605074121, 3060569204740460707)
(4516937973540258973, 7005509288484349242) 8040943336447228867,13169014645599232942)
(15975665384073761733,11032318707512935771) | (13311443695356568982, 15843145926225201761)
(7142461303424024564, 6616795770963544980) (15087812134455913873,4833814421951071352)
(15087812134455913873, 4833814421951071352) (5030474179534288684, 4948558071821812509)
(9450845281388796607, 5731912410853213485) (7134676168471120217,6089059990139022202)
(5131031356309480317, 13835549974890579026) | (13275501062262900275, 10650377260320625285)

~ o~~~

(11) (Intermediate) Let y?> = 2® + ax + b be an elliptic curve. Find a formula that computes z([3]P) from

x(P) and the curve constants a, b.

(12) (Intermediate) Let K be a field with characteristic different from 2. Let A, B € K and B # 0. Then

an elliptic curve given by the equation
E:By* =2+ Az +

is said to be in Montgomery form. Curves in Montgomery form are particularly useful for efficient

implementations of elliptic curve cryptography, in particular when working in projective coordinates.

(a) Show that a curve E in Montgomery form is non-singular if and only if B(A% —4) # 0.

(b) Show that there is a unique point at infinity on the Montgomery model of an elliptic curve.
Show that this point is not singular, and is always defined over the base field K.

(c) (B5BE) You can look at the addition formulas for Montgomery curves here D Implement point
addition and point doubling for Montgomery curves in projective coordinates in SageMath.

(d) Bonus question: when do these formulas fail, i.e., when do they require a division by zero?
Compare this with the Short Weierstrass model case? Can you find a point of (conjectured)
order 2 on a Montgomery curve?

13) (Advanced) Let E be an elliptic curve in Montgomery form given by the equation By? = 23+ Az2+x
p g y g Yy q Y

over a field K with characteristic different from 2. Let P; = (x1,y1) and Py = (z2,y2) be points on
E such that 21 # x9 and z129 # 0. Then P + P> = (z3,y3) where

B($2y1 - x1y2)2

T3 = )
3 1‘1.172(3?2 — $1)2
Writing Py — Py = (4, y4) one finds

R (.%‘15()2 — 1)2
344 («rl — .1‘2)2 .

For the case P, = Py we have [2](z1,y1) = (x3,y3) where

(xf — 1)?

T Az (2 + Az + 1)

T3

(This is Lemma 9.12.5 in Mathematics of Public Key Cryptography| by Steven Galbraith.)
(a) Let P = (xp,yp) € E(K) be a point on an elliptic curve given in a Montgomery model. Define
X1 = Tp, Zl = 1, X2 = (X12 — 1)2, ZQ = 41’1(IE% +A$1 + 1) Given (Xn,Zn), (Xm,Zm),

1https ://hyperelliptic.org/EFD/glp/auto-montgom.html
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(Xon—n, Zm—n) define
Xnim = Zm-n(XnXm — ZnZm)?
Zngm = Xon-n(XnZm — XonZn)?
and
Xon = (X3 — Z3)?
Zon = AX 20 (X2 + AX, Z, + Z2).

Show that the x-coordinate of [m|P is X,,/Z,. In other words, show that these recursive
formulas correctly compute the x-coordinate of multiples of the point [m]P. Note that, since
these are recursive formulas, you can do a proof by induction on the addition formulas.

(b) Write a “double and add” algorithm to compute the a-coordinate of [n]P using the projective
Montgomery addition formula.

(14) (Advanced) (From material by Tanja Lange) The Elliptic Curve Digital Signature Algorithm works
as follows: The system parameters are an elliptic curve E over a finite field F,,, a point P € E(F),)
on the curve, the number of points n = |E(F,)|, and the order ¢ of P. Furthermore a hash function
h is given along with a way to interpret h(m) as an integer.

Alice creates a public key by selecting an integer 1 < a < £ and computing P4 = [a]P; a is Alice’s
long-term secret and Py is her public key.

To sign a message m, Alice first computes h(m), then picks a random integer 1 < k < ¢ and
computes R = [k]P. Let r be the x coordinate of R considered as an integer and then reduced
modulo /; for primes p you can assume that each field element of IF), is represented by an integer in
[0,p — 1] and that this integer is then reduced modulo ¢. If » = 0 Alice repeats the process with a
different choice of k. Finally, she calculates

s=k7Y(h(m)+r-a) mod .
If s = 0 she starts over with a different choice of k.
The signature is the pair (r, s).
To verify a signature (r, s) on a message m by user Alice with public key P4, Bob first computes
h(m), then computes w = s~ mod ¢, then computes u; = h(m)-w mod £ and us = r-w mod ¢
and finally computes

S = [ul]P-i- [UQ]PA.

Bob accepts the signature as valid if the z coordinate ofS matches r when computed modulo £.
(a) Show that a signature generated by Alice will pass as a valid signature by showing that S = R.
(b) Show how to obtain Alice’s long-term secret a when given the random value k for one signature

(r,s) on some message m.

(¢) You find two signatures made by Alice. You know that she is using an elliptic curve over Fyggg
and that the order of the base point is £ = 1013. The signatures are for h(m;) = 345 and
h(mg) = 567 and are given by (r1,s1) = (365,448) and (r2,s2) = (365,969). Compute (a
candidate for) Alice’s long-term secret a based on these signatures, i.e. break the system.



