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PROBLEM SET 3
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The goal for the exercises in Problem Set 3 is to give you practice with elliptic curves. The problems are
divided into three parts: beginner, intermediate, and advanced.

(1) (Intermediate) Let a, b ∈ K and consider the (affine plane) curve C (not elliptic curve since 4a3+27b2

is not necessarily 0 in this exercise), defined by y2 = x3 + ax+ b.
(a) Show that 4a3 + 27b2 = 0 if and only if the polynomial f = x3 + ax+ b has a repeated root.
(b) A point P on an affine plane curve is a singularity if and only if both partial derivatives ∂f/∂x

and ∂f/∂y vanish at P ; otherwise P is called a smooth point. Use this definition and part (a)
to show that all points P on C are smooth if and only if 4a3 + 27b2 ̸= 0.

(2) (Beginner) Consider the elliptic curve E : y2 = x3 − 3x+ 1 defined over F13 and let

P1 = (0, 1) ∈ E(F13).

(a) Compute [2] · P1. Is there any relation to the point P2 of Example 3.8 in the lecture notes?
(b) Compute [12] · P1. Try to use as few elliptic curve additions as possible.

(3) (Intermediate) Given an elliptic curve E over K, a point P ∈ E(K) and an integer N . Show that
Algorithm 4 computes [N ] · P using at most 2 log2(N) elliptic curve additions (a doubling [2] · P is
counted as one addition P + P ).

(4) (Beginner, ) Consider E : y2 = x3 − 2x+ 5 over F19. Let P = (2, 3) and Q = (10, 4).
(Note: See the Sagemath documentation for how to construct elliptic curves and points on elliptic
curves.)
(a) Check that P and Q are points on E.
(b) Calculate P +Q, without using Sagemath.
(c) Calculate [5] · P using the double-and-add algorithm (Algorithm 4 of the lectures notes).
(d) Calculate [7] ·Q, what does this tell you about the order of Q?

(5) (Intermediate) Let E : y2 = x3 + ax + b be an elliptic curve defined over a field of characteristic
̸= 2, 3. In this exercise, you are asked to show that #E[3] = 9 by describing how to compute the
points.
(a) Use the description of the group law (in Theorem 3.7 of the lecture notes) to construct a

polynomial ϕ such that ϕ(x) = 0 if and only if [3] · P = ∞, where P = (x, y) is a point on the
(affine) curve.

(b) Show that ϕ has no repeated roots. (Hint: Show that ϕ and its derivative cannot share any
roots.)

(6) (Beginner) For each of the following elliptic curves and finite fields Fp, list the points in E(Fp) and
check that the number of points is within the Hasse bound:
(a) E : y2 = x3 + 7x− 3 over F13.
(b) E : y2 = x3 + 11x+ 2 over F17.

(7) (Intermediate) Let p > 3 be a prime, and consider two elliptic curves:

E : y2 = x3 + ax+ b Ē : y2 = x3 + ax− b
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defined over Fp.
(a) Assume that p ≡ 1 mod 4. Show that

#E(Fp) = #Ē(Fp).

(b) Assume that p ≡ 3 mod 4. Show that

#E(Fp) + #Ē(Fp) = 2p+ 2.

Some hints:
• Check if -1 is a square in Fp.
• Let P = (x0, y0) ∈ E(Fp). Is there a point P̄ = (x0, ⋆) ∈ Ē(Fp)? What about P̄ = (−x0, ⋆) ∈
Ē(Fp)?

(8) (Intermediate) Let p > 2 be a prime number and let E : y2 = x3 +Ax+B be an elliptic curve over

Fp and denote with E(Fp) all points of E with coordinates in Fp. Further, let

(
a

p

)
be the Legendre

symbol.
(a) Show that

|E(Fp)| = p+ 1 +
∑
x∈Fp

(
x3 +Ax+B

p

)
.

(b) Let d ∈ Fp be such that

(
d

p

)
= −1 and E′ : dy2 = x3 +Ax+B. Show that

|E(Fp)|+ |E′(Fp)| = 2p+ 2.

(c) Let p be a prime such that p ≡ 3 (mod 4) and E : y2 = x3 +Ax. Show that |E(Fp)| = p+ 1.

(9) (Beginner) Compute the group structure of E(Fp) for the given elliptic curves E and primes p. (Can
you also find generators?)
(a) E : y2 = x3 + 1 for p = 5
(b) E : y2 = x3 + x for p = 7
(c) E : y2 = x3 − 1 for p = 7
(d) E : y2 = x3 + 1 for p = 7
(e) ( ) For p = 13, compute the group structures of E(Fp) for all elliptic curves over Fp. (You

can use the command .abelian group() for this.)

(10) (Advanced) In this exercise we will outline a proof of Hasse’s theorem (Theorem 3.16 of the lecture
notes): Let E be an elliptic curve over Fq. Then:

q + 1− 2
√
q ≤ #E(Fq) ≤ q + 1 + 2

√
q.

We first introduce the q-power Frobenius endomorphism,

πq : E → E

(x, y) 7→ (xq, yq),∞ 7→ ∞
(Note: Endomorphisms have not been defined in the lecture! An endomorphism is a rational map
from an elliptic curve to itself, which maps ∞ to ∞. Multiplication by N for an integer N is an
example of an endomorphism. One can show that an endomorphism is a group homomorphism.)
(a) Show that πq : E → E is a group homomorphism.
(b) Show that #E(Fq) = #ker(1− πq), where 1 is the identity map on E.
(c) A binary quadratic form on an abelian group A, Q : A → Z, is a function satisfying the

properties:
• Q(x) = Q(−x) for all x ∈ A
• The pairing (x, y) = Q(x+ y)−Q(x)−Q(y) is bilinear.

It is further called positive definite if Q(x) ≥ 0 for all x ∈ A and Q(x) = 0 if and only if
x = 0.
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(i) Prove that for a positive definite quadratic form Q,

|Q(x− y)−Q(x)−Q(y)| ≤ 2
√
Q(x)Q(y)

for all x, y ∈ A.
(d) For an endomorphism ϕ : E → E, when p ∤ #ker(ϕ) (more generally, when ϕ is separable), we

define the degree of ϕ to be the size of its kernel and denote it by deg(ϕ). It is a fact that 1−πq

is separable (see Silverman’s The Arithmetic of Elliptic Curves, III.5.5), so #ker(1 − πq) =
deg(1 − πq). Then the proof of Hasse’s Theorem reduces to proving that the degree map
deg : End(E) → Z, is a positive definite binary quadratic form and applying the preceding
result in part (c).

(i) (Practice with the definition.) Let p ∤ N . What is deg([N ]), where [N ] is the multiplication-
by-N map on E?

(ii) Prove that the degree map is a positive definite binary quadratic form. (Hard part:
bilinearity of the pairing.)

(iii) Apply the result in part (c) to the degree map to show that |#E(Fq)− q − 1| ≤ 2
√
q
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