PAWS 2025: MATHEMATICAL CRYPTOGRAPHY PROBLEM SET 3

GIACOMO BORIN, JOLIJN COTTAAR, ELI ORVIS, GABRIELLE SCULLARD

The goal for the exercises in Problem Set 3 is to give you practice with elliptic curves. The problems are divided into three parts: beginner, intermediate, and advanced.

- (1) (Intermediate) Let $a, b \in K$ and consider the (affine plane) curve C (not elliptic curve since $4a^3 + 27b^2$ is not necessarily 0 in this exercise), defined by $y^2 = x^3 + ax + b$.
 - (a) Show that $4a^3 + 27b^2 = 0$ if and only if the polynomial $f = x^3 + ax + b$ has a repeated root.
 - (b) A point P on an affine plane curve is a singularity if and only if both partial derivatives $\partial f/\partial x$ and $\partial f/\partial y$ vanish at P; otherwise P is called a smooth point. Use this definition and part (a) to show that all points P on C are smooth if and only if $4a^3 + 27b^2 \neq 0$.
- (2) (Beginner) Consider the elliptic curve $E: y^2 = x^3 3x + 1$ defined over \mathbb{F}_{13} and let

$$P_1 = (0,1) \in E(\mathbb{F}_{13}).$$

- (a) Compute $[2] \cdot P_1$. Is there any relation to the point P_2 of Example 3.8 in the lecture notes?
- (b) Compute $[12] \cdot P_1$. Try to use as few elliptic curve additions as possible.
- (3) (Intermediate) Given an elliptic curve E over K, a point $P \in E(K)$ and an integer N. Show that Algorithm 4 computes $[N] \cdot P$ using at most $2 \log_2(N)$ elliptic curve additions (a doubling $[2] \cdot P$ is counted as one addition P + P).
- (4) (Beginner, $\square \square \square$) Consider $E: y^2 = x^3 2x + 5$ over \mathbb{F}_{19} . Let P = (2,3) and Q = (10,4). (Note: See the Sagemath documentation for how to construct elliptic curves and points on elliptic curves.)
 - (a) Check that P and Q are points on E.
 - (b) Calculate P+Q, without using Sagemath.
 - (c) Calculate $[5] \cdot P$ using the double-and-add algorithm (Algorithm 4 of the lectures notes).
 - (d) Calculate $[7] \cdot Q$, what does this tell you about the order of Q?
- (5) (Intermediate) Let $E: y^2 = x^3 + ax + b$ be an elliptic curve defined over a field of characteristic $\neq 2,3$. In this exercise, you are asked to show that #E[3]=9 by describing how to compute the points.
 - (a) Use the description of the group law (in Theorem 3.7 of the lecture notes) to construct a polynomial ϕ such that $\phi(x) = 0$ if and only if [3] $P = \infty$, where P = (x, y) is a point on the (affine) curve.
 - (b) Show that ϕ has no repeated roots. (Hint: Show that ϕ and its derivative cannot share any
- (6) (Beginner) For each of the following elliptic curves and finite fields \mathbb{F}_p , list the points in $E(\mathbb{F}_p)$ and check that the number of points is within the Hasse bound:

 - (a) $E: y^2 = x^3 + 7x 3$ over \mathbb{F}_{13} . (b) $E: y^2 = x^3 + 11x + 2$ over \mathbb{F}_{17} .
- (7) (Intermediate) Let p > 3 be a prime, and consider two elliptic curves:

$$E: y^2 = x^3 + ax + b$$
 $\bar{E}: y^2 = x^3 + ax - b$

defined over \mathbb{F}_p .

(a) Assume that $p \equiv 1 \mod 4$. Show that

$$\#E(\mathbb{F}_p) = \#\bar{E}(\mathbb{F}_p).$$

(b) Assume that $p \equiv 3 \mod 4$. Show that

$$#E(\mathbb{F}_p) + #\bar{E}(\mathbb{F}_p) = 2p + 2.$$

Some hints:

- Check if -1 is a square in \mathbb{F}_p .
- Let $P=(x_0,y_0)\in E(\mathbb{F}_p)$. Is there a point $\bar{P}=(x_0,\star)\in \bar{E}(\mathbb{F}_p)$? What about $\bar{P}=(-x_0,\star)\in$ $E(\mathbb{F}_p)$?
- (8) (Intermediate) Let p > 2 be a prime number and let $E: y^2 = x^3 + Ax + B$ be an elliptic curve over \mathbb{F}_p and denote with $E(\mathbb{F}_p)$ all points of E with coordinates in \mathbb{F}_p . Further, let $\left(\frac{a}{n}\right)$ be the Legendre symbol.
 - (a) Show that

$$|E(\mathbb{F}_p)| = p + 1 + \sum_{x \in \mathbb{F}_p} \left(\frac{x^3 + Ax + B}{p} \right).$$

(b) Let $d \in \mathbb{F}_p$ be such that $\left(\frac{d}{p}\right) = -1$ and $E' : dy^2 = x^3 + Ax + B$. Show that

$$|E(\mathbb{F}_p)| + |E'(\mathbb{F}_p)| = 2p + 2.$$

- (c) Let p be a prime such that $p \equiv 3 \pmod{4}$ and $E: y^2 = x^3 + Ax$. Show that $|E(\mathbb{F}_p)| = p + 1$.
- (9) (Beginner) Compute the group structure of $E(\mathbb{F}_p)$ for the given elliptic curves E and primes p. (Can you also find generators?)
 - (a) $E: y^2 = x^3 + 1$ for p = 5(b) $E: y^2 = x^3 + x$ for p = 7

 - (c) $E: y^2 = x^3 1$ for p = 7
 - (d) $E: y^2 = x^3 + 1$ for p = 7
 - (e) (\square For p=13, compute the group structures of $E(\mathbb{F}_p)$ for all elliptic curves over \mathbb{F}_p . (You can use the command .abelian_group() for this.)
- (10) (Advanced) In this exercise we will outline a proof of Hasse's theorem (Theorem 3.16 of the lecture notes): Let E be an elliptic curve over \mathbb{F}_q . Then:

$$q + 1 - 2\sqrt{q} \le \#E(\mathbb{F}_q) \le q + 1 + 2\sqrt{q}$$
.

We first introduce the q-power Frobenius endomorphism,

$$\pi_q: E \to E$$
$$(x, y) \mapsto (x^q, y^q), \infty \mapsto \infty$$

(Note: Endomorphisms have not been defined in the lecture! An endomorphism is a rational map from an elliptic curve to itself, which maps ∞ to ∞ . Multiplication by N for an integer N is an example of an endomorphism. One can show that an endomorphism is a group homomorphism.)

- (a) Show that $\pi_q: E \to E$ is a group homomorphism.
- (b) Show that $\#E(\mathbb{F}_q) = \#\ker(1-\pi_q)$, where 1 is the identity map on E.
- (c) A binary quadratic form on an abelian group $A, Q: A \to \mathbb{Z}$, is a function satisfying the properties:
 - Q(x) = Q(-x) for all $x \in A$
 - The pairing (x, y) = Q(x + y) Q(x) Q(y) is bilinear.

It is further called **positive definite** if $Q(x) \geq 0$ for all $x \in A$ and Q(x) = 0 if and only if

(i) Prove that for a positive definite quadratic form Q,

$$|Q(x-y) - Q(x) - Q(y)| \le 2\sqrt{Q(x)Q(y)}$$

for all $x, y \in A$.

- (d) For an endomorphism $\phi: E \to E$, when $p \nmid \# \ker(\phi)$ (more generally, when ϕ is separable), we define the **degree** of ϕ to be the size of its kernel and denote it by $\deg(\phi)$. It is a fact that $1 \pi_q$ is separable (see Silverman's The Arithmetic of Elliptic Curves, III.5.5), so $\# \ker(1 \pi_q) = \deg(1 \pi_q)$. Then the proof of Hasse's Theorem reduces to proving that the degree map $\deg: \operatorname{End}(E) \to \mathbb{Z}$, is a positive definite binary quadratic form and applying the preceding result in part (c).
 - (i) (Practice with the definition.) Let $p \nmid N$. What is deg([N]), where [N] is the multiplication-by-N map on E?
 - (ii) Prove that the degree map is a positive definite binary quadratic form. (Hard part: bilinearity of the pairing.)
 - (iii) Apply the result in part (c) to the degree map to show that $|\#E(\mathbb{F}_q) q 1| \leq 2\sqrt{q}$