PAWS 2025: MATHEMATICAL CRYPTOGRAPHY
PROBLEM SET 2

GIACOMO BORIN, JOLIJN COTTAAR, ELI ORVIS, GABRIELLE SCULLARD

The goal for Problem Set 2 is to practice what we have been learning about attacks on the Discrete
Logarithm Problem. The exercises are organized into beginner, intermediate, and advanced levels. If this is
your first time thinking about cryptanalysis, the beginner and intermediate problems might be a good place
to start. These exercises are meant for your enjoyment and learning, so make sure to work on the problems
that interest you the most!

(1)

(2)

(4)

(5)

(Beginner) The order of 2 in F%; is 35. Charlie uses the subgroup generated by g = 2, his public
key is g. = 29. Use the baby-step giant-step algorithm to compute an integer ¢ such that g. = ¢°¢
mod 71.

(Intermediate) We have seen in Remark 2.12 (of the lecture notes) that one may reduce the size of
the required memory at the cost of increasing the overall runtime of the algorithm. In this exercise,
the goal is to achieve the opposite: decreasing the runtime at the cost of increasing the required
memory.

(a) We have shown that Algorithm 1 (of the lecture notes) requires O(,/q) multiplications. More
concretely, show that the average runtime is given by T' = 4/2,/q (if the exponent a is chosen
uniformly at random).

Now consider a variant of Algorithm 1, where the baby steps and giant steps are computed in parallel,
and all values g;, A; for 0 < i <n < m are stored until the match is found for some n

(b) What is the average runtime of this variant of Algorithm 1?7 What is the required memory?
Hint: You can use (or prove if you are familiar with probability theory) that for two integers
1,7 uniformly chosen at random from {0, ..,m}, the expected value of max(i,j) ~ 2/3m.

(50QE, Intermediate) Implement the baby-step giant-step algorithm and use it solve the DLP
instances from Exercise 5 of the first exercise set (copied again here). How does the running time
compare to the 'log function in SageMath? Which algorithm is used in SageMath to solve the DLP?
In all of these, the public parameters are a prime p = 2¢ + 1, and the element g = 4 € F, with
order g:
(a) q = 4294967681 ~ 232,
A = 5104411285, B = 7620748646.
(b) q = 18446744073709552109 ~ 264,
A = 17485644247020728566, B = 17485644247020728566.
(c) q = 340282366920938463463374607431768219863 ~ 2128,
A = 15855669586157245378211095347605706305,
B = 643791185530305885858740134964520672205

(Beginner) Use Pollard’s rho algorithm to compute ¢ such that 2¢ = 29 (mod 71) i.e. use Pollard’s
rho algorithm to do Exercise 1 in this Problem Set. What are T" and L? How does the value of T'+ L
compare to the expected value given in Theorem 2.167

(Beginner) Explain why f(z) = 22 is a bad (inefficient) choice of function for Pollard’s rho algorithm
(say, with initial value g = g - A, where the order of g is odd).
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(6)

(7)

(8)

(11)

(Intermediate) Pollard’s p for Integer Factorization. You already know that Pollard’s p algorithm
can be used to solve the discrete logarithm problem by exploiting cycle detections. The same idea
can be adapted to factor composite integers, i.e. find prime numbers pq, ..., p, such that n = p; - - - p,..

Let n be a composite integer. Consider the sequence
Tpe1 =7(wg) =22+ 1 (mod n).

Because there are only n residues, the sequence eventually repeats. If a prime p | n causes two values
to collide modulo p before they collide modulo n, then

gcd(\xi -z, n)

can reveal a non-trivial factor of n.

(a) (Beginner) Show that if x; = «; (mod p), then x;41 = ;41 (mod p) for all k > 0.

(b) (5BHE, Intermediate) Implement Pollard’s p method of factorization in Sagemath and use it
to factor the following integers:

e ny = 1007;

e ny = 8051;

e n3 = 10403;

e ny = 5544195998547562675200;
e n5; = 62636019807493769674752;
e ng = 19783;

e n7y = 1631011.
(Yes, they are ordered from easy to hard :), do the next one if you want to understand why)
(¢) (Advanced) Use Theorem 2.16 to estimate the expected number of steps needed to factor n,
assuming 7 to be a random permutation. Note: it may be helpful to use the Theorem on a
function different from m, since you are looking for a collision modulo one of the prime factors
of n.
(d) (Advanced) Explain why Pollard’s p is particularly effective when n has many small prime
factors, even if n itself is large.

(5DQE, Intermediate) Implement the Pollard rho algorithm in Sagemath and use it solve the DLP
instances from Exercise 3. Compare the run times with your baby-step giant-step implementation.

(Beginner/Intermediate) Use index calculus to compute an integer ¢ such that 2° = 29 (mod 71)
(i.e., use index calculus to solve #1 on this problem set). Use factor base Pp = {2,3,5} and the
sequence of integers e = 5,13, 32, 19.

(Intermediate) When looking at Example 2.19 from the lecture notes, can you also solve for xs, 3
and z57 Explain your observations.

(5DCE., Advanced) Try to implement the Index Calculus algorithm (Algorithm 3 from the notes)
in Sagemath. Here some hints:
e list(primes(B)) gives you a list of all primes up to B;
e You can initialize the matrix to then the relations having b columns and b + 1 rows.
e You do not need to factor completely, just divide out the primes in your factor base, then if you
get 1 it means the number was completely factored.
e You can use A.solve_right (b) to solve the linear system Az = b in F,.

(Intermediate) Let T be the expected number of trials of random integers modulo p until one is
B-smooth, b be the number of primes up to B, r is the (prime) order of g and M (¢) be the number
of bit operations required to multiply two ¢-bit integers.
Then, the expected running time of the Index Calculus algorithm (using naive trial division and
specialized methods for the sparse linear system) is:
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OV Ty M (log(p)) + bW M (log(r))) for p — oco.

Let L,(c,1/2) be the subexponential functiorﬂ defined as
Ly(c,1/2) = e° log(p) log(log(p))

Assuming that B = L,(c,1/2) for some constant ¢ > 0 and T = L,(1/2,1/(2¢) + o(1)), show
that the optimal value for ¢ is 1/2. Then estimate the asymptotic complexity of the Index Calculus
algorithm.

(12) (5EJE, Advanced) Use your implementation of the Index Calculus algorithm to run some experi-
ments and find an optimal value for B for p = 2 - 386545163 4+ 1 and g = 4. Does your experimental
optimal value for B agree with the asymptotic value you found in the previous exercise? How does
it change? Try to use larger primes and find the optimal B = L,(1/2,¢) for your implementation
experimentally.

Lif you want to read more see Lemma 15.1.6 from MPKC.
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https://www.math.auckland.ac.nz/~sgal018/crypto-book/main.pdf

