
PAWS 2025: MATHEMATICAL CRYPTOGRAPHY

PROBLEM SET 0

GIACOMO BORIN, JOLIJN COTTAAR, ELI ORVIS, GABRIELLE SCULLARD

Welcome to PAWS! Below are the exercises for Problem Set 0, which are intended to provide some
background on common vocabulary and notation that will be used in this course. We have also prepared
a notebook that will guide you through an introduction to the use of Sagemath for computer algebra and
cryptography. More information in the last section of the file.

You are absolutely not obligated (or expected) to finish all of these problems before our first meeting,
but we recommend that you at least attempt the problems in the review section if you have not seen the
material before. Most importantly, work on the problems that interest you!

Review Problems

(1) The Euclidean algorithm computes the greatest common divisor of two positive integers a > b by
the following procedure: Use division with remainder to write

a = q1b+ r1,

where the remainder r1 satisfies 0 ≤ r1 < b and q1 is the quotient. If r1 = 0, then b | a and
gcd(a, b) = b. Otherwise, we can continue, using b as the new dividend and r1 as the new divisor,
and obtain a new remainder 0 ≤ r2 < r1. We continue until rk+1 = 0, in which case rk = gcd(a, b).

a = q1 · b+ r1

b = q2 · r1 + r2

r1 = q3 · r2 + r3

...

rk−1 = qk · rk

(a) Use the Euclidean algorithm to compute gcd(30030, 257). Use your result and the fact that
30030 = 2 · 3 · 5 · 7 · 11 · 13 to prove that 257 is prime.

(b) Use the Euclidean algorithm to compute gcd(4883, 4369). Use your work to factor 4833 and
4369 into a product of primes.

(2) The extended Euclidean algorithm uses the sequence of quotients q1, q2, . . . , qk−1 obtained from the
Euclidean algorithm to compute two integers x, y such that ax+ by = gcd(a, b), by forming the two
sequences:

x0 = 1, x1 = 0, xj = −qj−1xj−1 + xj−2

y0 = 0, y1 = 1, yj = −qj−1yj−1 + yj−2

Then axk + byk = gcd(a, b).
For a more detailed explanation and example of how this works, see Example 1.10 in An Introduction
to Mathematical Cryptography (an online copy is here).
(a) Show that if there exist integers x and y such that ax+ by = 1, then gcd(a, b) = 1.
(b) Show that a is invertible mod b if and only if gcd(a, b) = 1. (“Invertible mod b” means there

exists an integer z (mod b) such that az ≡ 1 (mod b). We denote z (mod b) by a−1 (mod b).)
(c) Use the extended Euclidean algorithm to compute x and y such that 17x+ 101y = 1. What is

17−1 (mod 101)?
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(3) The Chinese Remainder Theorem states that if gcd(n,m) = 1 and a, b are integers, then there is a
unique solution x (mod mn) to the simultaneous congruence,

x ≡ a (mod n), x ≡ b (mod m)

(a) Show with a counterexample that the theorem is no longer true if the condition gcd(n,m) = 1
is dropped.

(b) Solve the simultaneous congruence{
x ≡ 2 (mod 17)

x ≡ 9 (mod 101).

(Hint: You could start listing numbers which are congruent to 9 (mod 101), but here’s another
approach using the work you’ve already done: Write x = 17k + 2, and solve for k in the
congruence 17k + 2 ≡ 9 (mod 101).)

(4) Recall that a group is a set S together with a binary operation m : S × S → S, such that
(a) for all s0, s1, s2 ∈ S, m(s0,m(s1, s2)) = m(m(s0, s1), s2),
(b) there exists s∗ ∈ S such that m(s, s∗) = m(s∗, s) = s for all s ∈ S, and,
(c) for all s ∈ S there exists s−1 ∈ S such that m(s, s−1) = m(s−1, s) = s∗.
We think of m as being a (not necessarily commutative!) multiplication on S, s∗ as being a multi-
plicative identity, and (as the notation indicates) s−1 as being the multiplicative inverse of s, and will
usually denote m as a product. When the operation m is commutative, we will sometimes denote it
with +. In this exercise we will recall the basic properties of groups with an emphasis on examples
that will be useful in this course.
(a) Prove that the identity element in any group is unique. Prove that each element of a group has

a unique multiplicative inverse (this justifies the notation s−1 used above).
(b) Let G be a group and g ∈ G. Show that the function mg : G→ G defined by mg(h) = hg is a

bijection.
(c) Let GL2(R) denote the set of 2 × 2 matrices with real entries and determinant 1. Show that

GL2(R) is a group under multiplication. Is GL2(R) commutative?
(d) Let Z/pZ be the set of integers modulo p, i.e., the equivalence classes of the integers under the

equivalence relation a ∼ b if and only if p | a−b. We define addition and multiplication on Z/pZ
by [a] + [b] := a + b (mod p) and [a][b] := ab (mod p) (we will usually drop the brackets, but
it will be understood that we are multiplying equivalence classes). Prove that Z/pZ together
with the operation of addition is a group. Prove that (Z/pZ)× = Z/pZ−{[0]} is a group under
multiplication.

(e) Is the set Z/15Z− {[0]} a group under multiplication? Can you identify the maximal subset of
Z/15Z that is a group under multiplication?

(f) The number of integers less than or equal to N that are coprime to N is denoted by φ(N). The
function φ is called “Euler’s phi function,” or sometimes “Euler’s totient function.” Prove that

φ(N) = N
∏

p|N,p prime

(
1− 1

p

)
.

(Hint: One way is to proceed as follows, first show the result when N is a power of a prime.
Next show that φ(mn) = φ(m)φ(n) when m and n are relatively prime. Finally, put the two
together to get the general result. For those who have seen the Möbius inversion formula, there
is an elegant proof, which begins by arguing directly that N =

∑
d|N φ(d)...)

(5) Euler’s Theorem states that for any integer a coprime to N , aφ(N) ≡ 1 (mod N).
(a) Prove Euler’s Theorem. Use the group theory fact that the order of an element divides the

order of the group, applied to the group of integers mod N which are coprime to N under
multiplication, (Z/NZ)×.

(b) Compute 7−1 (mod 30) using the extended Euclidean algorithm.
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(c) Suppose for some unknown integer m (mod 31) , you are given the value of m7 (mod 31). How
can you find m? (Raise m7 to a certain power mod 30 and use Euler’s Theorem.)

(6) A group homomorphism is a function ϕ : G→ H, where G and H are groups, such that

(1) ϕ(g1g2) = ϕ(g1)ϕ(g2),

for all g1, g2 ∈ G.
(Equation (1) does not look so surprising, but notice that the “multiplication” on each side of the
equals sign can be different!) In this question, we will prove some of the basic facts about group
homomorphisms.
(a) Let 1 be the multiplicative identity in G. Prove that ϕ(1) is the multiplicative identity in H.
(b) For any g ∈ G, show that ϕ(g−1) = ϕ(g)−1.
(c) A subgroup of a group is a subset that is also a group under the same operation. Prove that

ϕ(G) is a subgroup of H.
(d) The kernel of a group homomorphism is the set of elements g ∈ G such that ϕ(g) = 1. We

denote this by ker(ϕ). Prove that ker(ϕ) is a subgroup of G with the additional property that
g ker(ϕ)g−1 = ker(ϕ) for all g ∈ G. Such a subgroup is called a normal subgroup of G.

(e) Let G/ ker(ϕ) denote the set of equivalence classes of G under the equivalence g ∼ h if and only
if gh−1 ∈ ker(ϕ). Define a multiplication on G/ ker(ϕ), and prove that your multiplication is
well-defined and makes G/ ker(ϕ) into a group.

Algorithm 1 Square and Multiply for Modular Exponentiation

1: Input: Integers x, e, n
2: Output: xe mod n
3: Convert e to binary: e = (ekek−1 . . . e0)2
4: result← 1
5: for i from k down to 0 do
6: result← result2 mod n
7: if ei = 1 then
8: result← (result · x) mod n
9: end if

10: end for
11: return result

(7) In the rest of this course it is going to be paramount that we can do exponentiation in modular
arithmetic as fast as possible. One of the most used algorithms is the square and multiply method
which can be found in Algorithm 1.
(a) Calculate 2371 mod 31 using the square-and-multiply method (using at most 7 squarings and

4 multiplications).
(b) Given that a multiplication costs O(nlog 3) (Karatsuba), what is the expected runtime of the

square and multiply method?

(8) Some cryptographic computations need to calculate something of the form xeyf mod n. Devise an
efficient algorithm (as an adaptation on Algorithm 1) that outputs xeyf mod n, for some integers
x, y, e, f, n. (It should be able to compute x22y13 mod n in at most 4 multiplications and 4 squarings,
plus one precomputation).

Introduction to Sagemath

Sagemath is a free open-source computer algebra system that is widely used in research and education.
It is particularly useful for number theory and cryptography, as it includes many built-in functions for
working with modular arithmetic, groups, and other mathematical structures. You can download and install
Sagemath on your computer, or you can use it online through the online platform CoCalc.
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Once you have installed it on your computer you can open the Sagemath console by opening a terminal
and typing

$ sage

If you have installed Jupyter Notebook you can also run Sagemath in a Jupyter Notebook by typing in a
terminal:

$ sage -n jupyter

Note: there are plenty of guide on how to install Sagemath, depending on your operating system and
installation preferences. If you have any trouble, please don’t hesitate to reach out to us!

We have also prepared a notebook that will guide you through an introduction to the use of Sagemath
for computer algebra and cryptography. Try to open it on Cocalc or download it, run the cells, do (some of)
the exercise and play with it to get confidence. Don’t be scared if this is your first experience with writing
code, try to play around and if you feel stuck feel free to reach to us!

Here some useful links:

• Notebook with introduction to Sagemath:
https://cocalc.com/share/public_paths/3722a39b9bc5617b718a368c6e6cb6007597aa0b

• Installation instructions: https://doc-gitlab.sagemath.org/html/en/installation/index.html
• Sagemath documentation: https://doc.sagemath.org/html/en/index.html
• Sagemath tutorial: https://doc.sagemath.org/html/en/tutorial/index.html
• Jupyter Notebook: https://jupyter.org/install
• CoCalc: https://cocalc.com/
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