Introduction to mathematical cryptography

Lecture notes for the Preliminary Arizona Winter School 2025

Sabrina Kunzweiler

This is a draft, and will be updated throughout the semester.
Abstract

These lecture notes accompany the biweekly lectures given at the Preliminary Arizona Winter
School in 2025. The field of mathematical cryptography is vast, and the focus of this course is on
the discrete logarithm problem (DLP) which will appear in different forms throughout the lectures.

After a general introduction to cryptography, Section [2] presents the Diffie-Hellman key exchange
protocol in its original form which is based on the DLP in finite fields. In Section [3] we proceed to
study elliptic curves. Here, the elliptic curve discrete logarithm problem ECDLP will be discussed in
detail. Finally, the last section will provide some insight into isogeny-based cryptography. This is
a very recent research topic, and curiously the security of isogeny-based protocols also relies on a
DLP-type assumption.

This course will assume only a first undergraduate course in abstract algebra as a prerequisite.
Prior knowledge of cryptography or elliptic curves is not required.

There exist many excellent textbooks and lecture notes on the topic. The main source for these
notes is [I1]. For Section we also rely on [I3], and Sections anddraw inspiration from [31] and
[34]. Furthermore, we often refer to [29] or [8] for more advanced topics that are not covered in this
course.
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1 A brief introduction to cryptography

Cryptography is a century old discipline that has evolved from being an art only used by few people, to
a scientific subject of active research which we use in our everyday lives.

The goal of cryptography is to keep communication private. In this course, there will usually be two
parties, Alice and Bob, who want to exchange secret information over a public channel. In order to avoid
that an eavesdropper (Eve) can read the secret information, they encrypt the messages that they send
to each other. A typical encryption scheme is sketched in Figure
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Figure 1: Encryption scheme with a shared private key k

In this encryption scheme, there are three predefined spaces, the key space KC, the message space M
and the cipher text space C (often M = C). Both Alice and Bob share the same private key k € K
which has to be chosen in advance. Furthermore, the scheme consists of (publicly known) encryption
and decryption functions

Enc: K x M —C, Dec:K xC— M.

We often denote Enc(m) = Enc(k,m) and Deci(m) = Dec(k,m). In Figure[i} Alice wants to transmit
a message m € M. To do so she computes the cipher text ¢ = Enci(m), and sends the latter to Bob.
Upon receiving this message, Bob computes m = Decg(c). For this to work, it is required that

Decy(Enci(m)) =m for all m € M,k € K.

Note that Eve can read the cipher text c. Intuitively, the scheme is secure if Eve cannot learn anything
about the plain text m from intercepting the cipher text c.

How can one construct secure encryption and decryption algorithms? An early example of an encryp-
tion scheme is the so-called Caesar cipher, named after Julius Caesar who used this method for secret

communication. This encryption method is far from being secure by today’s standards, but it serves us
as a first example.

Example 1.1. Caesar’s cipher. According to historic sources Julius Caesar used to encrypt his messages
by shifting every letter in a word by 3 positions. In other words, he used the following translation table.
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For instance PAWS becomes SDZV, using this encryption method. In order to use the formalism intro-

duced in Figure[l, we identify the alphabet with integers modulo 26, i.e. A= {A,...,Z} ={0,...,25}.
Then the message and cipher text spaces are given by

M=C=A"={ay...an | a; € A,n € N},
and the encryption function can be described as

Enc(my...my) =(c1...¢n), withc; =m; +3 (mod 26).



Similarly, decryption is given by

Dec(cy...cn) = (my...my) where m; =c¢; —3 (mod 26).

Note that this method does not depend on a key k. Hence the security of the scheme only relied on the
assumption that it is unknown to an enemy. This assumption is in conflict with Kerckhoff’s principle
which states that the security of an encryption scheme should never depend on the secrecy of the scheme,
but only on the secrecy of the key [14]:

Il faut qu’il n’exige pas le secret, et qu’il [le systéme] puisse sans inconvénient tomber entre
les mains de U'ennemi. (Kerckhoff 1883)

In the words of Claude Shannon [27]:
The enemy knows the system. (Shannon 1949)
While the principle is relatively old, it is still important for modern cryptography.

The next two exercises discuss generalizations of Caesar’s cipher. In these generalizations, the security is
based on the knowledge of the secret key. However, they will turn out to be insecure as well by today’s
standards.

Instead of using, a shift of exactly 3 letters as in Caesar’s cipher, one could also use a
secret shift depending on a key k € {0,...,25}.

(a) Describe M, C, K, Dec and Enc for the this new encryption method.

(b) To increase the number of keys, one may also choose a key of the form k = (a,b) with a € (Z/26Z)*,
beZ/26Z, and
Encp(my...my) = (c1...¢,) with ¢; = am; + b.

The resulting scheme is known as affine cipher.

(i) Describe the corresponding decryption function Decy. Why is it necessary that a is a unit in
(Z)26Z) ¢

(i) You (Eve) read a cipher text starting with BMVVK, and you think it means HELLO. Is it
possible that Alice and Bob used an affine cipher in their communication? Can you recover
their secret key?

(i3) BEDJE Alice and Bob noticed that you found their secret, and chose a new private key. This
time you intercept the cipher text

IFELTKHURFENHAFEEFSFUTSVGEDNULTKFBF

Can you find the plain text message?

The ciphers from Example [I.I]and Exercise [[.2]fall into the larger category of substitution ciphers, where
each letter in the alphabet is replaced by another letter. Note that as opposed to the ciphers from
Exercise the key space for general substitution ciphers is much larger. Using the standard Latin
alphabet with 26 letters, there are 26! = 288 different keys. While it would be infeasible (for most
computers) to test all of these different keys, there are faster methods to break this encryption scheme.
The main idea is to use the fact that the plain text message should make sense in some language (in our
examples: the English language). The classical way to attack such a cipher is by performing a frequency
analysis. One checks which letter appears the most, and how this compares to standard texts in EnglishEI
Furthermore it makes sense to also check for frequent letter pairs or repeats. The most frequent letters
in the English alphabet are

E (131%), T (10.5%), A (8.1%), O (8.0%), N (7.1%),
the most common bigrams in decreasing order are
TH, HE, AN, RE, ER.

For more details, we refer to [11, Tables 1.3, 1.6].

1The first description of frequency analysis to break cryptographic ciphers appeared in the 9th century for the Arabic
language in a manuscript on deciphering cryptographic messages by Al-Kindi.



Exercise 1.3. GDR You intercepted the cipher text

JIVQOJIV LEALAVQO KGOONDTV QOAELONE OAINYNGJ SOBVQODB CLAVQOKG
OONDTJIV QOJIVLEA EIBHTBLO YBLEQPIG AA

from a conversation between Alice and Bob. You know that they used a substitution cipher. Can you
recover the plain text m? Note that the spacing is only used for readability and does not coincide with
the spacing of the original text.

The historical ciphers that we have seen so far, all belong to the field of symmetric cryptography: Both
parties Alice and Bob possess the same secret key k which is used for encryption and decryption. A
modern method in this category is the Advanced Encryption Standard (AES). This cipher was selected
as a new standard for encryption by the United States National Institute of Standards and Technology
(NIST) in the year 2000, and it is widely used today. To learn more about AES and related modern
ciphers, we refer to [I3, Chapter 6].

Note that in order to use a symmetric encryption scheme, Alice and Bob need to first exchange the secret
key k with each other. In most scenarios, it is not possible that they can meet in person and establish this
key without any eavesdroppers present. This problem can be solved by using public key cryptography, also
known as asymmetric cryptography. In public key cryptography, each party possesses their own secret
key (sk) and a corresponding public key (pk). A typical key exchange protocol is sketched in Figure
In such a protocol, the secret keys of Alice and Bob, sk and skp remain private, they only exchange the

, pkp ' |
N <

Alice Bob
(ska € K) (skp € K)

pkB «— F(SkBag)

Jw’ Kpa = F(skp, pk,)

pkA «— F(Sk \7g>
Kup < F(Sk.h PkB)

Eve
Figure 2: Key exchange protocol

public keys pk 4 and pkp with each other. The shared session key K 45 is derived by applying a function
F with the property

F(ska,pkp) = F(skp,pky) for all pairs (ska,pky), (skp, pkp)-.

Intuitively, the following properties must hold in order to get a secure scheme.
(a) Given a public key pk 4, it is hard to find the corresponding secret key sk 4.
(b) Given two public keys pk, and pkp, it is hard to compute the corresponding shared key K4p.

In particular, we ask that F' is a cryptographic one-way function.

A function f : X — Y is a cryptographic one-way function if the following conditions hold.
(1) Easy to compute: There is a polynomial-time algorithm that on input z € X computes

y = f(x).
(2) Hard to invert: Given y € Y it should be computationally infeasible to find z € X with

flx)=y.



Cryptographic one-way functions typically stem from number theory. A one-way function that plays an
important role in modern cryptography is simply given by multiplication.

Let P be the set of primes. Then the function
F:PxP—=Z, (pg+—p-q

is a (conjectured) cryptographic one-way function. The multiplication of two (large) prime numbers (or
more generally integers) can be performed efficiently. More precisely, it is polynomial in the input length
of the binary representation of p and q. On the other hand, given an integer N = pq, it is hard to
compute the factorization. For instance a trivial approach using trial division Tuns in time @(W)
This is exponential in the length of the binary representation of N. The best known algorithms to solve
factoring run in subexponential time, but no polynomial time method is known to solve the problem.

Having a cryptographic one-way function, it is still not straight forward, how one would construct a key
exchange protocol from it. In particular, no direct construction of a key exchange protocol from integer
multiplication is known (Example . In the example below, we provide an unsuccessful idea for using
multiplication in a key exchange protocol.

Consider the following setup for the public key exchange scheme in Figure[3 Let K =P
be the set of primes, p € P a public parameter, and let

F:ZxX7Z—7Z
(a,0) —a-b

With this function, the key exchange protocol from Figure @ works correctly. We have pk, = ska - p,
pkg =skp - p, and

F(ska,pkp) = ska - (skp - p) = skp - (ska - p) = F(skp, pk,)
for all choices of secret keys ska,skg € P.

Howewver, the scheme is not secure at all. For instance, given a public key pk,, one can easily compute
the corresponding secret key ska as ska = pky/p. Note that the hardness of the scheme is not based on
the factorization problem which is assumed to be computationally hard.

The description of cryptographic one-way functions lies at the heart of this course. We will encounter
the following conjectured one-way functions:

e Modular exponentiation (Section
e Elliptic curve multiplication (Section
e Isogenies (Section [4))

For all of these, we will construct a public key exchange protocol as in Figure 2] and analyze the security
of the protocol. The conjectured one-way function relying on the hardness of factorization from Example
will not be studied explicitly in the following sections. However, we would like to highlight that it
builds the basis of the RSA cryptosystem which was developed by Ron Rivest, Adi Shamir and Leonard
Adleman in 1977 [23], and is another important pillar of modern public key cryptography. It will appear
on the problem sets accompanying these lectures notes.

2 The discrete logarithm problem and Diffie-Hellman key ex-
change
In this section, we study the first cryptographic one-way function of the course in detail: Modular

exponentiation
exp, : Z —F,, awg",

for some prime field F;,, and a base element g € ;. Recall that modular exponentiation can be evaluated
in polynomial time in the input using square and multiply technlquesﬂ hence the first property from

2See Exercise 7, on Problem Set 0.



Definition [1.4] is satisfied. In order to be a cryptographic one-way function, we also require that the
inversion of exp,, is hard. The inversion consists in computing the discrete logarithm:

Let g be a primitive root for I, and let A € F,. The Discrete Logarithm Problem (DLP) is the
problem of finding an exponent a such that exp,(a) = A.
The number a is called the discrete logarithm of A to the base g, we denote a = dlog,(A).

Recall that Iy is cyclic of order p — 1. A primitive root of ), is an element g € F, so that F} = (g).
Choosing a primitive root g as the base, there exists a solution to the DLP for any A € F;. Further note
that exp,(a) = exp,(a + k- (p — 1)) for any k € Z. One may show that dlog, : F, — Z/(p — 1)Z is a
well-defined function.

2.1 Diffie-Hellman key exchange

If the discrete logarithm problem (Definition [2.1)) is hard in F,, then modular exponentiation in I, is a
cryptographic one-way function. Plugging this one-way function into the general framework from Figure
[2l we obtain the famous Diffie-Hellman key exchange protocol. This protocol was proposed in 1976 by
Whitfield Diffie and Martin Hellman in their ground-breaking article “New directions in cryptography”
[4] which represents the start of public key cryptography. The Diffie-Hellman key exchange is sketched

in Figure [3]
A )>

~

‘ , B |
\ ¢
Alice Bob
(bez)
A« exp,(a) B <+ exp,(b)
+ expg(a) Kpa < exp,(b)

Figure 3: Diffie-Hellman key exchange for some public parameter g € Fy,

Here the secret keys are integers a,b € Z, and the public keys are A = expg(a) and B = expg(b)7
respectively. Note that we omit including Eve in the sketches from now on. But one should have in mind
that the public keys A, B are sent over a public channel and can be intercepted by an eavesdropper.

The correctness of the scheme follows from commutativity, more precisely
KAB — B% — (gb)a _ gba _ gab — (ga)b _ Ab _ KBA
for all a,b € Z.

If the public element g € F} is a primitive root, then its order is p — 1. For security
reasons, it is better to choose an element with (large) prime order (see Exercise @) For instance, one
may choose to work with a prime of the form p = 2q + 1 where q is prime as well. Then, g is replaced
by h = g* € F}, and we have ord(h) = q.

Further note that in this setting, h® = h®t™9 for all integers n. Therefore, it makes sense to choose
secret keys in the range {0,...,q — 1}.
In order to establish a shared key, Alice and Bob use the following public parameters
e g=113 and p =2q + 1 = 227,
e g=4€F,.



Alice chooses a = T3 as her secret key and sends the public key A = expg(a) =102 to Bob.
Bob chooses b =89 as his secret key and sends the public key B = exp,(b) = 19 to Alice.

Now Alice computes Kap = expg(a) = 197 = 113. Similarly Bob computes Kpa = exp 4(b) = 1023 =
113.

After this key exchange, Alice and Bob can mow use a symmetric crypto system with their shared key
Kap =Kpa =113.

In order to understand the security of the scheme, it is essential to study the hardness of the DLP. If
the DLP is easy to solve, then an eavesdropper, can compute the shared session key established by Alice
and Bob. The following exercise should give an idea on the effect of changing the size of the primes in
the setup on the hardness of computing discrete logarithms. In Subsections [2:3] and [2:4] we will discuss
algorithms to solve the DLP in more detail. For now, the reader may simply use the functions integrated
in SageMath to solve the exercises.

SR Alice and Bob want to create a shared key. They use setups with varying security
levels. In all of these, the public parameters are a prime p = 2q + 1, and the element g = 4 € Fy, with
order q. You observe the following conversations. Can you find the shared keys?

(a) q = 4294967681 ~ 252,
A = 5104411285, B = 7620748646

(b) q = 18446744073709552109 ~ 204,
A = 17485644247020728566, B = 17485644247020728566

(c) q = 340282366920938463463374607431768219863 ~ 2128
A = 15855669586157245378211095347605706305, B = 643791185530305885858740134964520672205
In SageMath, you can use the log function to compute discrete logarithms, e.g. a = A.log(g) (provided

that g, A are defined as elements in ), ). Further, you can use %time to time your results. How does the
runtime evolve for increasing values of q?

Let us now turn to the question, why we prefer to work in a large prime order subgroup of F), (Remark
. Essentially, the reason is that the DLP in I} can be reduced to the DLP in its prime order subgroups.
We illustrate this idea in Example The generalization of these ideas to a general algorithm (the
Pohlig-Hellman algorithm) is left as an exercise to the reader (Exercise [2.6]).

Let p = 443 and g = 2 € F;, be the setup for a Diffie-Hellman key exchange protocol.
Assume that we have intercepted Alice’s public key A = 74, and we want to compute her secret key
a = dlog,(A4).

We note that g = 2 is a primitive root of Fy,, i.e. ord(g) =442 = 2-13 - 17. Our goal is to decompose
the computation of dlogy(74) into computations in the prime order subgroups of Fy. To do so, we will
repeatedly use the fact that

*=A & g*=AF foralkeZ. (1)

e The unique subgroup of order 2 in IF;, is given by G = (g*317) = {1,442}. It follows from Equation
[ that
4420 — ga 1317 — 71317 _ g9

hence a =1 (mod 2).
e The unique subgroup of order 13 in Fy is given by Gi3 = (g*'7 = 35), explicitly:
Gis = {1, 35, 35% = 339, 35° = 347, 35" = 184, 35° = 238, 35° = 356, 35" = 56,
35% = 188, 357 = 378, 35'° = 383, 35'! = 115, 35'% = 38} .

Now A?17 = 356, and it follows from Equation that a = 6 (mod 13).

o In a similar way, we find that a = 4 (mod 17).



Now, one applies the explicit Chinese remainder theorem to find a solution for a (mod 2-13-17).

a=1 (mod2)
a=6 (mod 13) <  a=123 (mod 442).
=4 (mod 17)

Let p be a prime and g € ¥, a primitive element. We denote p—1 = Pt pin
for the prime factorization of p — 1. The goal of this exercise is to show that solving the DLP in Fy
is essentially as hard as solving the DLP in a subgroup G C T, of prime order #G = max{p; | i €
{1,...,n}}. To make this more formal, let’s say that the DLP in a subgroup G; C Fy, of order p; can be
solved in time O(S;).

Let g € F}, be a primitive element and A € ), the challenge for which we want to solve the DLP, i.e. we

want to find a € Z with g* = A.

(a) Use the Chinese remainder theorem to translate the problem into solving n smaller instances of the
DLP in subgroups of order p;* with i € {1,...,n}, respectively.

(b) Fizi € {1,...,n} and say you want to solve one of the small DLP instances on input A;, g; € Fy,
where ord(g;) = p5*, i.e. you want to find a; € Z with

g7t =A; (mod pi).

Show that this can be done in time O(e;S;).

hint: Use a p;-ary representation a; = g + c1p; + -+ - + aei_lpf"fl

(¢) Combine the results of (a) and (b) to show that the DLP can be solved in time

O(polylog(p) max{S;}).

So far, we only discussed the hardness of the DLP. We tried to attack the key exchange protocol by
finding the secret key. Are there any other strategies for an eavesdropper to compute the shared session
key instead of solving the DLP? To formalize this question, we first define a problem which mimics the
information that the potential eavesdropper can use to compute the shared session key.

Let g € Fy, and let A = g%, B = g® for some a,b € Z. The Computational Diffie-Hellman
Problem (CDH) is the problem of computing C' = g.

Until today, the best known methods to solve CDH rely on solving DLP. We will discuss these methods
in Subsections and However, we would like to point out that it is an open problem, whether the
two problems CDH and DLP are equivalent, or if the CDH problem is easier than DLP. Here are some
pointers to interesting results in this directions:

e Maurer reduction [17): In this reduction, it is shown that solving the DLP can be reduced to solving
CDH in a different auxiliary group, more precisely in a particular elliptic curve group (see Section
for a definition of these groups). However the construction of the specific auxiliary group is in
general not efficient (see [I8] for some recent progress in this direction).

o Algebraic group model [7]: Roughly explained, in the algebraic group model, an adversary can only
work with elements of [, that are obtained through group operations from the public parameters
and public keys. For instance, in order to solve a DLP instance (g, A), the adversary can only work
with elements of the form g% and A” for some x € Z (or combinations of these). In this model, it
is shown that CDH and DLP are indeed equivalent.

2.2 ElGamal encryption

Modular exponentiation cannot only be used to construct a public key exchange protocol. In addition,
one can directly construct a public key encryption scheme. Such a scheme was first suggested by Taher
Elgamal in 1985 [5].



In contrast to a symmetric key encryption scheme as sketched in Figure [I] Alice and Bob do not need
to share a key in advance. A public key is used for encryption, while decryption requires knowledge of

the corresponding secret key.
; @

Alice Bob (b € Z)
B
~G ¥ B—g
$
k<« 7Z (c1, ¢2)

(c1,¢2) (g%, m - BY) ————— m+m=c/d

Figure 4: The ElGamal encryption scheme in a finite field F,, with public parameter g € F; and G =
(9) C T},

The ElGamal encryption scheme is sketched in Figure[d As in the Diffie-Hellman key exchange scheme,
the public parameter is a (prime order) element g € Fy;. We denote G = (g) C F;. The key pairs (sk, pk)
are of the same form as in the Diffie-Hellman key exchange:

(sk, pk) = (a, A = exp,(a)) for some a € Z.

A difference is that here only one party (the receiver of the message) needs to create such a key pair.
In Figure 4] Bob is the receiver and generates the key pair (b, B = g®). While Alice is the sender, she
chooses a message m € G which she wants to transmit to Bob. The encryption function is given by

Enc: G x G — G?
(pk,m) > (c1,c2) = (g%, m - B¥) for some random k € Z.

Note that the encryption function is not deterministic. The outputted cipher text not only depends on
the message m and the public key pk, but it also depends on an integer k£ which is chosen at random
during encryption.

On the other hand, the decryption function is deterministic, it is given by
Dec:Zx G? =G

(sk, (¢1,c2)) = @/cﬁk.

The ElGamal encryption scheme as sketched above is correct, i.e. Deco(Encp(m)) = m for all
messages m € G, and key pairs (sk, pk).

Proof. Let sk € Z be a secret key, pk = exp,(sk) and m € G. Then

- pkF
Decek (Encpk(m)) = Decg (g%, m - pk*) = m-Pe .

(gk)sk

In the last equality, we used that (g¥)* = (¢%)* = pk" for every k € Z. O

Note that the scheme is insecure if DLP or CDH are easy to solve (try this as an exercise). On the other
hand, showing that the encryption scheme is secure would require some more advanced cryptographic
definitions. The important key words here are chosen cipher text and chosen plain text attacks. This is
not in the scope of this course, and we refer to [I3 Section 11.4.1] for more details.

However to better understand certain properties of the protocol, we include two exercises below that
illustrate the following:



e It is important that the integer k € Z is chosen at random for each encryption (in some sense, it
can be viewed as Alice’s secret key, but it should never be reused).

*

e The message has to be in G C F, and cannot be an arbitrary element in F}.

Consider the following setup:
p = 8589935363, g=4¢€T,,
and assume that Bob’s public key is
B = 1865230978.

(For readability, we chose a small prime for which the dlog can still be computed efficiently. For the sake
of this exercise, assume however that you cannot compute b = dlog,(B).)

Bob is asking some yes/no questions to Alice. Alice encrypts her answers (Y = 25 € Fy for yes and
N =14 €F, for no) using Bob’s public key and the ElGamal encryption scheme.

1. FEwve intercepts Alice’s answers:

Answer 1: (2456530342, 8487632028),
Answer 2: (2456530342, 1660697205),
Answer 3: (2456530342, 1660697205),

and immediately sees that Alice is reusing the random integer k € Z.
(a) Without doing any computations: What are the possible answers that Alice could have sent?
(b) With some (computationally easy) computation: What are Alice’s answers to Questions 1,2,37

2. Alice notices her mistake and uses different random exponents for the next answers. However, she
decides that it is easier to encode Y =1 € F, and N = —1 € F}. Now Eve intercepts the following
messages:

Answer 4: (6324669601, 8569725934),
Answer 5: (5864877653,1038689194),
Answer 6: (1841857395, 573429127),

Can you recover Alice’s answers to Questions 4,5,6 as well?

While the specific scenarios in this exercise might look a bit artificial, such mistakes can lead to serious
security leaks in real-world applications.

2.3 Exponential attacks on DLP

Let g € F;, be an element of order ¢, and A € (g9). The “easiest” way to solve the corresponding DLP
instance, i.e. find an integer a € Z with A = ¢%, is a linear search. One simply computes g; = g° for
all integers 0 < ¢ < ¢ — 1 until a match A = g; is found. The linear search algorithm has running time

O(q) ]

Here, we discuss two different algorithms that both have running time O(,/g), but different memory
requirements. Assuming that g generates a large subgroup of F,, in particular ¢ ~ p, the running times
are exponential in the length of the input.

3We use the big O notation to describe the running time of algorithms. We write f(n) = O(h(n)) (f(n) is big O of
h(n)) if there exist a constant ¢ > 0 and an integer ng € N so that |f(n)| < c|h(n)]| for all n > ng.
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2.3.1 Baby-step giant-step algorithm

In 1971, David Shanks proposed the so-called baby-step giant-step algorithm to compute discrete loga-
rithms [26]. The main underlying idea is to decompose the solution a = dlog,(A) as

a=jm+i, withm=|/q]+1andi,je{0,...,m—1}

In order to find these integers i, j, one creates two different lists of size m: the baby-steps

go=1Lg1=9 ..., Gm1=9""

and the giant-steps
Ag=A, Al =g ™ A ... A1 =(¢g"™)" - A

Then one searches a matching element in both lists, i.e. a match g; = g° = (g7™)7 - A = A;. In this case
gjeri = A

which provides us with the solution dlog,(A) = jm + i.

Algorithm 1 Shank’s baby-step giant-step algorithm

Input: g € F;, with ord(g) = q and A € (g)
Output: a = dlog,(A)
1m <+ [q) +1
2: go 1
/*baby steps*/

3: fori=1,....,m—1do

4: gi < g gi—1 >gi=g
5: e~ndf0r

6: A+ A

/*glant steps*/
7. for j=0,...,m—1do

8: if A = g; for some i then

9: return jm + ¢ (mod gq)

10: else

11: A A.gm™ b A=A.gmUtD
12: end if

13: end for

The procedure is sketched in Algorithm [1] Note that in this version, only the first list (go, ..., gm—1) is
stored. Whereas for the second list (Ao, ..., Am,—1), one immediately checks after the computation of an
element A; whether there is a match with one of the g;’s. In particular, there is no need to store the
elements of the second list.

On input g € F; with ord(g) = g and A € (g), Algorithm [l finds a = dlog,(A). The number of
[y multiplications is O(,/q), and the required memory is O(,/q) as well.

Proof. Let us first look at the running time. Creating the first list (Lines [2] to |5) takes m — 1 ~ /g
multiplications. Each step in the second for-loop (Lines |7 to requires one multiplication by ¢g=™,
hence the number of multiplications from this part are at most m — 1 ~ ,/q as well. Note that the check
in Line [§] can be done efficiently assuming that the values for (g;,4) are stored in a look-up table. The
required memory storage is determined by the number of elements in the first list: m ~ |/g.

It remains to show that the algorithm outputs the correct solution. To see this, note that for any element
a € {0,...,q— 1}, there exist i*,5* € {0,...,m — 1} so that

a=j"-m+i".
This solution leads to a collision of the two lists, and in particular the condition A = gi~ (Line [8)) will be

satisfied in iteration j = j*.
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Example 2.11. Let g = 4 € Fg3. This generates a subgroup of order 41. We are given the challenge
A = 68. Here, we illustrate the computation of a = dlog,(A) using the baby-step giant step algorithm
(Algorithm . A sketch is provided in Figure@

First, we set

m=|VAl]+1="7.

Then the baby steps are computed:
go=1,91 =4,92 = 16,93 = 64,94 = 7,95 = 28, g = 29.
Now, we compute the giant steps until a collision is found
Ag=68,4; =75, A, =40, A3 =49, Ay, = 4.
The collision is given by g1 = A4 which allows us to deduce dlogg(A) :

g'=A-g7" o A=g""=¢" & dlog(A) =29

Figure 5: Illustration of the baby-step giant-step algorithm, Example

Remark 2.12. As stated in Proposition[2.10| the memory complezity of the baby-step giant-step algorithm
is O(y/q). For a large order q, and in particular for cryptographic applications, this is unrealistic. In
order to obtain a version of the baby-step giant-step algorithm with smaller memory requirements, one
may choose a smaller value of m < \/q, and find a representation of the form

a=jm+1i, withie€{0,....,m—1} andje{0,...,|q/m]}.

However, note that this increases the running time of the algorithm. The number of Fp-multiplications
is now given by O(q/m). Such time-memory trade-offs are often considered in cryptanalysis.

Exercise 2.13. We have seen in Remark[2.13 that one may reduce the size of the required memory at
the cost of increasing the overall runtime of the algorithm. In this exercise, the goal is to achieve the
opposite: decreasing the runtime at the cost of increasing the required memory.
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(a) We have shown that Algorithm |1 requires O(\/q) multiplications. More concretely, show that the
average runtime is given by T = 3/2,/q (if the exponent a is chosen uniformly at random,).

Now consider a variant of Algorithm [1], where the baby steps and giant steps are computed in parallel,
and all values g;, A; for 0 <i <n < m are stored until a match is found for some nE|

(b) What is the average runtime of this variant of Algorithm ? What is the required memory?
Hint: You can use (or prove if you are familiar with probability theory) that for two integers i, j
uniformly chosen at random from {0,...,m}, the expected value of max(i,j) is = 2/3m

SDAE. Implement the babystep-giantstep algorithm and use it solve the DLP instances
from FEzercise , How does the runming time compare to the log function in SageMath? Which
algorithm is used in SageMath to solve the DLP?

2.3.2 Pollard’s rho algorithm

In 1978, John Pollard suggested the now called Pollard’s rho algorithm to compute discrete logarithms
[21]. This algorithm has the same asymptotic running time as the babystep-giantstep algorithm, its
major advantage is that it only requires a constant amount of memory.

Pollard’s rho algorithm is a randomized algorithm, and based on finding a collision. In some sense,
the baby-step giant-step algorithm can also be viewed as a collision-finding algorithm. It is based on
finding a collision between the baby-steps and the giant-steps. However, note that this is a deterministic
approach: the definition of the baby steps and giant steps guarantees a specific collision. In contrast,
Pollard’s rho algorithm is a Las Vegas algorithm: It always produces a correct output, but the running
time depends on the input.

Say we want to solve the DLP instance (g, A) with g, A € F;. Then Pollard’s algorithm uses a function

[+ F, — F; which sends elements of the form gk A to g’flAe/7 always keeping track of the exponents.
More explicitly, in the original paper [2I], Pollard suggests to use

gFATT i 0 <z < p/3,
Cp— gk Al 1) ok g2 9
fix=g T g*F A if p/3 <z < 2p/3, (2)
gFtrAY if2p/3 < x < p.

Using this function, one creates a sequence
xo = g° A%, my = fzo) = g" AY, 2y = f(a1) = g" A%, ..

Given that F), is finite, this sequence is necessarily periodic. More precisely, it will enter into a loop.
This is sketched in Figure [6] and explains the name of the algorithm. As in the sketch, we refer to the
tail length T of a sequence, and the loop length L.

A collision in the sequence (z;);en, can (almost certainly) be used to solve the DLP instance. To see
this, assume z; = x; for some i # j. Then

gkiAfi — gijfj o gki—ej — Aki—t
Now if ¢; — {; is prime to the order of g, then
dlog,(A) =a with a = (k; — k;) - ({; — £)~'  (mod ord(g)).

As we discussed earlier, typically ord(g) = ¢ is a prime, in which case (¢; — ¢;) is almost certainly
invertible.

We go back to Example[2.11, Recall that we are given a DLP challenge with g = 4 € Fgs
and A = 68. Let’s compute the sequence xo, 1, ... obtained with the function f in Equation[d. Note that
more formally, this function should be viewed as a function with domain and codomain ¥y xZ/qZ < Z/qZ,
as we want to keep track of the exponents k and £ as well. In particular, we denote xiy1,kit1,%ir1 =

f(xiv k17‘€1)

4This algorithm is proposed in [22]. Apart from the analysis of different variants of algorithms to solve the DLP, this
article also explains how some of the results can be used to improve your monopoly skills.
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Figure 6: A typical Pollard’s rho with tail length 7" and loop length L.

Starting with (o, ko, %o) = (1,0,0), we obtain the following sequence

(z0,ko,lo) = (1,0,0)

tail of length T = 4 (1, k1, 61) = (68,0,1)
(z2,k2,l2) =(23,1,1)
(z3,ks,03) = (70,1,2)
(w4, ky,ly) = (31,2,2)
(w5, ks, l5) = (48,4,4)
(w6, ke, Ls) = (63,8,8)
(x7, k7, {7) = (3,9,8)

loop of length L =9 (xs, ks, l3) = (38,9,9)
(zo, ko, ly) = (33,18,18)
(%10, k10, 410) = (10, 36, 36)
(11, k11, ¢11) = (16,36, 37)
(12, k12, 412) = (9, 36, 38)
(713, k13, £13)= (31, 36, 39)
(14, k14, l14) = (48,31, 37)

The first collision occurs at x13 = x4. This collision provides us with the identity

g2A2 =31 = g36A39 o 97 _ 92—36 — A39—2 _ A37.
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Note that 37 is invertible modulo q = 41 with multiplicative inverse 371 = 10 (mod q), hence we find
dlog,(A) = 7-10 =29 (mod gq).

In Example we followed a trivial approach to find the first collision which occurs for xp = x4 7.
We just stored all computed values x; until the collision is found. However, this approach requires a
large amount of memory which we want to avoid. A smarter strategy is needed to detect collisions. A
second open question concerns the length of the tail and the loop which determine the runtime of the
algorithm. These questions will be answered in the following theorem.

Let S be a finite set of cardinality N, and let f : S — S be a map. Consider the sequence
o, 1 = f(.’L‘()), To = f(a:l),

for some initial value zo € S.
(a) Suppose that the sequence (x;); € N has a tail of length 7" and a loop of length L. Then

To; = x; forsomel <¢<T+ L.
(b) If the map f is sufficiently random, then the expected value of T + L is

E(T + L) ~1.2533- VN

Proof. We will prove the first part, but only sketch the proof of the second part.

(a) To see this, it is easiest to look at Figure @ We have that z9; = x; for some ¢ if and only if
i>T and i=2i (mod L).

Note that the second condition is equivalent to ¢ =0 (mod L). There is precisely one value T' < ¢ <
T + L — 1 satisfying these properties.

(b) Since the function f is assumed to be random, one may view the elements zg,z1,... as random
elements chosen from S. We want to estimate the number of elements that have to be chosen until
a collision occurs. Note that this is related to the birthday paradoz. And roughly, it tells us that it
is enough to choose around v/N elements to obtain a collision with some positive probability.
The details of the proof for this part involve techniques from probability theory that are not a
prerequisite for this course. The reader is kindly referred to [I1, Theorem 4.47].

O

Using the results from Theorem [2.16] we can now formulate a version of Pollard’s rho algorithm that
has running time O(v/N) and only requires a constant amount of memory. This is made explicit in
Algorithm [2] A subtlety is the definition of a sufficiently random function f. Here, we use the function
from Eq. [2| which was suggested by Pollard. But we note that follow-up works by Teske suggest the use
of different functions with better mixing properties [32],[33]. To ease notation, we view f as a function
[Py X ZXZ — Ty xZxZ,with f(x,k,{) = (2',k',£') as defined in Equation
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Algorithm 2 Pollard’s rho algorithm

Input: g € F; with ord(g) = ¢ and A € (g)

Output: dlog,(A)
1 (x,k,¢) =(1,0,0) > initial value xg
2. (2K, 0) = (x,k,0)
3: while True do

4: (x,k,0) + f(x,k, L) > sequence element x = z;
5. (2 K0 f( KL

6: (2 K, 0) « f(a K 0 > sequence element ' = g,
7: if 2’ =z then

8: if ged(¢’ — ¢,q) = 1 then

9: return dlog,(A) = (k — k")(¢' —¢)~" (mod q)

10: else

11: go back to Line [I] and start with a different initial value.
12: end if

13: end if

14: end while

We go back to Example where we computed the structure of Pollard’s rho for the
DLP challenge with g = 4 € F§5 and A = 68. Applying Pollard’s rho algorithm (Algorithm @), we find a
collision after the 9th step, more precisely

(w9, ko, L) = (33,18,18), (x18, k18, l18) = (33,3, 27).
This provides us with the solution

dlog,(A) = (18 = 3)- (27— 9)"' =29 (mod q).

Note that as claimed in the proof of Theorem |2.16], the first collision occurs for the minimal value © with
i>T=4andi=0 (mod L =9).

2.4 Index-calculus

The algorithms discussed in Subsection [2.3] all have exponential running time. Another method, index
calculus, for computing discrete logarithms in finite fields was already mentioned in 1922 in a book
about number theory by Maurice Kraitchik [16]. Here, the word indez is just another word for discrete
logarithms.

In contrast to the previously discussed methods, the index calculus algorithm has subexponential running
time. Subexponential means that for any base b > 1, the running time 7'(z) for an instance of size z is
bounded by T'(z) < b* for all sufficiently large values of x. More precisely, the running time of the index
calculus algorithm to compute discrete logarithms in the finite field F,, is given by O(2¢vicerloglogr) for
some constant c.

One of the main ingredients for index calculus is the possibility to lift elements from the finite field F,
to the integers Z. In particular, one may lift an element = € F, to Z, perform some operations in Z
and reduce modulo p to obtain an element in F, again. This procedure is compatible with finite field
operations, in the sense that performing the same operations in F,, yields the same result.

Lift .
1—f>x€Z

| |

yel,«<——1g9cZ

reduce

A priori, computations in Z are more expensive than in F,. The advantage of the idea is that one may
exploit properties of the integers that are not present in finite fields. In the case of index calculus, one
uses the fact that Z is a unique factorization domain.
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Algorithm [3| provides a brief description of the method (following [3T, Algorithm 10.1]). As in the
previous section, we want to solve a DLP instance with g, A € F;ﬂ

Algorithm 3 Index calculus algorithm

Input: g € F; and A € (g)
Output: dlog,(A)
1: Choose a smoothness bound B and let Pg = {p1,...,ps} be the set
of primes less than or equal to B.
/*Phase 1: Relation creation in (Z/(p — 1)Z)[21, ..., xp+1]*/

2: R+ {}

3: while #R < b+ 1 do

4: e(ﬁ{l,...,pfl}

5: if g¢/A = H?Zl p;* then

6: R+ RU {6 = Z?:l €;T; + 1‘b+1}
7 end if

8: end while

/*Phase 2: Linear algebra*/
9: Solve the linear system R for z,41 € Z/(p — 1)Z.
10: if Solution for z;41 in Line [J]is unique then
11: return ;.
12: else
13:  Go back to Line 2
14: end if

In the setup for the algorithm, a factor bases Pp containing all primes less than or equal to B is chosen.
The first phase consists of finding linear relations between dlog,(A) and dlog,(p;) with p; € Pp. To
this end, one selects an integer e € {1,...,p — 1} at random and checks whether the lift of g¢/A to Z is
B-smooth, i.e. whether the factorization is of the form

b
g¢/A = pr € Z, for some exponents e; € Z.
i=1
Taking logarithms, this provides us with the linear relation

b
e —dlog,(A) = Z e;dlog, (pi).
i=1

Note that we do not know dlog, (pi) either. However, after finding enough linear relations of this form,
we obtain an overdetermined system which can then be solved using linear algebra methods. This is the
second phase of the algorithm.

The above discussion explains that the index calculus method described in Algorithm [3
works correctly. However, several details are missing in order to analyze the runtime. An important
question concerns the choice of the smoothness bound B. On the one hand, choosing B large makes
it more likely that g¢/A is B-smooth for some random integer e. On the other hand, checking that an
integer is B-smooth will be more costly. The running time of the entire algorithm will crucially depend
on this choice. More precisely, the running time depends on the following values:

o The number of required linear relations. This number is b+ 1 which is roughly b ~ B/ log B.

e The (expected) number of iterations that are needed in the while loop to find b+ 1 relations: This
number can be estimated using the Dickman—de Bruijn function which describes the asymptotic
proportion of smooth numbers.

e The time to check if a number is B-smooth (Line @ Using trial division, one would need to
perform b divisions.

5In contrast to the algorithms from Subsection here the order of g is not important for the running time of the
algorithm.
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e The cost to solve the linear system (Line@

One can show that in this setting, a choice of

B~ e1/2\/10gp10g log p

leads to a running time in
9] (62\/logplog logp)

As claimed in the beginning of the subsection, this running time is subexponential. Note that the square
root in the exponent is crucial here; without it, the expression would be exponential.

For a detailed discussion, and further improvements, we refer to [31, §10.3]

Let’s look at our running example from the previous section (Ezamples ,
where we want to compute a = dlog, (A) with g = 4,A = 68 € Fg3. As a factor base, we choose
P =1{2,3,5}.

To simulate the first phase of the algorithm, we choose random exponents e € {1,...,82} (using the
SageMath function ZZ.random(1,82) ), and check whether g¢/A is 5-smooth until we have four different
linear relations. The results are summarized in the following table. The first column contains the random
exponent e, and the second column contains the factorization of g¢/A if it is B-smooth.

exponent e g°¢/A exponent e g°/A
15 5% 31 24
59 X 33 X
60 32 17 X
7 X (72) (2%)
40 X 43 2:5

Note that the relation g™?/A = 2* does not provide any new information, since ord(g) = 41 and so
g7 = g3\, The latter exponent was already in the list.

Slightly deviating from the notation in Algorithm[3, we denote
xo = dlog,(2), x3=dlog,(3), x5 =dlog,(5), and x4 = dlog,(68).

Then the results from the table induce the following system of equations over 7. /827

15 = 2x5 + 14
60 = 213 +xa
31 = 4xo + x4

43 = x9 + Ts5+TA

Solving for x 4, we find the solution x4 =29 =70 (mod 41).

Note that the system of equations in the example is very sparse which makes it easier to solve by hand.
Indeed, this is typically the case for large parameter sets as well. In particular, one may exploit the
sparseness of the set of equations to implement the linear algebra step in Algorithm [3| more efficiently.

Using the system of equations from Example can you also solve for xo,x3 and x5 ?
Ezxplain your observations.

2.5 Diffie-Hellman for generic groups

Many of the algorithms and cryptographic constructions that we have seen are not specific to working
in a finite field, but one could formulate them for any group. In this section, let G be a group equipped
with the group operation o. The definition of the DLP (Definition [2.1)) generalizes to the group setting
as follows:
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Let g € G and A € (g). The Group Discrete Logarithm Problem (Group-DLP) is the problem of
finding an integer a such that

A=go---0g.
—_—

a times

The number a is called the discrete logarithm of A to the base g, we denote a = dlog,(A).

In analogy with the finite field setting, we use the notation

exp,(a) =go---og.

a times
Furthermore, if the context is clear, we simply write DLP instead of Group-DLP.

One can define the Diffie-Hellman protocol for any general group G. With the notation that we just
introduced, one obtains precisely the same description as in the finite field setting (see Figure [3)).

A The group G needs to be commutative so that the Diffie-Hellman protocol works correctly, i.e. the
shared keys coincide Kap = Kpa.

For cryptographic applications, we further require that exp, is a cryptographic one-way function (Defi-
nition . This brings us to the question how hard it is to solve DLP in a general group G. Algorithms
that can be used for any group G are called generic. Both, the baby-step giant-step algorithm and
Pollard’s rho algorithm from Subsection are generic. They do not use any properties specific to
finite fields. In contrast to that, the index-calculus approach uses specific properties of finite fields and
the integers, and cannot be applied to a generic group.

Moreover, we note that in an idealized model known as the generic group model, one can even show that
Pollard’s rho algorithm is optimal for generic groups [28]. Given that the index-calculus approach solves
the DLP much faster in finite fields, this motivates the study of alternative groups in cryptography which
may be closer to being generic. A widely used alternative are elliptic curve groups which will be studied
in Section [3l

3 Elliptic curve cryptography

Elliptic curves are objects coming from algebraic geometry. They play a central role in Wiles’ proof
of Fermat’s last theorem, but also find applications in computational number theory, for instance in
factoring and for primality testing. In 1985, it was first suggested by Neil Koblitz [I5] and Victor S.
Miller [20] to use elliptic curves as a replacement for finite fields in public key cryptography. Today,
these ideas are commonly used in modern cryptographic protocols.

The first part of this section provides a brief introduction to the rich theory of elliptic curves. The focus
is on elliptic curves defined over finite fields, since these are the objects used in cryptography. In the
second part, we discuss cryptographic applications.

3.1 Introduction to elliptic curves

There are different equivalent ways to define an elliptic curve. In algebraic geometry it is usually defined
as a smooth projective curve of genus one with a specified base point. We will work with the following
more concrete definition.

Let K be a field of characteristic p # 2,3. Then an elliptic curve E defined over K consists of a
point at infinity and points (z,y) in the plane satisfying an equation of the form

y* =2 +ar+b with a,b € K and 4a® + 270 # 0.
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An equation of the form y? = 22 + ax + b as in Definition is called (short) Weierstrass equation. If
one wants to work over a field K with char(K) € {2, 3}, then it is necessary to work with different types
of equations, see for example [29, Appendix A]. However, such curves will not appear in these lecture
notes.

The condition 4a3 + 27b% # 0 ensures that the corresponding elliptic curve is smooth. Associated to
this, one defines the element A = —16(4a® + 27b%) called the discriminant of E. Here the factor —16 is
necessary in order to be compatible with the definitions over finite fields of small characteristic.

Two sketches of elliptic curves defined over the real numbers R are provided in Figure [7}

(a) E1/R defined by y* = 2 — 3z + 1. (b) E2/R defined by y? =z — 2 + 2.

Figure 7: Two typical sketches of elliptic curves

Consider the curve C : y?> = 23 —3x+2. Here, 4a3+27b% = 0, hence the equation does not
define an elliptic curve. One can verify that the curve has a singularity at P = (1,0). Broadly speaking,
here this means that there are two different tangent directions in the same point. This is illustrated in
Figure[§

Let a,b € K and consider the (affine planeﬂ curve C defined by y* = x> + ax + b.

(a) Show that 4a® + 27b*> = 0 if and only if the polynomial f = 23 + ax + b has a repeated root.

(b) A point P = (xg,yo) on an affine plane curve is a singularity if and only if both partial derivatives
Of/0x and Of /Oy vanish at P; otherwise P is called a smooth point
Use this definition and part (a) to show that all points P on C' are smooth if and only if 4a®+27b% # 0.

6We do not use the word elliptic curve here, since it is not required that 4a® + 27b% # 0 in this exercise.

Figure 8: The curve C' : y? = 23 —3x+2 (solid blue) and the tangent lines at the singular point P = (1,0)
(dashed orange)



3.1.1 Points on elliptic curves

Let E be an elliptic curve defined over K. Depending on the applications, we consider only the points
with coordinates in the base field K, or points with coordinates in the algebraic closure K, or points
living in some intermediate field K C L C K.

Let E : y? = 23 4+ ax + b with a,b € K be an elliptic curve. For any field extension L/K, the set

E(L) = {00} U{(u,v) C L? | v* = u> + au + b}

affine points

is called the set of L-rational points of E. We denote by #FE/(L) is the number of L-rational points
of E, and we say that #FE(K) is the order of E.

The structure of the points of an elliptic curve very much depends on the underlying base field.

(b)

(c)

(a) First consider the curve By : y*> = 23 — 3z + 1 from Figure . Over R, there are
infinitely many points. For example:

0o, Py =(0,1), P, = (—1,V3), Ps = (2,V/3), Py = (3,V19),...

Indeed, we may just evaluate the right hand side, f(x) = a3 — 3z + 1, at an arbitrary value xo, and
as long as f(wo) is positive, there is a solution y3 = f(zo) in R.

Note that we typically sketch elliptic curves over R, even if we are more interested in different base
fields for number theoretic or cryptographic applications.

Now consider the same equation defined over the rationals, i.e. Ey : y*> = 23 — 3z 4+ 1 over Q.
The first two points of the above list are also defined over Q, and we can easily find a third one:
(O’ _1) € E(Q)

Are there more Q-rational points? The answer is yes, there are even infinitely many Q-rational
points. Here are some more examples (that become increasingly more difficult to find by simple

guessing):

9 19 —152 107 12033 —854783

4’8 )7 81 729/ 5776 7 438976 )’
Not any elliptic curve has infinity many Q-rational points. For instance consider Eo : y? = 23 —x+2
from Figure[7TH Over R there are still infinitely many points, but there is only one Q-rational point:
E5(Q) = {oo}.
In this course, we cannot prove the statements made in this part of the example. The reader interested
in learning more about elliptic curves over Q is referred to [29, Chapter VIII]

Let us now turn to finite fields. We consider the elliptic curve Ey : y?> = 23 — 3z + 1 defined over the
finite field F15. In this case, there are certainly only finitely many points in E1(F13). By trying all
possible x-coordinates and solving for y, one can check that there are exactly 19 different points, i.e.
#E,(F3) = 19.

Ey(Fy3) = {0, (0,1),(0,-1),(1,5),(1,-5),(2,4),... }

A plot of these points is provided in Figure [9

Where is the point at infinity coming from and why do we need it? Roughly speaking,

this is a way to “compactify” the elliptic curve. In order to answer this question more rigorously, some
algebraic geometry is required. An elliptic curve is a planar, projective curve, i.e. it is defined by a
homogeneous polynomial F in the projective plane P2,

o The set of points of the projective plane, P?(K), consists of all non-zero elements (X,Y,Z) € K3
modulo the equivalence relation (X,Y,Z) ~ (AX,\Y,\Z) for any \ € K. The equivalence class of
(X,Y,Z), i.e. a point of P2(K), is denoted by (X : Y : Z).

e A plane projective curve C' is defined by a homogeneous polynomial F' € K[X,Y, Z]. Homogeneous
means that all monomials have the same degree. Points with coordinates (x :y : 1) € C(K) are
called affine points, and points with coordinates (x : y:0) € C(K) are called points at infinity.
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Figure 9: Elliptic curve Ej : y? = 23 — 3z + 1 over Fy3 from Example

In our setting (char(K) # 2,3), an elliptic curve is then defined by the equation
E:Y?Z=X*+aXZ?+b2° inP%

The affine points (x : y : 1) just correspond to the points satisfying the (affine) equation y* = x> +ax +b
as in Definition . Further, one can check that there is exactly one point of the form (x : y : 0); the
point at infinity:

co=(0:1:0).

For more details, we refer to [34, Section 2.3] which provides a very accessible explanation of this topic.

3.1.2 The group law

The points on an elliptic curve form a group. This is something very special, and indeed elliptic curves
are the only algebraic curves that enjoy this property. The idea behind the group law is natural from
an algebraic geometry point of view. It follows from the theory of divisors which will not be discussed
in this course. Instead, we work with a more explicit description of the group law.

Let E : y? = 23 4+ ax + b be an elliptic curve defined over K with char(K) # 2, 3.

For P, = (z1,v1), P» = (2,92) € E(K), define P, + P, = Py = (x3,y3) as follows.

(a) If 21 # x9, then (z3,y3) = (M? — 21 — o, m(x1 — 23) — Y1) With m = et

3:v?+a
2y1

(b) If 21 = x5 and y; = ya # 0, then (z3,y3) = (Mm? — 221, m(x1 — x3) — Y1) with m =
(¢) If x1 = x5 and y1 # y2 or y; = yo = 0, then P; + Py = oo.

Moreover, we define P + co = P for any point P € E(K). Then (E(K),+) is an abelian group
with identity element oo.

Proof. First note that swapping the points P; = (x1,y1) and Py = (22, y2) in the definition of “+” above
does not change the formulas, hence the law is commutative. To see that it is indeed a group law, we
need to show the existence of a neutral element, inverses and associativity.

e neutral element: By definition, we have that P + oo = P for any element P € E(K), hence the
point at infinity is the neutral element.

o cxistence of inverses: Let Py = (x1,y1) € E(K), then its inverse is given by —P; = (21, —y1). To
see this, first note that (z1, —y1) is a point on E as well. To compute (x1,y1) + (1, —y1), one then
applies the law in (¢) which yields oo.

e associativity: Showing that the group law is associative can be done in a rather tedious compu-
tation involving several case distinctions. One may use a computer algebra system to verify the
associativity symbolically. Explicitly, this strategy is implemented and explained in a SageMath
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worksheet in [31, Lecture 2]. The proof becomes much more elegant if one were to use the theory
of divisors. However this is out of the scope for this course, and we refer to [29, Section III.3.4] for
a proof using these techniques.

O

We defined the group law for points in the algebraic closure K. Note that adding two K -rational points
P, P, € E(K), we have P, + P, € E(K) as well. This means that F(K) is a subgroup of F(K), and
in particular a group itself. Similarly, for any field extension L/K, the L-rational points E(L) form a

group.
Consider the curve Ey : y?> = 2 — 3z + 1 over Q from Ezample (b). We have seen
9 19
P =(0,1 P=|(-,—
1 ( 5 )7 2 (47 S )
are points in E(Q). To compute Py + Py, we apply the law from Theorem . Here, the first rule applies
since x1 =0 # 9/4 = z9. And we find

that

2-1 11
m = = —
§-0 18
_ (Y9 o1
AT 417 81
_ My o152 _ 107
Y3798 18 729°
hence 152 107
Pi+P=—=— .
1 ( 81 ’729)

Note that this is one of the other points from the example. Moreover, you can check that in this example
Py + Py = P, applying the second rule of the law in Theorem [37 And indeed, the way we found the
different points in Example (b), was by repeatedly adding (or subtracting) the point Py to the known
points. That is to say all the points in the example are multiples of P;.

The group law has a nice geometric interpretation. To add two points P # @Q on an
elliptic curve E : y?> = 23 + ax + b, one may proceeds as follows:
1. Draw a line L through P = (z1,y1) and Q = (x2,y2).
2. The line L intersects the elliptic curve E in a third point, R.
3. Then P+ Q = —R.

We discuss the different steps in detail for the generic case, and provide a brief description for the
remaining special cases.

In the first step, since P # @Q, there is a unique line though the two points. This line is defined by the
equation
L:z(y2 —y1) +y(@1 — 22) = 21y2 — T2y1-

Generic case: x1 # xo (case a). In this case, we can write the equation for L as

_ o
L:y=m-z+c, withm=2"% ,_ D127 1201
Xr1 — T2 T — To

In particular, the slope m coincides with the value for m in the theorem. In the second step, we compute
the intersection E N L. For the generic case (a), we find

R = (x3,y3) € EN Ly
@y%zx%—i—axg—i—b and ys = mxs + ¢

@(mx3+c)2:x§+ax3+b and y3 = mxs + c.
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It remains to solve the equation (mx + c)? = ® + ax + b for x. Here, we can use that we already know
two solutions: x1, T2, hence

23 —m22? 4 (a — 2me)z + (b— ) = (v — z1) (2 — 22)(z — x3).
Comparing coefficients (here the coefficient of x2), we find x3 = m?
the equation defining L4, we obtain

—x1 —xo. And substituting this into

ys =mas +c=ma3+ (y1 — max1) =m(xs —x1) + y1.

The last step then outputs P+ Q = (x5, —ys3) which coincides with the statement in the theorem.
Case (c) On the other hand, if x1 = xo (case c), then the equation for the line L simplifies to

T1Y2 — T2Y1

Liy:x=
(<) Y2 — Y1

Recall that we assumed P # @Q, hence yo # y1 here. One can now check that the only two affine
intersection points are given by Py and P,. However there is a third intersection point at infinity. To
see this, one needs to work with the equations in projective space as in Remark[3.6|

Case (b) It remains to cover the case where P = @Q = (x1,y1). In this case the first step (drawing a line

through P and Q) has to be understood as drawing the tangent to E at P. The slope of this tangent line

L 322 o . . . .
is given by m = it - Now the remaining steps can be performed in a similar way as in the generic
2y1

case, and one obtains the formula in Theorem[3.7}

An illustration of the geometric interpretation of the group law by means of Example[3.§ is provided in

Figure[10

(a) Addltlon P1 + PQ (b) Doubling P1 + P1
Figure 10: Geometric interpretation of the group law as in Remark for the elliptic curve E; : y? =
2% — 3z + 1 from Example

3.1.3 Scalar multiplication and torsion

Given that we can add points on an elliptic curve, we can also multiply them by a scalar N € Z.
Implicitly, this property was already used in Example
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Let E be an elliptic curve over K, and N € Z an integer. We denote

[N]: E(K) = E(K), P+sP+---+P,
| S ——
N times

for the scalar multiplication by N.

Consider the elliptic curve E : y?2 = 23 — 3z + 1 defined over Fy3 from Ezample (c),
and let

P, =(0,1) € E1(Fy3).
(a) Compute [2] - Py. Is there any relation to the point Py from Example ?
(b) Compute [12] - P1. Try to use as few elliptic curve additions as possible.

Given an elliptic curve E over K, a point P € E(K). Show that for any N € 7Z, one

can compute [N|P € E(K) using at most 2 -log,(N) elliptic curve additions (a doubling [2]P is counted
as one addition P+ P).

Points on an elliptic curve can have finite order. More precisely, when multiplying a non-zero element
P € E with an integer N, it can happen that [N]P = cc.

Let E be an elliptic curve over K, N > 1 and integer. The group of points of order N is denoted
by

E[N]={P € E(K) | [N]P = x}.
We say that E[N] is the N-torsion group of E.

First, note that E[N] is indeed a group. This follows from the commutativity of the group law on FE.
Second, we want to point out that the notation E[N] refers to the torsion points over the algebraic

closure of the base field. If one wants to only consider the K-rational N-torsion points, the notation
E(K)[N] C E[N] is used.

Let E be an elliptic curve over K and N > 1 an integer.
1. If char(K) = 0 or char(K) = p with pt N. Then
E[N] = Z/NZ x Z/NZ.

2. If char(K
(i) E[p*]
(ii) Elp*]

p > 0, then one of the following is true:
{oo} for all &k > 1.
Z/p*Z for all k > 1.

R IR

Proof. The proof is beyond the scope of this lecture. We refer to [29, Corollary 111.6.4]. O

Let E : y?2 = 2% + ax + b be an elliptic curve defined over K, and denote
23 tar+b=(r—ay)(r—az)(r —az)
with a1, s, as € K. Note that the oy are pairwise distinct as per Exercise . The points

P, = (a;,0) € BE(K) fori=1,2,3,

are 2-torsion points (Case (c) of the addition law from Theorem . It follows from Proposition
that

E[Q] = {OO,Pl,PQ,Pg} = <P1,P2>.
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Note that you can also verify explicitly that P, + P> = P3 using the group law.

3.1.4 Elliptic curves over finite fields

In cryptography, we work with elliptic curves defined over a finite field. In this context, p will always
denote a prime number and F,, is a prime field, whereas ¢ denotes a prime power, i.e. ¢ = p* for some
positive integer k£, and I, is the finite field with ¢ elements[]

An elliptic curve defined over a finite field, only has a finite number of points. Even the (affine) plane
over a finite field F, only has ¢* points, and the affine points on an elliptic curve are a subset of these.
This provides us with some very rough bounds on the number of points on an elliptic curve E/F,

L <#BE(F,) <1+¢%

We can make this more precise by noting that for a given z-coordinate zo € Fy, the equation y* =
23 + axg + b can have at most two solutions yo and —yo in [y, hence

1 <#E(F,) <1+2q.

This is made much more precise in a theorem by Helmut Hasse from 1936 [10].

Let E be an elliptic curve over a finite field F,. Then

q+1-2/g< #E(F,) < q+1+2q.

The proof of Hasse’s theorems requires some more advanced knowledge about elliptic curves, and we will
not discuss it here.

For some elliptic curves, it is even possible to provide an explicit formula for the number of points
depending on the prime p. An example for such a formula is provided in Lemma [3.17 We note that
there are no such formulas for arbitrary elliptic curves, but there exists an efficient algorithm, the Schoof-
Elkies—Atkin (SEA) point counting algorithm, which can be used to count the number of points of an
elliptic curve over a finite fields.

Let p=2 (mod 3) be a prime , and consider the elliptic curve E : y? = 23 + 1. Then

#E(Fp) =p+1

Proof. In order to find all points on an elliptic curve, our strategy was to try different z-coordinates
zo € F, and then check whether x3 + azo + b is a square, which then yields a point (xo,y0) € E(F,)
(Example (c)) In this proof, we will instead consider different y-coordinates yg, and check whether
23 = y2 — 1 has a solution, i.e. we check whether y2 — 1 is a cube.

Which elements in F), are cubes? Since, p = 2 (mod 3), all elements are cubes! To see this, first note
that, 0 = 0% is a cube. Now let g € F , then

h=g=1D/3 ¢ Fpe

is a cube root of g. This is well-defined: 2p — 1 = 0 (mod 3), hence we can divide by 3. And one can

check that 5
B3 — <g(2p71)/3) — gl = 2D

Further note that every element in I, has a unique cube root, since the map = — 2% is a homomorphism
with domain and codomain F, and we have just shown that it is surjective.

7We highlight this here, because this is completely unrelated to the notation p = 2¢ + 1 that was used in Section
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In conclusion, for each yo € F,, there exists a unique x¢ € F,, so that (zo,y0) € E(F,). This means that
E has p affine points. Adding the point at infinity, we find

#E(Fp) =p+ 1.
O

Since elliptic curves over finite fields are finite groups, all points are torsion points (Definition [3.13). We
can use Proposition to analyze possible group structures.

Let E be an elliptic curve over IFy. Then
EF,) 2 Z/N1Z x Z/N2Z

for some integers N1, Ny > 1 and Ny | N;.

Proof. The group E(F,) is finite. Let N = #E(F,). Then it holds that [N]- P = oo for every element
P € E(F,), in particular
E(F,) C E[N].

Recall from Proposition that E[N] is of rank at most 2. More precisely, if ged(N,q) = 1, then
E[N|=Z/NZ xZ/NZ. Any subgroup of the latter is of the form Z/N1Z x Z/N5Z with N1, Ny | N, and
N | Ny.

Now if ged(N, q) = p* for some k > 1, write Ny = N/p*. Then
V] = ZNoZ x Z./NoZ,
| Z/NZ x Z/NyZ.
In both cases, any subgroups are of the form Z/N17Z x Z/N>Z for some N1, No | N, and N | Ny. O

Consider E/F5 defined by y*> = x3 — z. One can check that E(Fs) = Z/AZ x 7./27.
More precisely, we have

E(Fs) = ((3,2),(1,0)), with ord((3,2)) = 4, ord((1,0)) =
Let us verify the first part explicitly, i.e. ord((3,2)) = 4. To do this, we compute [i] - (3,2) for [i] € N

until we obtain oo. First [1]-(3,2) = (3,2) # oco. Then we compute [2] - (3,2) as (3,2) + (3,2) (this is
the second case in Theorem . We find

3-32-1
m:ﬁ:—l, r3=(-1)*-2-3=0, yz3=-1(3-0)—-2=0,

i.e. [2]-(3,2) = (0,0).
Neat [3] - (3,2) is computed as (0,0) + (3,2). This is the generic case, and we find

m=-——=4, x3=4>-0-3=3, y3=4(0-3)-0=3,

ie. [3]-(3,2) = (3,3).
Finally, we compute [4]-(3,2) as (3,3)+(3, ) This is the third case in Theorem[3.7, hence (3,3)+(3,2) =
(

00, and we have shown that ord((3,2)) =

Determining the group structure for elliptic curves over Q is more complicated, and we
will not answer this question in this course. For completeness, we want to mention that for the curves

in Example (part b), it holds that
Ei(Q)=Z, FE(Q) ={0}.

In general, one can show that E(Q) is finitely generated (Mordell-Weil Theorem), and there exist precise
statements about possible group structures (Mazur’s theorem), see [29, Chapter VIII].
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Let p > 3 be a prime, and consider the two elliptic curves
E:y?>=2>+az+0, E:y =24ax—b
defined over IFp,.

(a) Assume that p=1 (mod 4). Show that #E(F,) = #E(F,).
(b) Assume that p =3 (mod 4). Show that

#E(Fp) + #E(]Fp) =2p+2.

Here are some hints/questions that will help find the solution:
o Is —1 a square in F,?

e Let P = (z0,y0) € E(F,). Is there a point P = (x0,%) € E(F,)? What about P = (—xg,%)?

3.2 The elliptic curve discrete logarithm problem ECDLP

For our cryptographic applications, we want to use scalar multiplication on elliptic curves as a one-way
function, replacing the modular exponentiation from the previous section. We have already seen that
scalar multiplication can be evaluated efficiently (Exercise using a double and add strategy. For
this to be a cryptographic one-way function, we further require that the inversion of scalar multiplication
is hard. This is formalized in the problem below.

Let P € E(K) be a point on an elliptic curve E, and let Q € (P). The Elliptic Curve Discrete
Logarithm Problem (ECDLP) is the problem of finding an integer n, € Z such that [n,|P = Q.
The number n,, is called the discrete logarithm of @ to the base P, we denote n, = dlogp(Q).

The expression discrete logarithm in used in analogy to the definitions of DLP and Group-DLP, even
though the group operation on elliptic curves is usually denoted additively.

To obtain a key exchange protocol based on this one-way function, we may simply replace all exponen-
tiations in the Diffie-Hellman protocol (Figure |3)) by elliptic curve scalar multiplications. We call the
resulting protocol the Elliptic Curve Diffie-Hellman key exchange. Explicitly, this is sketched in Figure

11
A \ ;
— b Y

Alice Bob
(nb - Z)
A+ n,P B <+ [m|P
— B Kpa < [m]A

Figure 11: Elliptic Curve Diffie-Hellman key exchange for some public parameter P € E(F,)

Similarly, the ElGamal encryption scheme (Figure [4) may be instantiated with elliptic curves, but we
don’t make this explicit here.

The important question to study now is the hardness of the ECDLP for different choices of elliptic curves
FE and points P € E.
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3.2.1 Generic methods to solve ECDLP

Clearly, the hardness of the ECDLP depends on the order N = ord(P). Moreover, the Pohlig-Hellman
algorithm (Exercise may be applied to this setting as well. Therefore, we prefer to work with a point
P of prime order.

As we already mentioned in Subsection the baby-step giant-step algorithm and Pollard’s rho algo-
rithm are generic algorithms and can be used to solve the Group-DLP in any group G. In particular,
they can be used to solve the ECDLP in time O(v/N), where N = ord(P).

Let’s sketch the adaption of Pollard’s rho algorithm (Algorithm [2|) to the setting of elliptic curves. The
main ingredient is a map
f:(PYXZXZ— (P)XZXxLZ

which satisfies the properties of Theorem To do this, one may choose a splitting X; U Xo U X3 =
(P) C E(F,) into sets of approximately equal size. For instance, one can achieve this by imposing
conditions on the z-coordinate of a point. Then the function f is defined as

[K]P+[(+1]A if Re Xy,
fiR=[KP+[()Q = R ={ [2k]P+[20]A ifR€ X,,
[k+1]+[JA ifRe Xs.

To apply Theorem and show that the resulting algorithm solves ECDLP in time O(v/N) (using
only a constant amount of memory), we need to rely on the heuristic assumption that f behaves like a
random function.

On the other hand, the index calculus method (Subsection is specific to solving the DLP in finite
fields, and does not apply to the ECDLP.

3.2.2 Weak parameters for the ECDLP

The generic attacks mentioned in Subsection are asymptotically the best known attacks to solve
the ECDLP on an arbitrary elliptic curve. However, several better algorithms are known that only apply
to specific parameters. Here, we provide a non-exhaustive list of choices that should be avoided (or at
least require a larger group order), and provide a reference to the known attacks that apply in these
cases. For this purpose, denote P € E(F,) for some elliptic curve E, some prime power ¢ = p*, and
ord(P) = N.

1. N is smooth: In this case, the Pohlig-Hellman algorithm can be applied. The difficulty of solving
ECDLP only depends on the largest prime factor of N (see Subsection [3.2.1)).

2. ¢ =1 (mod N) for some small d: The minimal integer d with N | ¢ — 1 is called the embedding
degree of N. The ECDLP for E/Fq can be reduced to the DLP in ]F;d. Recall that the latter can
be solved in subexponential time in the size of the field F a (Subsection [2.4). If d is small, then
this provides us with a subexponential attack for ECDLP. The attack was discovered by Alfred
Menezes, Scott Vanstone and Tatsuaki Okamoto [19], and is known by the name MOV attack. We
will provide a more detailed description of the attack in Subsection [3.3

3. N = p: An elliptic curve with E(F,) = p is called anomalous. In this case, the ECDLP can

be reduced to computing the Group-DLP in the additive (!) group (F,,+) which can be solved
in polynomial time. This attack was presented in concurrent articles by Takakazu Satoh and
Kiyomichi Araki [24], Igor Semaev [25] and Nigel Smart [30].
Interestingly, the attack relies on some abstract concepts in the theory of elliptic curves: One needs
to consider a lift of the elliptic curve to the p-adics @), and perform computations in the formal
group. The mathematical prerequisites for understanding this attack can be found in [29, Chapter
VIIJ.

4. q = p” for k > 2: There are several attack strategies to solve the ECDLP faster than with a generic
algorithm when the finite field Iy is not a prime field. The first one, was introduced by Gerhard
Frey [6] who had the idea to use Weil descent in order translate the discrete logarithm problem for
E over F, to a Group-DLP on a higher dimensional abelian variety over F,.

In a similar gist, Gaudry developed a variant of the index-calculus attack with factor base the set
of points {P = (z;,y;) | ®i € Fp}, [9]. For fixed k, the complexity of the resulting algorithm is
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O(p2_2/ k) which is better than Pollard’s rho approach when k > 2. There are many interesting
follow-up works of these two papers.

We would like to highlight that the mathematics underlying the attacks of the ECDLP problem are
significantly more advanced than the mathematical prerequisites necessary to construct the elliptic-curve
Diffie-Hellman scheme. It is fascinating that some fairly abstract concepts from algebraic geometry find
such concrete and practical applications in the analysis of modern cryptographic protocols.

3.3 The MOV Attack

The main ingredient for the MOV attack are bilinear pairings on elliptic curves. A pairing takes as
input a pair of elliptic-curve points (P, Q), and outputs an element e(P, Q) € F,, where F, is the field
of definition of the elliptic curve E. Here, bilinear means that it is linear in each variable. The general
idea of the MOV attack is to use this pairing for a translation of the ECDLP on F to a DLP problem in
Fyn, for some n.

Let E over I, be an elliptic curve, and N € Z an integer coprime to char(K) = p. Further let
pun C F, be the group of N-th roots of unity. Then there exists a pairing

en : E[N] x E[N] = pn

which is
(a) bilinear:
en(P1+ P2, Q) = en(P1,Q)en (P2, Q).
(b) alternating:
EN (P, P) = I,

(c) nondegenerate:
If ey(P,Q) =1 for all P € E[N], then @Q = 0.

We note that [29, Proposition I11.8.1] is more explicit, it shows that these properties are true for a specific
pairing, the Weil pairing.

Let eny : E[N] x E[N] — pun be a pairing satisfying the properties from Proposition
[3.23 Show that

eN(P7 Q) = eN(Q>P)_17
for all P,Q € E[N].

The definition of the Weil pairing requires knowledge of algebraic geometry, in particular the theory of
divisors. We refer the interested reader to [II Section 5.8] or [29] Section IIL.8]. In the following, we will
only describe an algorithm to compute the Weil pairing efficiently (without proving that it is correct).
But let us first study the case N = 2, where the Weil pairing can be described explicitly.

Let E : y?> = 23 + ax + b be an elliptic curve over F,, and denote
P tar+b=(z—o)(r—az)(z—a3) overF,.
Recall from Ezample that the 2-torsion is given by
E[2] = ((a1,0), (a2,0)).

We denote
Py =00, Py =(01,0), P»=(a20), P3=(a3,0).
Then the pairing
es : E[2] x E[2] — {£1},
1 4fi=jor0e{ij}
—1 otherwise

(Pivpj)*_){
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satisfies the properties from Proposition|3.25, i.e. it is bilinear, alternating and nondegenerate.

In the general case, the Weil pairing can be computed using Algorithm

Algorithm 4 Computing the Weil pairing with Miller’s algorithm

Input: P,Q € E[N]
Output: ex(P,Q) € un

A question that we have not discussed so far concerns the embedding of the N-th roots
of unity into F,. What is the smallest field F,a containing pun? Recall that IFZd s a cyclic group of order
q® — 1, hence it contains an element of order N if and only if N | ¢ — 1. The smallest value d with this
property is called the embedding degree of N in .

Moreover, one can show that even all N-torsion points are defined over Fya, when N | q* — 1 and
ged(N,q —1) =1, i.e. E[N] C E(Fya) [29, Lemma X1.6.2].

We are now ready to define the MOV algorithm (Algorithm .

Algorithm 5 The Menezes-Okamoto-Vanstone (MOV) algorithm

Input: P,Q € E[N] with E/F, and ged(¢ —1,N) = 1.
Output: g, A € F;, with dlog,(A4) = dlogp(Q).

Let E/F, be an elliptic curve, N with ged(¢ —1,N) =1, P € E(F,)[N] and Q € (P), and let d
be the embedding degree of N in F,. Then Algorithm |§| reduces the ECDLP for P and @ to a
DLP in F#,.

q

3.4 Invalid curve attack

The invalid curve attack is a type of attack on the elliptic-curve Diffie-Hellman protocol that cannot be
avoided by a good choice of parameters. Instead, it requires either a (small) change in the protocol, or
a more clever implementation. This type of attack was first proposed by Ingrid Biehl, Bernd Meyer and
Volker Miiller in the year 2000 [2].

Assume that
E:y =a2>+ar+0b over IF,

and P € F, with ord(P) = N are well chosen parameters for an elliptic curve Diffie-Hellman key
exchange. Further let

B y*=2+ar+bV overF,
be another elliptic curve which has a point P’ = (2/,y’) of order m with 1 < m <« N. Consider the
scenario sketched in Figure

A
Pl
\ )
Alice Mallor
P’ € E'|m]
A+ P fori=1,...,m:
— P’ K; = [i|P’

Figure 12: Invalid curve attack with public parameters P € E(IF,)
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Alice thinks she is communicating with Bob, and performs all computations as usual. On the other side,
there is a malicious member (Mallory) who instead of sending an honestly generated public key, sends
the point P’ to Alice. Alice does not notice that P’ ¢ E(F,). Note that the addition and doubling
formulas are the same on the curves F and E’. They only depend on the coefficient a, and not on the
constant term b (cf. Theorem [3.7)). This means that Alice computes the value

KAB = [na]P’ S <Pl> C E'[m]

Since the order ord(P’) = m is small by assumption, Mallory can compute all possible shared keys
K, =[1]P,...,K,, = [m]P’ and simply test which one is correct (for example when Alice uses the key
to encrypt a message). This reveals Alice’s secret key modulo m. Repeating the attack modulo enough
small values m;, Mallory can recover the entire secret key n, (mod N).

Clearly, for a secure key exchange, it is necessary to thwart such an attack. We describe two potential
counter measures:

e Public key validation: An easy way to avoid these kind of attacks is to check if the public key
is a valid point on the curve. Explicitly, in the scenario in Figure [I2] upon receiving the point
P’ = (¢, y') from Mallory, Alice would check whether P’ is on the curve E or not. In the sketched
scenario, she would find that

y’2:x’3+az/+b’7éz/3+a:c’+b,

since b # b', and abort the key exchange. At the expense of a few additional computations, this
completely prevents the invalid curve attack.

e z-only arithmetic Another solution is that Alice and Bob represent their public key point B =
(p,yp) and A = (z4,ya) only by their z-coordinates, 24 and xp respectively. Note that the
z-coordinates defines the elliptic curve point up to a sign. This means that using only the x-
coordinate, Alice and Bob can compute Kap = Kpa = (xap,yap) up to a sign, in other words,
they would use the xz-coordinate x o as the shared key. How can they perform these computations?

— Say Alice receives Bob’s public key zp. She can then compute the possible y-coordinates
by solving +yp = /2% +axp +b. She has no way of knowing which of yp and —yp is
the correct solution, but she may just proceed with any of the two solutions to compute
K'p = (xaB,yyp) with the usual formulas. The resulting x4p does not depend on the
choice of +yp.

Note that taking square-roots is a relatively expensive computations, and for an efficient
implementation, it is not a good idea to use this approach.

— The z-coordinate x4p can be computed more efficiently. Phrased more abstractly, we just
saw that scalar multiplication is well-defined on the level of z-coordinates. One can show that
there exist explicit formulas that given the z-coordinate x(P) of a point P and an integer m,
output the z-coordinate z([m|P) (see also Example and Exercise [3.30). This concept is
known under the name x-only arithmetic. Indeed, it turns out that in practice using xz-only
arithmetic is often faster than using the “normal” addition formulas. Note that the latter is
independent of the invalid curve attack and thwarting this attack is just an additional benefit
of using x-only arithmetic.

Even though this attack was already discovered in the year 2000, there were still some more recent
implementations that did not use any of the above mentioned countermeasures which lead to serious
security vulnerabilities in real-world applications, see for example [12].

Let E : y?> = 23 +ax +b be an elliptic curve over some field K, and let P € E(K)\ E[2].

Then

(3z(P)? + a)?

a)
2|P) = -
“(2IP) = 1G(PY T ax(P) 5 1)
As before, x(P) denotes the x-coordinate of P, and x([2]P) is the x-coordinate of the point [2]P. Simi-
larly, we also denote y(P) for the y-coordinate.

The formula is deduced from Theorem (case (b)). Note that we replaced y(P)? in the denominator
of m? by x(P)? + ax(P) +b.

— 2z(P).
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While scalar multiplication is well-defined on the level of x-coordinates, this is not true

for point addition. For instance assume you are giwen xp = x(P), xqg = x(Q) for some points P,Q €
E(F,) \ E[2] with P # Q. There are two possible points with each given x-coordinate. Denote

P+ = (va"’_yP)v P = (xPa _yP>7 Q+ = (xQ7+yQ)a Q_ = (.IQ, _yQ)

Using the formulas from Theorem we observe that

(PP 4+ QN =2(P +Q ) #2(Pt+Q )=2(P +Q").

There is no way of knowing which of the results is correct.

Let E : y?> = 2® + ax + b be an elliptic curve. Find a formula that computes x([3]P)

from x(P) and the curve constants a,b.

4 Isogeny-based cryptography

Will follow soon
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