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Quantum computers and cryptography

What is a quantum computer?
• based on quantum mechanics
• superposition and entanglement of

elements
Does it work?
• small scale prototypes (Google, IBM, ...)
• unclear when/if a practical quantum

computer will exist
(startup: Alice & Bob)

Consequences for cryptography

• Peter Shor (1996): Integer Factorization and DLP can be solved
on a quantum computer in polynomial time

⇒ Practical quantum computers would make today’s public key
cryptography insecure.
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Post-quantum cryptography

Development of cryptography that is secure against attacks from
quantum computers

Candidates for post-quantum cryptography

• Lattices
• Codes

• Multivariate
polynomials

• Hash functions

• this lecture : Isogenies

Isogeny-based cryptography: based on
the hard problem of finding isogenies be-
tween (supersingular) elliptic curves

ϕ

outline: (1) group actions, (2) isogenies, (3) CSIDH
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Cryptographic group actions



Group actions and key exchange

Group action

A map ⋆ : G×X → X , with G a group, X a set:
1. id ⋆x = x ∀ x ∈ X (identity),
2. (g ◦ h) ⋆ x = g ⋆ (h ⋆ x) ∀ g,h ∈ G, x ∈ X (compatibility).

• regular if for all x, y ∈ X , ∃ unique g ∈ G with y = g ⋆ x
• commutative if G is commutative

Group action Diffie-Hellman key exchange

Alice
(ga ∈ G)

xA ← ga ⋆ x0

Bob
(gb ∈ G)

xB ← gb ⋆ x0

xAB ← ga ⋆ xB xBA ← gb ⋆ xA

xA
xB

• Commutative group
action ⋆ : G×X → X ,
and some x0 ∈ X

• Secret keys: ga,gb ∈ G

• Public keys: xa, xb ∈ X
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Examples of group actions

(a) G = (Z/(p− 1)Z)∗ and X = F∗
p

⋆ : (Z/(p− 1)Z)∗ × F∗
p → F∗

p, (n, x) 7→ xn.

• identity: 1 ⋆ x = x1 = x for all x ∈ F∗
p .

• compatibility: (n1 · n2) ⋆ x = x(n1·n2) = (xn2)n1 = n1 ⋆ (n2 ⋆ x) for all
n1,n2 ∈ (Z/(p− 1)Z)∗ and x ∈ F∗

p .

⇒ Diffie-Hellman (Lecture 2)
(b) G = (Z/NZ)∗ and X = ⟨P⟩ ⊂ E(Fq) with P ∈ E(Fq), ord(P) = N:

⋆ : (Z/NZ)∗ ×X → X , (n,Q) 7→ [n] · Q.

• identity: 1 ⋆ Q = [1]Q = Q for all Q ∈ G,
• compatibility: (n1 · n2) ⋆ Q = [n1 · n2]Q = [n1] ([n2]Q) = n1 ⋆ (n2 ⋆ Q)

for all n1,n2 ∈ (Z/NZ)∗ and Q ∈ E(Fq).

⇒ Elliptic curve Diffie-Hellman (Lectures 3/4)
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Cryptographic group actions

When is a group action ⋆ : G×X → X useful for cryptography?

• Application of ⋆ should be a cryptographic one-way function:
• Evaluating g ⋆ x is efficient for all g, x (we say ⋆ is effective1)
• GADLP is hard Given x, y ∈ X , find g ∈ G with y = g ⋆ x.

Note: g is unique if ⋆ is a regular group action.
• Group action is commutative (depending on application):

• Requirement so that group action Diffie-Hellman (slide 3) works.
• There are other cryptographic protocols that work with

non-commutative group actions.
lattice isomorphism, code-equivalence, tensors

1Actually, more properties are required: group operation is efficient, sampling is
efficient, etc.
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Hardness of the GADLP

Classic attacks
Can we translate attacks on Group-DLP to solve GADLP?

x does not work for all algorithms, e.g. Pohlig-Hellman algorithm
⇒ GADLP does not get easier when N = #G is composite.

✓ works for some algorithms, e.g. baby-step giant-step algorithm
(Exercise)
⇒ We can solve GADLP in time O(

√
N) where N = #G.

Quantum attacks
Best known attacks from the literature

x Shor’s algorithm to solve Group-DLP quantum polynomial-time
cannot be translated to solve GADLP.

✓ Algorithm by Greg Kuperberg (2005): subexponential in N = #G
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Isogenies



Definition of isogeny

Isogeny

E, E′ elliptic curves over k. An isogeny is a
non-zero non-zero rational map ϕ : E →
E′ that induces a group homomorphism
E(k̄)→ E′(k̄).
E and E′ are called isogenous.

ϕ

• rational map: (here) ∃ ϕx(x, y), ϕy(x, y) rational functions so that

ϕ : (x, y) 7→ (ϕx(x, y), ϕy(x, y))

for all but finitely many points (x, y) ∈ E(k̄).
• non-zero: exclude map ϕ : E→ E′, ϕ : P 7→ ∞.
• group homomorphism: ϕ(P+ Q) = ϕ(P) + ϕ(Q) for all
P,Q ∈ E(k̄).
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Example: scalar multiplication

Let N ∈ Z \ {0}, and E : y2 = x3 + ax+ b an elliptic curve, then scalar
multiplication by N

[N] : E→ E, P 7→ [N]P

is an isogeny.

✓ rational map: can be deduced from the group law.
✓ non-zero: since N ̸= 0
✓ group homomorphism follows from the group law on E.

Case N = 2 Let P = (x1, y1), then [2]P = (x3, y3), where x3 = m2 − 2x1
and y3 = m(x1 − x3)− y1 and m = (3x2

1 + a)/(2y1) (Theorem 3.7(b)).
• x3 = ϕx(x1, y1) =

x4
1−2ax2

1−8bx1−a2

4(x3
1+ax1+b)

,

• y3 = ϕy(x1, y1) =
x6+5ax4+20bx3−5a2x2−4abx−a3−8b2

8(x3
1+ax1+b)2 · y1.
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Constructing an isogeny from its kernel

Vélu (simplified)

E : y2 = x3 + ax + b over k and finite odd subgroup G ⊂ E(k̄).
We set E′ : y2 = x3 + a′x + b′ with

a′ = a− 5
∑

Q∈G\{∞}

(3x(Q)2 + a),

b′ = b− 7
∑

Q∈G\{∞}

(5x(Q)3 + 3ax(Q) + 2b).

Then there exists an isogeny ϕ : E→ E′ with kernel ker(ϕ) = G.

Example E : y2 = x3 − 12x + 11 over Q,
G = ⟨(4, 3

√
3)⟩ = {(4, 3

√
3), (4,−3

√
3),∞} ⊂ E[3].

We compute a′ = −12− 5 · 2 · (3 · 42 + (−12)) = −372, and
b′ = 11− 7 · 2 · (5 · 43 − 12 · 3 · 4 + 2 · 11) = −2761
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Example Isogeny ϕ : E→ E′ (continued)

E : y2 = x3 − 12x + 11

ϕ−→

E′ : y2 = x3 − 372x − 2761
sage: K = QQ.extension(xˆ2-3,sq3)
sage: E = EllipticCurve(K,[-12,11])
sage: P = E([4,3*sq3])
sage: phi = E.isogeny(P)

G = ⟨(4, 3
√

3)⟩.

We can ask for various properties of ϕ in SageMath, such as the
rational maps, codomain, evaluation at points, etc.

ϕ(x, y) =
(
x3 − 8x2 + 88x − 180

x2 − 8x + 16 ,
x3 − 12x2 − 24x + 8
x3 − 12x2 + 48x − 64 · y

)
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Example over a finite field

E : y2 = x3 − x over F11

(a) Kernel ⟨(1,0)⟩ ⊂ E[2]

codomain E1 : y2 = x3 + 8

(b) Kernel ⟨(4, 4)⟩ ⊂ E[3]

codomain E2 : y2 = x3 + 2x

An isogeny E→ E′ with kernel G ∼= Z/ℓZ is called ℓ-isogeny.

• E→ E1 is a 2-isogeny • E→ E2 is a 3-isogeny.

11



Commutative Supersingular
Isogeny Diffie-Hellman (CSIDH)



CSIDH

potential post-quantum replacement for Diffie-Hellman key
exchange

• CSIDH = Commutative
Supersingular Isogeny
Diffie-Hellman

• proposed by Wouter Castryck,
Tanja Lange, Chloe Martindale,
Lorenz Panny and Joost Renes
(2018)

• based on the commutative class group action on supersingular
elliptic curves over Fp

• described by talking walks in an isogeny graph
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Elliptic curves in Montgomery form

Elliptic curve E is in Montgomery forma if

EA : y2 = x3 + Ax2 + x, A with A2 ̸= 4.

We say that A is the Montgomery coefficient of E.
aMore general definition: By2 = x3 + Ax2 + x for some B ̸= 0

Relation with short Weierstrass form

y2 = x3 + Ax2 + x
⇒

(⇐)k̄
y2 = x3 + ax + b

y′ = y, x′ = (x + A/3), a = 3−A2

3 , b = 2A3−9A
27 .
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Supersingular elliptic curves

E over Fp is supersingulara if #E(Fp) = p+ 1.
aThere are more general deifnitions for arbitrary finite fields

• supersingular =̂ “unusual”; not singular (elliptic curves are are
smooth)

• Elliptic curves that are not supersingular are called ordinary
• Examples

• E : y2 = x3 + 1 over Fp is supersingular if p ≡ 2 (mod 3). We
proved #E(Fp) = p+ 1 in Lecture 3.

• E : y2 = x3 + x over F67. Here #E(F67) = 68. Example for the MOV
algorithm, Lecture 4.

• E : y2 = x3 + x over Fp if and only if p ≡ 3 (mod 4). Reference in
the lecture notes.
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CSIDH Isogeny Graph

Isogeny Graph over F419
with 3-,
5-, and 7- isogenies.

Prime field: Fp with p = 4 · ℓ1 · · · ℓn − 1
where ℓ1, . . . , ℓn small odd pairwise
distinct primes.

Vertices (V): supersingular elliptic curves
in Montgomery form over Fp
• cardinality: O(√p)
• labeled by Montgomery coefficient A
⇒ EA : y2 = x3 + Ax2 + x

Edges (E): ℓi-isogenies over Fp for
i = 1, . . . ,n
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Edges in the CSIDH graph

Recall p = 4 · ℓ1 · · · ℓn − 1, let EA over Fp supersingular.

Isogeny Graph over F419
with 3-,
5-, and 7- isogenies.

• #EA(Fp) = p+ 1 = 4 · ℓ1 · · · ℓn
⇒ For each ℓi, there is a unique group

of order ℓi, say Gi ⊂ E(Fp)[ℓi]
this defines an isogeny EA → EAi
→ edge from A to Ai.

We can walk in the isogeny graph by computing isogenies.
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Tiny examples with p = 4 · ℓ1 · · · ℓn − 1

Smallest example is p = 3: One vertex A = 0, no edges.

(a) p = 4 · 3− 1 = 11.
Three supersingular Montgomery curves
A = 0, 5, 6.

(b) p = 4 · 3 · 5− 1 = 59.
Nine supersingular Montgomery curves
A = 0, 6, 11, 28, 29, 30, 31, 48, 53

(c) p = 4 · 3 · 5 · 7− 1 = 419.
27 supersingular Montgomery curves

sage: Fp = GF(11)
sage: E = EllipticCurve(Fp,[0,5,0,1,0])
sage: P = E([3,3])
sage: phi = E.isogeny(P, model=”montgomery”); phi
Isogeny of degree 3 from Elliptic Curve defined by yˆ2 = xˆ3 + 5*
xˆ2 + x over Finite Field of size 11 to Elliptic Curve defined by
yˆ2 = xˆ3 + x over Finite Field of size 11
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Group action on the CSIDH graph

Consider p = 4 · ℓ1 · · · ℓn − 1, and G = (V, E) the CSIDH isogeny graph
over Fp.

There is a commutative group action

⋆ : Zn × V → V

where elements of Zn act as isogenies.

Evaluation of the group action (a1, . . . ,an) ⋆ EA = EA′

• (a1, . . . ,an): defines an path in the CSIDH graph
• Starting vertex: A
• |ai|: number of ℓi-isogenies in the path
• sign of ai: direction of the ℓi-isogenies (±)
• final vertex of the path: A’
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Key exchange example

An example with p = 59. The starting vertex is fixed to 0 .

Alice: a = (2,−1) Bob: b = (−1,−2)

⇒ xA = 6 ⇒ xB = 28

xA= 6

xB = 28

Kab = 11
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More on isogeny-based cryptography

1997
Couveignes Hard homogeneous space

Group-action based cryptography
→ DH key exchange with isogenies.

2006
Rostovtsev, Stolbunov

Public-key cryptosystem based on
isogenies
Independent discovery of Cou-
veigne’s (unpublished) ideas.

2009
Charles, Goren, Lauter

CGL hash function Cryptographic
hash functions from expander
graphs.

2011
de Feo, Jao

SIDH
Towards quantum-resistant cryp-
tosystems from supersingular elliptic
curve isogenies

2018,
Castryck, Lange, Martindale,

Panny, Renes

CSIDH:
an efficient post-quantum commuta-
tive group action

2020
de Feo, Kohel, Leroux, Petit, Wesolowski

SQISign:
compact post-quantum signatures
from quaternions and isogenies

most recent
advances: isogenies
of (higher
dimensional) abelian
varieties

• Cryptanalysis

• Improvements

• New
constructions

Thanks
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