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Quantum computers and cryptography

What is a quantum computer?
+ based on quantum mechanics

+ superposition and entanglement of
elements

Does it work?
+ small scale prototypes (Google, IBM, ...)

+ unclear when/if a practical quantum
computer will exist

(startup: Alice & Bob)

Consequences for cryptography

« Peter Shor (1996): can be solved
on a quantum computer in
= Practical quantum computers would make today’s public key
cryptography insecure.



Post-quantum cryptography

Development of cryptography that is secure against attacks from
quantum computers

Candidates for post-quantum cryptography

* Lattices « Multivariate » Hash functions
« Codes polynomials

+ this lecture : Isogenies

Isogeny-based cryptography: based on
the hard problem of finding isogenies be-
tween (supersingular) elliptic curves

outline: (1) group actions, (2) isogenies, (3) CSIDH



Cryptographic group actions



Group actions and key exchange

Amapx: G x X — X, with G a group, X a set:
1. idxx = x V x € X (identity),
2. (goh)xx=gx(hxx) Vg,h € G,x e X (compatibility).

« regular if for all x,y € X, unique g € Gwithy = g xx
« commutative if G is commutative

Group action Diffie-Hellman key exchange

X Q; . Commutatlve group
X8 ’ actionx: G x X — X,
\ —————
and some x, € X

Alice ( BObG)
gb € .
Xa & ga*Xo X8 G *Xo - Secret keys: 9o, gp € G

— gaxXs Xga < Gb * Xa * Public keys: xq,xp € X



Examples of group actions

(@) G=(z/(p—1)Z)* and X =T,
*:(Z/(p—1)Z)* xFp = Fp,  (n,x) — X"

« identity: 1% x = x" = x for all x € Fj.
- compatibility: (n, - ny) % x = x(""™) = (x"2)™ = n, « (n,  x) for all
ni, Ny € (Z/(p —1)Z)" and x € Fp.

= Diffie-Hellman (Lecture 2)
(b) G =(Z/NZ)* and X = (P) C E(Fq) with P € E(Fq), ord(P) = N:

* (ZINZ)* x X = X, (n,Q) [n] Q.

« identity: 1xQ=[1Q=Q forallQ € G,
« compatibility: (n; - n2) * Q = [n4 - N2]Q = [n4] ([n2]Q) = n+ x (N2 % Q)
forall ni,n, € (Z/NZ)™ and Q € E(Fy).

= Elliptic curve Diffie-Hellman (Lectures 3/4)



Cryptographic group actions

When is a group action x« : G x X — X useful for cryptography?

« Application of x should be a cryptographic one-way function:
+ Evaluating g = x is efficient for all g, x (we say x is effective")
+ GADLP is hard Given x,y € X, find g € G withy = g x x.
Note: g is unique if « is a regular group action.
+ Group action is commutative (depending on application):
+ Requirement so that group action Diffie-Hellman (slide 3) works.
- There are other cryptographic protocols that work with
non-commutative group actions.
lattice isomorphism, code-equivalence, tensors

"Actually, more properties are required: group operation is efficient, sampling is
efficient, etc.



Hardness of the GADLP

Classic attacks
Can we translate attacks on Group-DLP to solve GADLP?

x does not work for all algorithms, e.g. Pohlig-Hellman algorithm
= GADLP does not get easier when N = #G is composite.

v works for some algorithms, e.g. baby-step giant-step algorithm
(Exercise)
= We can solve GADLP in time O(v/N) where N = #G.

Quantum attacks
Best known attacks from the literature

X Shor's algorithm to solve Group-DLP quantum polynomial-time
cannot be translated to solve GADLP.

v Algorithm by Greg Kuperberg (2005): subexponential in N = #G



Isogenies



Definition of isogeny
E, E elliptic curves over k. An isogeny is a [\/
non-zero non-zero rational map ¢ : £ —

E’ that induces a group homomorphism

E(R) — E'(R).
E and E’ are called isogenous.

- rational map: (here) 3 ¢x(x, y), #y(x,y) rational functions so that

¢ : (X7y) — (¢X(X>Y)7¢y(XaY))

for all but finitely many points (x,y) € E(R).

» non-zero: exclude map ¢ : E — E/, ¢ : P +— oc.

« group homomorphism: ¢(P + Q) = ¢(P) + ¢(Q) for all
P,Q € E(R).



Example: scalar multiplication

Let N € Z\ {o},and E : y* = x3 + ax + b an elliptic curve, then scalar
multiplication by N

[N]:E—E, P~ [N]P
is an isogeny.

v rational map: can be deduced from the group law.
v non-zero: since N # 0
v group homomorphism follows from the group law on E.

Case N = 2 Let P = (x4,1), then [2]P = (X3,¥3), where x; = m? — 2x,
and y; = m(x, — X3) — y; and m = (3x2 + a)/(2y,) (Theorem 3.7(b)).

X*—2ax2 —8bx,—a?
"G = ¢X(X1’y1) =" 4(X13-14-GX1+Z)) z

. _ _ x545ax“+20bx3 —5a°x2 —,abx—a3 —8b>
Y3 = dy(Xa, 1) = 800 T ax,Fb)?




Constructing an isogeny from its kernel

E:y?> = x3 + ax + b over k and finite odd
We set £ : y? = x3 + a’x + b’ with

ad=a-5 Z

QeG\{o}

=b-7 Z (5x(Q)3 + 3ax(Q) + 2b).
Qe6\{oo}

Then there exists an isogeny ¢ : E — E’ with

Example E : y?> = x3 — 12x + 11 over Q,

We compute a’ = —12 —-5-2-(3- 4> 4+ (—12)) = —372, and
b=11-7-2-(5-43-12-3-4+2-11) = —2761



Example Isogeny ¢ : E — E’' (continued)

0
:

N o
=

77777

E:y?=x3—12x+ 11 E':y? = x3 —372x — 2761
sage: K = QQ.extension(x"2-3,sq3)
sage: E = EllipticCurve(K,[-12,11])

sage: P = E([4,3%sq3])
sage: phi = E.isogeny(P)

We can ask for various properties of ¢ in SageMath, such as the
rational maps, codomain, evaluation at points, etc.

x3 —8x>+88x—180 X3 —12x> —24x+ 8
¢(Xay): 2 ) > y
X2 —8x+ 16 X3 — 12X2 + 48X — 64
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Example over a finite field

E:y?>=x3—xoverF

(a) Kernel ((1,0)) C E[2] (b) Kernel ((4,4)) C E[3]
10 9 10 L] /.
8 /// ?
® / o | o
6 [ ] //. //:(/
° // o - i
. .’/,// o | o
) /::’j/:’/:’ - ° I
® e ——
codomain codomain E, : y? = x3 + 2x

An isogeny E — E’ with kernel G = Z//¢Z is called ¢-isogeny.

« E — E, is a 2-isogeny « E— E, is a 3-isogeny.

1"



Commutative Supersingular
Isogeny Diffie-Hellman (CSIDH)




CSIDH

potential post-quantum replacement for Diffie-Hellman key
exchange

+ CSIDH = Commutative
Supersingular Isogeny
Diffie-Hellman

« proposed by Wouter Castryck,
Tanja Lange, Chloe Martindale,
Lorenz Panny and Joost Renes
(2018)

+ based on the commutative class group action on supersingular
elliptic curves over F),

- described by talking walks in an isogeny graph
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Elliptic curves in Montgomery form

Elliptic curve E is in Montgomery form? if
Er:y? =x3+ A +x, AwithA? £ 4.

We say that A is the Montgomery coefficient of E.

9More general definition: for some B # 0

Relation with short Weierstrass form

y’=x3+ax+b

y =y, X/:(X+A/3), 0:373A2’ b:2/-\327;9/-\.

13



Supersingular elliptic curves

E over F,, is supersingular? if #E(Fp) = p + 1.

9There are more general deifnitions for arbitrary finite fields

- supersingular = “unusual”; not singular (elliptic curves are are
smooth)

« Elliptic curves that are not supersingular are called ordinary
- Examples
« E:y*>=x3+10verF, is supersingular if p =2 (mod 3). We
proved #E(Fp) = p + 11in Lecture 3.

« E:y*> = x3+ x over Fg,. Here #E(Fs;) = 68. Example for the MOV
algorithm, Lecture 4.

« E:y>=x3+xoverF,ifand only if p =3 (mod 4). Reference in
the lecture notes.
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CSIDH Isogeny Graph

Prime field: F, withp =44, --- 0, —1
where /,,...,¢, small odd pairwise
distinct primes.

Vertices (V): supersingular elliptic curves
in Montgomery form over F,

- cardinality: O(,/p)

+ labeled by Montgomery coefficient A
Isogeny Graph over F,qq =Ep:y2 =3+ A2 +x

with 3-,

5-,and 7- isogenies.

Edges (E): /;-isogenies over F, for
i=1,...,n

15



Edges in the CSIDH graph

Recall p=4-¢;--- £, —1, let E4 over Fp, supersingular.

s #EA(Fp) =p+1=4-li-- by
= For each ¢;, there is a unique group
of order ¢;, say G; C E(Fp)[¢]
this defines an isogeny Ex — E,

Isogeny Graph over Fq — edge from Ato A;.

with 3-,
5-,and 7- isogenies.

We can walk in the isogeny graph by computing isogenies.



Tiny examples withp = 4 -

Smallest example is p = 3: One vertex A = 0, no edges.

@p=4-3—1=1.
Three supersingular Montgomery curves
A=0,5,6.

(b) p=4-3-5-1=>59.
Nine supersingular Montgomery curves
A =0,6,11,28,29,30,31,48,53

() p=4-3-5-7—1=s19.
27 supersingular Montgomery curves

SDCE
sage: Fp = GF(11)
sage: E = EllipticCurve(Fp,[o,5,0,1,0])
sage: P = E([3,3])
sage: phi = E.isogeny(P, model="montgomery”); phi
Isogeny of degree 3 from Elliptic Curve defined by y"2 = x"3 + 5%
x"2 + x over Finite Field of size 11 to Elliptic Curve defined by
y“ 2 = x"3 + x over Finite Field of size 11




Group action on the CSIDH graph

Considerp=4-4,---£, —1,and G = (V, E) the CSIDH isogeny graph
over .

There is a commutative group action
*:Z"x V=V

where elements of Z" act as isogenies.

Evaluation of the group action (a,,...,a,) x Ex = Ex

¢ (@,,...,ay): defines an path in the CSIDH graph
- Starting vertex: (A)

* |aj|: number of ¢;-isogenies in the path

- sign of a;: direction of the /;-isogenies (+)

« final vertex of the path:



Key exchange example

An example with p = 59. The starting vertex is fixed to (0.

e -3

\ <

Vi

Alice: [a = (2,—1) Bob: %
= xa=(6) = Xg = i l
RV

O—@

Kab :®
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1997
Couveignes

2006
Rostovtsev, Stolbunov

CGL hash function Cryptographic
hash functions from expander
graphs.

SIDH

Towards quantum-resistant cryp-
tosystems from supersingular elliptic
curve isogenies

2018,
Castryck, Lange, Martindale,
Panny, Renes

sQisign:
compact post-quantum signatures
from quaternions and isogenies

J) Hard homogeneous space
Group-action based cryptography
— DH key exchange with isogenies.

Public-key cryptosystem based on
isogenies

Independent discovery of Cou-
veigne's (unpublished) ideas.

2009
Charles, Goren, Lauter

2011
de Feo, Jao

CSIDH:
an efficient post-quantum commuta-
tive group action

2020
T de Feo, Kohel, Leroux, Petit, Wesolowski

most recent
advances: isogenies
of (higher
dimensional) abelian
varieties

« Cryptanalysis
+ Improvements

* New
constructions

©
«"‘é\
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