Introduction to mathematical cryptography

Lecture 5: Isogeny-based cryptography

Sabrina Kunzweiler Preliminary Arizona Winter School 2025

Quantum computers and cryptography

What is a quantum computer?

- based on quantum mechanics
- superposition and entanglement of elements

Does it work?

- small scale prototypes (Google, IBM, ...)
- unclear when/if a practical quantum computer will exist

(startup: Alice & Bob)

Consequences for cryptography

- Peter Shor (1996): Integer Factorization and DLP can be solved on a quantum computer in polynomial time
- ⇒ Practical quantum computers would make today's public key cryptography insecure.

1

Post-quantum cryptography

Development of cryptography that is secure against attacks from quantum computers

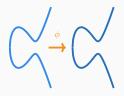
Candidates for post-quantum cryptography

- Lattices
- Codes

 Multivariate polynomials Hash functions

• this lecture : Isogenies

Isogeny-based cryptography: based on the hard problem of finding isogenies between (supersingular) elliptic curves



outline: (1) group actions, (2) isogenies, (3) CSIDH

Cryptographic group actions

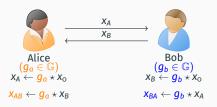
Group actions and key exchange

Group action

A map $\star: \mathbb{G} \times \mathcal{X} \to \mathcal{X}$, with \mathbb{G} a group, \mathcal{X} a set:

- 1. $id \star x = x \ \forall \ x \in \mathcal{X}$ (identity),
- 2. $(g \circ h) \star x = g \star (h \star x) \ \forall \ g, h \in \mathbb{G}, x \in \mathcal{X}$ (compatibility).
- regular if for all $x, y \in \mathcal{X}$, \exists unique $g \in \mathbb{G}$ with $y = g \star x$
- commutative if G is commutative

Group action Diffie-Hellman key exchange



- Commutative group action $\star: \mathbb{G} \times \mathcal{X} \to \mathcal{X}$, and some $x_o \in \mathcal{X}$
- Secret keys: $g_a, g_b \in \mathbb{G}$
- Public keys: $x_a, x_b \in \mathcal{X}$

Examples of group actions

(a)
$$\mathbb{G} = (\mathbb{Z}/(p-1)\mathbb{Z})^*$$
 and $\mathcal{X} = \mathbb{F}_p^*$
$$\star : (\mathbb{Z}/(p-1)\mathbb{Z})^* \times \mathbb{F}_p^* \to \mathbb{F}_p^*, \quad (n,x) \mapsto x^n.$$

- identity: $1 \star x = x^1 = x$ for all $x \in \mathbb{F}_p^*$.
- compatibility: $(n_1 \cdot n_2) \star x = x^{(n_1 \cdot n_2)} = (x^{n_2})^{n_1} = n_1 \star (n_2 \star x)$ for all $n_1, n_2 \in (\mathbb{Z}/(p-1)\mathbb{Z})^*$ and $x \in \mathbb{F}_p^*$.
- ⇒ Diffie-Hellman (Lecture 2)

(b)
$$\mathbb{G} = (\mathbb{Z}/N\mathbb{Z})^*$$
 and $\mathcal{X} = \langle P \rangle \subset E(\mathbb{F}_q)$ with $P \in E(\mathbb{F}_q)$, $ord(P) = N$:

$$\star: (\mathbb{Z}/\mathsf{N}\mathbb{Z})^* \times \mathcal{X} \to \mathcal{X}, \quad (\mathsf{n},\mathsf{Q}) \mapsto [\mathsf{n}] \cdot \mathsf{Q}.$$

- identity: $1 \star Q = [1]Q = Q$ for all $Q \in \mathbb{G}$,
- compatibility: $(n_1 \cdot n_2) \star Q = [n_1 \cdot n_2]Q = [n_1] ([n_2]Q) = n_1 \star (n_2 \star Q)$ for all $n_1, n_2 \in (\mathbb{Z}/N\mathbb{Z})^*$ and $Q \in E(\mathbb{F}_q)$.
- ⇒ Elliptic curve Diffie-Hellman (Lectures 3/4)

Cryptographic group actions

When is a group action $\star : \mathbb{G} \times \mathcal{X} \to \mathcal{X}$ useful for cryptography?

- Application of * should be a **cryptographic one-way function**:
 - Evaluating $g \star x$ is efficient for all g, x (we say \star is effective¹)
 - GADLP is hard Given $x, y \in \mathcal{X}$, find $g \in \mathbb{G}$ with $y = g \star x$. Note: g is unique if \star is a regular group action.
- · Group action is **commutative** (depending on application):
 - Requirement so that group action Diffie-Hellman (slide 3) works.
 - There are other cryptographic protocols that work with non-commutative group actions.
 lattice isomorphism, code-equivalence, tensors

¹Actually, more properties are required: group operation is efficient, sampling is efficient, etc.

Hardness of the GADLP

Classic attacks

Can we translate attacks on Group-DLP to solve GADLP?

- x does not work for all algorithms, e.g. Pohlig-Hellman algorithm
 - \Rightarrow GADLP does not get easier when $N=\#\mathbb{G}$ is composite.
- √ works for some algorithms, e.g. baby-step giant-step algorithm
 (Exercise)
 - \Rightarrow We can solve GADLP in time $O(\sqrt{N})$ where $N = \#\mathbb{G}$.

Quantum attacks

Best known attacks from the literature

- x Shor's algorithm to solve Group-DLP quantum polynomial-time cannot be translated to solve GADLP.
- ✓ Algorithm by Greg Kuperberg (2005): subexponential in $N=\#\mathbb{G}$

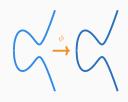
Isogenies

Definition of isogeny

Isogeny

E, E' elliptic curves over k. An **isogeny** is a non-zero non-zero rational map $\phi: E \to E'$ that induces a group homomorphism $E(\bar{k}) \to E'(\bar{k})$.

E and E' are called **isogenous**.



• rational map: (here) $\exists \phi_x(x,y), \phi_y(x,y)$ rational functions so that

$$\phi: (\mathbf{x}, \mathbf{y}) \mapsto (\phi_{\mathbf{x}}(\mathbf{x}, \mathbf{y}), \phi_{\mathbf{y}}(\mathbf{x}, \mathbf{y}))$$

for all but finitely many points $(x, y) \in E(\overline{k})$.

- non-zero: exclude map $\phi: E \to E'$, $\phi: P \mapsto \infty$.
- group homomorphism: $\phi(P+Q) = \phi(P) + \phi(Q)$ for all $P, Q \in E(\bar{R})$.

7

Example: scalar multiplication

Let $N \in \mathbb{Z} \setminus \{0\}$, and $E : y^2 = x^3 + ax + b$ an elliptic curve, then scalar multiplication by N

$$[N]: E \rightarrow E, \quad P \mapsto [N]P$$

is an isogeny.

- √ rational map: can be deduced from the group law.
- ✓ non-zero: since $N \neq 0$
- ✓ group homomorphism follows from the group law on *E*.

Case N = 2 Let $P = (x_1, y_1)$, then $[2]P = (x_3, y_3)$, where $x_3 = m^2 - 2x_1$ and $y_3 = m(x_1 - x_3) - y_1$ and $m = (3x_1^2 + a)/(2y_1)$ (Theorem 3.7(b)).

•
$$X_3 = \phi_X(X_1, y_1) = \frac{x_1^4 - 2ax_1^2 - 8bx_1 - a^2}{4(x_1^3 + ax_1 + b)}$$
,

•
$$y_3 = \phi_y(x_1, y_1) = \frac{x^6 + 5ax^4 + 20bx^3 - 5a^2x^2 - 4abx - a^3 - 8b^2}{8(x_1^3 + ax_1 + b)^2} \cdot y_1$$
.

Constructing an isogeny from its kernel

Vélu (simplified)

 $E: y^2 = x^3 + ax + b$ over k and finite odd subgroup $G \subset E(\overline{k})$. We set $E': y^2 = x^3 + a'x + b'$ with

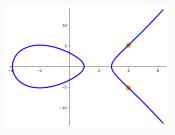
$$a' = a - 5 \sum_{Q \in G \setminus \{\infty\}} (3x(Q)^2 + a),$$

$$b' = b - 7 \sum_{Q \in G \setminus \{\infty\}} (5x(Q)^3 + 3ax(Q) + 2b).$$

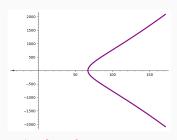
Then there exists an isogeny $\phi: E \to E'$ with kernel $\ker(\phi) = G$.

Example
$$E: y^2 = x^3 - 12x + 11$$
 over \mathbb{Q} , $G = \langle (4, 3\sqrt{3}) \rangle = \{ (4, 3\sqrt{3}), (4, -3\sqrt{3}), \infty \} \subset E[3]$. We compute $a' = -12 - 5 \cdot 2 \cdot (3 \cdot 4^2 + (-12)) = -372$, and $b' = 11 - 7 \cdot 2 \cdot (5 \cdot 4^3 - 12 \cdot 3 \cdot 4 + 2 \cdot 11) = -2761$

Example Isogeny $\phi: E \to E'$ (continued)



$$\xrightarrow{\phi}$$



$$E: y^2 = x^3 - 12x + 11$$

$$E': y^2 = x^3 - 372x - 2761$$

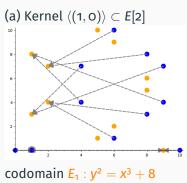
$$G = \langle (4, 3\sqrt{3}) \rangle.$$

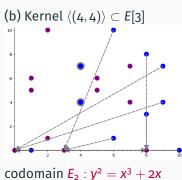
We can ask for various properties of ϕ in SageMath, such as the rational maps, codomain, evaluation at points, etc.

$$\phi(x,y) = \left(\frac{x^3 - 8x^2 + 88x - 180}{x^2 - 8x + 16}, \frac{x^3 - 12x^2 - 24x + 8}{x^3 - 12x^2 + 48x - 64} \cdot y\right)$$

Example over a finite field

$$E: y^2 = x^3 - x \text{ over } \mathbb{F}_{11}$$





An isogeny $E \to E'$ with kernel $G \cong \mathbb{Z}/\ell\mathbb{Z}$ is called ℓ -isogeny.

• $E \rightarrow E_1$ is a 2-isogeny

• $E \rightarrow E_2$ is a 3-isogeny.

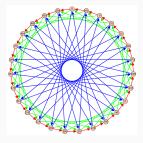
Isogeny	Diffie-Hell	man (CSIDI

Commutative Supersingular

CSIDH

potential post-quantum replacement for Diffie-Hellman key exchange

- CSIDH = Commutative
 Supersingular Isogeny
 Diffie-Hellman
- proposed by Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny and Joost Renes (2018)



- based on the commutative class group action on supersingular elliptic curves over \mathbb{F}_p
- · described by talking walks in an isogeny graph

Elliptic curves in Montgomery form

Elliptic curve E is in **Montgomery form** a if

$$E_A: y^2 = x^3 + Ax^2 + x$$
, A with $A^2 \neq 4$.

We say that A is the Montgomery coefficient of E.

^aMore general definition: $By^2 = x^3 + Ax^2 + x$ for some $B \neq 0$

Relation with short Weierstrass form

$$y^2 = x^3 + Ax^2 + x \qquad \Rightarrow \qquad (\Leftarrow)_{\bar{b}} \qquad y^2 = x^3 + ax + b$$

$$y'=y, \quad x'=(x+A/3), \quad a=\frac{3-A^2}{3}, \quad b=\frac{2A^3-9A}{27}.$$

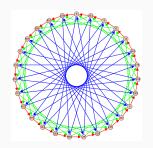
Supersingular elliptic curves

E over \mathbb{F}_p is **supersingular**^a if $\#E(\mathbb{F}_p) = p + 1$.

^aThere are more general deifnitions for arbitrary finite fields

- Elliptic curves that are not supersingular are called ordinary
- Examples
 - $E: y^2 = x^3 + 1$ over \mathbb{F}_p is supersingular if $p \equiv 2 \pmod{3}$. We proved $\#E(\mathbb{F}_p) = p + 1$ in Lecture 3.
 - $E: y^2 = x^3 + x$ over \mathbb{F}_{67} . Here $\#E(\mathbb{F}_{67}) = 68$. Example for the MOV algorithm, Lecture 4.
 - $E: y^2 = x^3 + x$ over \mathbb{F}_p if and only if $p \equiv 3 \pmod{4}$. Reference in the lecture notes.

CSIDH Isogeny Graph



Isogeny Graph over \mathbb{F}_{419} with 3-, 5-, and 7- isogenies.

Prime field: \mathbb{F}_p with $p = 4 \cdot \ell_1 \cdots \ell_n - 1$ where ℓ_1, \dots, ℓ_n small odd pairwise distinct primes.

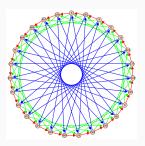
Vertices (V): supersingular elliptic curves in Montgomery form over \mathbb{F}_p

- cardinality: $O(\sqrt{p})$
- labeled by Montgomery coefficient A
 ⇒ E_A: V² = X³ + AX² + X

Edges (E): ℓ_i -isogenies over \mathbb{F}_p for i = 1, ..., n

Edges in the CSIDH graph

Recall $p = 4 \cdot \ell_1 \cdots \ell_n - 1$, let E_A over \mathbb{F}_p supersingular.



Isogeny Graph over \mathbb{F}_{419} with 3-, 5-, and 7- isogenies.

•
$$\#E_A(\mathbb{F}_p) = p + 1 = 4 \cdot \ell_1 \cdots \ell_n$$

- \Rightarrow For each ℓ_i , there is a unique group of order ℓ_i , say $G_i \subset E(\mathbb{F}_p)[\ell_i]$ this defines an isogeny $E_A \to E_{A_i}$
 - \rightarrow edge from A to A_i.

We can walk in the isogeny graph by computing isogenies.

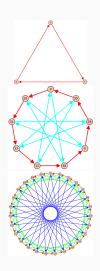
Tiny examples with $p = 4 \cdot \ell_1 \cdots \ell_n - 1$

Smallest example is p = 3: One vertex A = 0, no edges.

- (a) $p = 4 \cdot 3 1 = 11$. Three supersingular Montgomery curves A = 0, 5, 6.
- (b) $p = 4 \cdot 3 \cdot 5 1 = 59$. Nine supersingular Montgomery curves A = 0, 6, 11, 28, 29, 30, 31, 48, 53
- (c) $p = 4 \cdot 3 \cdot 5 \cdot 7 1 = 419$. 27 supersingular Montgomery curves

<u> 509</u>e

```
sage: Fp = GF(11)
sage: E = EllipticCurve(Fp,[0,5,0,1,0])
sage: P = E([3,3])
sage: phi = E.isogeny(P, model="montgomery"); phi
Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 5*
x^2 + x over Finite Field of size 11 to Elliptic Curve defined by
y^2 = x^3 + x over Finite Field of size 11
```



Group action on the CSIDH graph

Consider $p = 4 \cdot \ell_1 \cdots \ell_n - 1$, and G = (V, E) the CSIDH isogeny graph over \mathbb{F}_p .

There is a commutative group action

$$\star: \mathbb{Z}^n \times V \to V$$

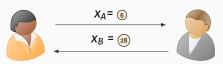
where elements of \mathbb{Z}^n act as isogenies.

Evaluation of the group action $(a_1, \ldots, a_n) \star E_A = E_{A'}$

- (a_1, \ldots, a_n) : defines an path in the CSIDH graph
- Starting vertex: A
- $|a_i|$: number of ℓ_i -isogenies in the path
- sign of a_i : direction of the ℓ_i -isogenies (\pm)
- final vertex of the path: (A')

Key exchange example

An example with p = 59. The starting vertex is fixed to \bigcirc .

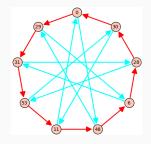


Alice: a = (2, -1)

$$\Rightarrow x_A = 6$$

Bob:
$$b = (-1, -2)$$

$$\Rightarrow x_B = 28$$



$$K_{ab} = 11$$

More on isogeny-based cryptography

1997 Couveignes

Hard homogeneous space

Group-action based cryptography → DH key exchange with isogenies.

Public-key cryptosystem based on isogenies

Independent discovery of Couveigne's (unpublished) ideas.

2006 Rostovtsev, Stolbunov

2011

de Feo. Jao

2009 Charles, Goren, Lauter

graphs. SIDH

Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies

CGL hash function Cryptographic hash functions from expander

CSIDH-

an efficient post-quantum commutative group action

2018. Castryck, Lange, Martindale, (Panny, Renes

2020

de Feo, Kohel, Leroux, Petit, Wesolowski

SOISign:

compact post-quantum signatures from quaternions and isogenies

most recent advances: isogenies of (higher dimensional) abelian varieties

- Cryptanalysis
- **Improvements**
- New constructions

