
Introduction to mathematical cryptography
Lecture 4: Elliptic Curve Cryptography

Sabrina Kunzweiler
Preliminary Arizona Winter School 2025



What we learned so far

Lecture 1 The Diffie-Hellman key exchange - first protocol in public
key cryptography.

Lecture 2 DLP in a prime order group (order N) in finite fields.

• Baby-step giant-step and Pollard’s rho: O(
√
N)

• Index calculus: subexponential running time

Lecture 3 We discussed elliptic curves (mostly over finite fields).

• Addition law on the set of points
• Cryptographic one-way function given by scalar multiplication

This lecture We study Elliptic Curve Diffie-Hellman and the ECDLP

1



Introducing ECDH and ECDLP



Elliptic curve Diffie-Hellman (ECDH)

Setup
• Elliptic curve E over Fq

• Point P ∈ E(Fq),
#⟨P⟩ = N

Alice
(na ∈ Z)
A← [na]P

Bob
(nb ∈ Z)
B← [nb]P

KAB ← [na]B KBA ← [nb]A

A
B

• Secret keys (na ∈ Z) and (nb ∈ Z)

• Public keys A and B ∈ E(Fq)
• Shared key KAB = KBA ∈ E(Fq)

2



ECDH Example

Setup E : y2 = x3 − 3x + 1 over F13, and P = (0, 1) ∈ E(F13),
ord(P) = 19.

sage: Fp = GF(13)
sage: E = EllipticCurve(Fp, (-3,

1))
sage: P = E([0,1])
sage: A = 5 * P; A
(1 : 8 : 1)
sage: K = 5 * E([4,1]); K
(10 : 3 : 1)

Alice
(na = 5)

A = [5]P = (1, 8)

Bob
(nb = 12)

B = [12]P = (4, 1)

KAB = [5](4, 1) = (10, 3) KBA = [12](1, 8) = (10, 3)

(1, 8)
(4, 1)

Real-world setup (Secp256k1 used in Bitcoin)
sage: p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
sage: Fp = GF(p)
sage: a = Fp(0)
sage: b = Fp(7)
sage: E = EllipticCurve(Fp, (a, b))
sage: P = E(0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798, 0
x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8)

3



Elliptic curve discrete logarithm problem

Elliptic Curve Discrete Logarithm Problem (ECDLP)

For P ∈ E(K) and Q ∈ ⟨P⟩, the ECDLP asks to find na ∈ Z
so that [na]P = Q.
Notation: na = dlogP(Q).

• Natural analogue of DLP
⇒ the word logarithm is used even though E is an additive
group.

• If DLP is hard, then scalar multiplication is a cryptographic
one-way function.

4



Analysis of ECDH and ECDLP

How hard is it to compute logP(Q) for some P ∈ E(K) of order N?

What we already know
(from the generic group setting)

• Pohlig-Hellman For N =
∏
pi composite, the hardness only

depends on the largest prime factor pi
• Pollard’s rho We can solve logP(Q) in time O(

√
N) and constant

memory

What we will study now
(specific to elliptic curves)

• MOV attack (Menezes-Okamoto-Vanstone): subexponential
algorithm for some (weak) parameters.

• Invalid curve attack: implementation specific attack on ECDH

5



The MOV attack



Pairings

Pairing

Let G1,G2,H be groups. A pairing is a map
e : G1 × G2 → H, (g1,g2) 7→ h = e(g1,g2)

which is bilinear and non-degenerate.

In this lecture, we study pairings, where

• G1 = G2 = E[N]: The N-torsion group of an elliptic curve E
• H is an “easier group”

Main idea of MOV
Use a pairing to translate ECDLP in E(Fq) to DLP in Fqd .

6



Determinant pairing

Determinant pairing

E/Fq elliptic curve, N ∈ N, gcd(q,N) = 1. Write

E[N] = ⟨T1, T2⟩ ∼= Z/NZ× Z/NZ.

The determinant pairing w.r.t. (T1, T2) is

det : E[N]×E[N]→ Z/NZ, (aT1+bT2, cT1+dT2) 7→ ad−bc

Properties: bilinear, alternating, non-degenerate

(a) bilinear:

det(P1 + P2,Q) = det(P1,Q) + det(P2,Q),
det(P,Q1 + Q2) = det(P,Q1) + det(P,Q2),

for all P1,P2,Q1,Q2 ∈ E[N]
7



Solving ECDLP with the determinant pairing (?)

ECDLP challenge: Q ∈ ⟨P⟩, find na = dlogP(Q).
(E/Fq elliptic curve, N = #⟨P⟩)

1. Find T ∈ E[N] with α = det(P, T) has order N.
2. Compute det(Q, T) = β.
3. Note that det(P+ · · ·+ P︸ ︷︷ ︸

na

, T) = na · det(P, T) (linearity),

⇒ na = β/α ∈ Z/NZ.

Two problems with this approach

• The full torsion group E[N] is only defined over a field
extension, i.e. T ∈ E(Fqd ) for possibly large d.

• It is not known how to compute the determinant pairing
efficiently.

8



Weil pairing

The Weil pairing (André Weil ’1940) is a pairing

eN : E[N]× E[N]→ µN ⊂ Fqd

with E/Fq elliptic curve, gcd(N,q) = 1 and µN the group of N-th roots
of unity.

• Properties: bilinear, alternating, nondegenerate (and more)
• Relation with the determinant pairing (exercise):
eN(P,Q) = µdet(P,Q), where µ = eN(T1, T2)

• Evaluation of eN is efficient (in Fqd ) using Miller’s algorithm
(Victor Miller, 1986)

We use the Weil pairing, and Miller’s algorithm as a black box.
You can compute eN(P,Q) using P.weil pairing(Q,N)

(more details on the evaluation of eN in the lecture notes)

9



Example N = 2

E : y2 = x3 + ax + b over Fq
• Write x3 + ax + b = (x − α1)(x − α2)(x − α3)

• E[2] = {(α1,0), (α2,0), (α3,0),∞}
{P1,P2,P3,P∞}

The 2-Weil pairing e2 : E[2]× E[2]→ {±1}

(Pi,Pj) 7→
{

1 if i = j or∞ ∈ {i, j}
−1 otherwise

10



Embedding degree

Embedding degree

Let N be a positive integer, and Fq a finite field. The smallest
value d with N | qd − 1 is called the embedding degree of N in
Fq.

• Fqd is the smallest field extension with µN ⊂ Fqd .
• If gcd(N,q− 1) = 1, then E[N] ⊂ E(Fqd) (Silverman, Lemma XI.6.2)

Examples (slide 3)

(a) E(F13) = 19, and the smallest integer d with 19 | 13d − 1 is d = 18.
(b) E(Fp) = N ≈ 2256 (Secp256k1)

d = 1929868153955269923726183083478131797547292737984581739
7100860523586360249056, in particular d ≈ 2253.

11



The MOV algorithm

by Alfred Menezes, Scott Vanstone, Tatsuaki Okamoto (1991)

Algorithm 1 MOV algorithm
Input: P ∈ E(Fq) with ord(P) = N, Q ∈ ⟨P⟩,

and gcd(q− 1,N) = 1.
Output: g,A ∈ F∗

qd with dlogg(A) = dlogP(Q).
1: d← embedding degree of N in Fq
2: Determine E(Fqd) ∼= Z/N1Z× Z/N2Z a

3: repeat
4: T $←− E(Fqd)
5: T ← [N1/N] · T
6: g← eN(P, T) ∈ µN ⊂ F∗

qd

7: until ord(g) = N
8: A← eN(Q, T) ∈ µN ⊂ F∗

qd

9: return (g,A)

aCan be done in heuristic polynomial time.

Correctness

✓ eN(Q, T) = eN([na]P, T) =
eN(P, T)na (linearity)
(note T is a point with
non-trivial Weil-pairing)

Runtime

• Number of multiplication
over Fqd is polynomial in
log(N)

Memory

• O(1) elements in Fqd

12



Example of the MOV algorithm

E : y2 = x3 + x over F67

• P = (64, 29), Q = (6, 50)
• #⟨P⟩ = 17
• 17 | 672 − 1⇒ d = 2
• E[17] = ⟨P, T⟩ with T =

(11i+ 37, 22i+42) ∈ E(F672)

MOV
⇒

g

A

µ17 ⊂ F672

• g = e17(P, T) = 39i+ 50
• A = e17(Q, T) = 46i+ 30

⇒ dlogP(Q) = dlogg(A) = 14.

13



Consequences for Elliptic Curve Cryptography

Destructive

• ECDLP can be solved in subexponential time if the embedding
degree is small
(MOV + index calculus)

⇒ choose elliptic curves with large embedding degrees for Elliptic
Curve Diffie-Hellman

Constructive
Pairings can also be used to construct more advanced cryptographic
protocols

• Tripartite Diffie-Hellman key exchange (Antoine Joux, 2000)
• Identity-based encryption (Dan Boneh, Matthew Franklin, 2001)
• BLS Digital Signature (Dan Boneh, Ben Lynn, Hovav Shacham,

2004)

⇒ field of Pairing-based cryptography
14



Invalid curve attack



Invalid curve attack

by Ingrid Biehl, Bernd Meyer, Volker Müller (2000)

Alice
(na ∈ Z)
A← [na]P

Mallory
P′ ∈ E′[m]

for i = 1, . . . ,m:
KAB ← [na]P′ Ki = [i]P′

A
P′

Setup E : y2 = x3 + ax + b over Fq,
P ∈ E(Fq), ord(P) = N is prime.

Mallory impersonates Bob, to find
Alice’s secret key.
• Choose E′ : y2 = x3 + ax + b′,

and P′ ∈ E′(Fq) with
ord(P′) = m small

• Mallory computes all
possible Ki = [i]P′ and check
if Ki = KAB.

⇒ recover na (mod m).

Main observation The addition formulas only depend on a, not on b.

15



Example of an invalid curve attack

Setup E : y2 = x3 + x over F67,
P = (64, 29), ord(P) = 17.

Alice
(na = 14)

A = [14]P = (6, 50)

Mallory
P′ = (12,0)

K0 =∞
KAB = [14]P′ =∞ K1 = P′

(6, 50)
(12,0)

Mallory chooses
E′ : y2 = x3 + x + 2,
#E′(Fq) = 23 · 32.

(1) P′ = (12,0) with ord(P′) = 2
• K0 = [0]P′ =∞, K1 = 1P′.
⇒ na ≡ 0 (mod 2).

(2) P′ = (5, 20) with ord(P′) = 3
• K0 =∞, K1 = (5, 20), K2 = (5, 47).
⇒ na ≡ 2 (mod 3).

(3) P′ = (13, 1) with ord(P′) = 9
• K2 = (36, 53), K5 = (18, 31),
K8 = (13, 66).

⇒ na ≡ 5 (mod 9).

CRT: na ≡ 14 (mod 18)

16



Countermeasures

1. Public key validation
• Alice verifies that the point send by Bob lies on the curve. I.e. for
B = (xB, yB), she checks

y2
B

?
= x3

B + axB + b.
→ Cheap and easy modification

2. x-only arithmetic
• Scalar multiplication is well defined for x-coordinates, i.e. there

exist formulas that given x(P) and N, output x([N]P) (next slide)
• Alice and Bob only publish the x-coordinates xA of A and xB of B.

This is enough to find the x-coordinate xAB of KAB.
• Formulas for x-only arithmetic implicitly check that a point is on

the correct curve, and they are often faster than “normal”
addition formulas.

→ Elegant solution

17



Digression: x-only arithmetic

Geometric description
• projection π : E→ P1

π(P) = xP, where P = (xP, yP)
• π(−P) = π(P) for all P ∈ E.
• #π−1(x0) = 2, unless
(x0,0) ∈ E[2].

Remnants of the group structure
✓ Scalar multiplication

[N]x(P) = x([N]P)
✓ Translation by 2-torsion points

x(Q) + x(P) = x(Q+ P) if one of
P,Q is 2-torsion.

x Addition of points x(P) + x(Q) =?

Example x([2]P):

(3x(P)2+a)2

4(x(P)3+ax(P)+b) − 2x(P)

18



Summary and outlook



Elliptic curves in cryptography

This lecture on Elliptic curve Diffie-Hellman (ECDH)

• The underlying hardness assumption is ECDLP, it can be solved
in time O(

√
N) for any elliptic curve (generic algorithms).

• Weil pairing eN : E[N]× E[N]→ µN allows to translate ECDLP to
DLP when the embedding degree is small (MOV attack)

• In the implementation: prevent invalid curve attacks

More attacks on special parameters using fancy math

• Over Fq with q = pk and k > 2, there are better attacks than
generic attack using Weil descent to obtain a DLP on an abelian
variety (Gerhard Frey, 1998); or a variant of index calculus
(Pierrick Gaudry, 2009)

• For E with E(Fp) = p, the ECDLP can be solved in polynomial
time by computing in the formal group of an elliptic curve.

19


	Introducing ECDH and ECDLP
	The MOV attack

