Introduction to mathematical cryptography

Lecture 4: Elliptic Curve Cryptography

Sabrina Kunzweiler Preliminary Arizona Winter School 2025

What we learned so far

Lecture 1 The Diffie-Hellman key exchange - first protocol in public key cryptography.

Lecture 2 DLP in a prime order group (order N) in finite fields.

- Baby-step giant-step and Pollard's rho: $O(\sqrt{N})$
- Index calculus: subexponential running time

Lecture 3 We discussed elliptic curves (mostly over finite fields).

- · Addition law on the set of points
- Cryptographic one-way function given by scalar multiplication

This lecture We study Elliptic Curve Diffie-Hellman and the ECDLP

1

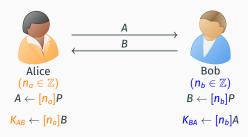
Introducing ECDH and ECDLP

Elliptic curve Diffie-Hellman (ECDH)

Setup

• Elliptic curve E over \mathbb{F}_q

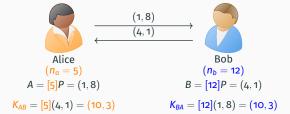
• Point $P \in E(\mathbb{F}_q)$, $\#\langle P \rangle = N$



- Secret keys $(n_a \in \mathbb{Z})$ and $(n_b \in \mathbb{Z})$
- **Public keys** A and $B \in E(\mathbb{F}_q)$
- Shared key $K_{AB}=K_{BA}\in E(\mathbb{F}_q)$

ECDH **Example**

Setup
$$E: y^2 = x^3 - 3x + 1$$
 over \mathbb{F}_{13} , and $P = (0, 1) \in E(\mathbb{F}_{13})$, $ord(P) = 19$.



Real-world setup (Secp256k1 used in Bitcoin)

Elliptic curve discrete logarithm problem

Elliptic Curve Discrete Logarithm Problem (ECDLP)

For $P \in E(K)$ and $Q \in \langle P \rangle$, the ECDLP asks to find $n_a \in \mathbb{Z}$ so that $[n_a]P = Q$. Notation: $n_a = \text{dlog}_p(Q)$.

- Natural analogue of DLP
 ⇒ the word *logarithm* is used even though E is an additive group.
- If DLP is hard, then scalar multiplication is a cryptographic one-way function.

Analysis of ECDH and ECDLP

How hard is it to compute $\log_P(Q)$ for some $P \in E(K)$ of order N?

What we already know

(from the generic group setting)

- Pohlig-Hellman For $N = \prod p_i$ composite, the hardness only depends on the largest prime factor p_i
- Pollard's rho We can solve $\log_P(Q)$ in time $O(\sqrt{N})$ and constant memory

What we will study now

(specific to elliptic curves)

- MOV attack (Menezes-Okamoto-Vanstone): subexponential algorithm for some (weak) parameters.
- · Invalid curve attack: implementation specific attack on ECDH

The MOV attack

Pairings

Pairing

Let G_1, G_2, H be groups. A **pairing** is a map $e: G_1 \times G_2 \to H$, $(g_1, g_2) \mapsto h = e(g_1, g_2)$ which is bilinear and non-degenerate.

In this lecture, we study pairings, where

- $G_1 = G_2 = E[N]$: The N-torsion group of an elliptic curve E
- H is an "easier group"

Main idea of MOV

Use a pairing to translate ECDLP in $E(\mathbb{F}_q)$ to DLP in \mathbb{F}_{q^d} .

6

Determinant pairing

Determinant pairing

 E/\mathbb{F}_q elliptic curve, $N\in\mathbb{N}$, $\gcd(q,N)=$ 1. Write

$$E[N] = \langle T_1, T_2 \rangle \cong \mathbb{Z}/N\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z}.$$

The **determinant pairing** w.r.t. (T_1, T_2) is

$$\det: E[N] \times E[N] \to \mathbb{Z}/N\mathbb{Z}, (aT_1 + bT_2, cT_1 + dT_2) \mapsto ad - bc$$

Properties: bilinear, alternating, non-degenerate

(a) bilinear:

$$\det(P_1 + P_2, Q) = \det(P_1, Q) + \det(P_2, Q),$$

$$\det(P, Q_1 + Q_2) = \det(P, Q_1) + \det(P, Q_2),$$

for all
$$P_1, P_2, Q_1, Q_2 \in E[N]$$

Solving ECDLP with the determinant pairing (?)

```
ECDLP challenge: Q \in \langle P \rangle, find n_a = \text{dlog}_P(Q). (E/\mathbb{F}_q \text{ elliptic curve}, N = \#\langle P \rangle)
```

- 1. Find $T \in E[N]$ with $\alpha = \det(P, T)$ has order N.
- 2. Compute $det(Q, T) = \beta$.
- 3. Note that $\det(\underbrace{P+\cdots+P}_{n_a},T)=n_a\cdot\det(P,T)$ (linearity), $\Rightarrow n_a=\beta/\alpha\in\mathbb{Z}/\mathbb{NZ}.$

Two problems with this approach

- The full torsion group E[N] is only defined over a field extension, i.e. $T \in E(\mathbb{F}_{a^d})$ for possibly large d.
- It is not known how to compute the determinant pairing efficiently.

Weil pairing

The **Weil pairing** (André Weil '1940) is a pairing

$$e_N: E[N] imes E[N] o oldsymbol{\mu_N} \subset \mathbb{F}_{q^d}$$

with E/\mathbb{F}_q elliptic curve, $\gcd(N,q)=1$ and μ_N the group of N-th roots of unity.

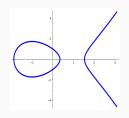
- Properties: bilinear, alternating, nondegenerate (and more)
- Relation with the determinant pairing (exercise): $e_N(P,Q) = \mu^{\det(P,Q)}$, where $\mu = e_N(T_1,T_2)$
- Evaluation of e_N is efficient (in \mathbb{F}_{q^d}) using Miller's algorithm (Victor Miller, 1986)

We use the Weil pairing, and Miller's algorithm as a black box.

SDQP You can compute $e_N(P,Q)$ using P.weil_pairing(Q,N) (more details on the evaluation of e_N in the lecture notes)

9

Example N = 2



$$E: y^2 = x^3 + ax + b$$
 over \mathbb{F}_q

- Write $x^3 + ax + b = (x \alpha_1)(x \alpha_2)(x \alpha_3)$
- $E[2] = \{(\alpha_1, 0), (\alpha_2, 0), (\alpha_3, 0), \infty\}$ $\{P_1, P_2, P_3, P_\infty\}$

The 2-Weil pairing
$$e_2: E[2] \times E[2] \rightarrow \{\pm 1\}$$

$$(P_i, P_j) \mapsto \begin{cases} 1 & \text{if } i = j \text{ or } \infty \in \{i, j\} \\ -1 & \text{otherwise} \end{cases}$$

Embedding degree

Embedding degree

Let N be a positive integer, and \mathbb{F}_q a finite field. The smallest value d with $N \mid q^d - 1$ is called the **embedding degree** of N in \mathbb{F}_q .

- \mathbb{F}_{q^d} is the smallest field extension with $\mu_{\mathbf{N}} \subset \mathbb{F}_{q^d}$.
- If $\gcd(N,q-1)=$ 1, then $\emph{E}[N]\subset \emph{E}(\mathbb{F}_{q^d})$ (Silverman, Lemma XI.6.2)

Examples (slide 3)

- (a) $E(\mathbb{F}_{13}) = 19$, and the smallest integer d with $19 \mid 13^d 1$ is d = 18.
- (b) $E(\mathbb{F}_p)=N\approx 2^{256}$ (Secp256k1) $d=1929868153955269923726183083478131797547292737984581739 7100860523586360249056, in particular <math>d\approx 2^{253}$.

The MOV algorithm

by Alfred Menezes, Scott Vanstone, Tatsuaki Okamoto (1991)

Algorithm 1 MOV algorithm

Input:
$$P \in E(\mathbb{F}_q)$$
 with $ord(P) = N$, $Q \in \langle P \rangle$, and $gcd(q-1,N) = 1$.

Output:
$$g, A \in \mathbb{F}_{q^d}^*$$
 with $dlog_q(A) = dlog_P(Q)$.

- 1: $d \leftarrow \text{embedding degree of } N \text{ in } \mathbb{F}_q$
- 2: Determine $E(\mathbb{F}_{q^d}) \cong \mathbb{Z}/N_1\mathbb{Z} \times \mathbb{Z}/N_2\mathbb{Z}$
- 3: repeat

4:
$$T \stackrel{\$}{\leftarrow} E(\mathbb{F}_{q^d})$$

5:
$$T \leftarrow [N_1/N] \cdot T$$

6:
$$g \leftarrow e_N(P,T) \in \mu_N \subset \mathbb{F}_{q^d}^*$$

7: **until**
$$ord(g) = N$$

8:
$$A \leftarrow e_N(Q,T) \in \mu_{\mathbf{N}} \subset \mathbb{F}_{a^d}^*$$

9: **return** (*g*, *A*)

✓ $e_N(Q,T) = e_N([n_a]P,T) = e_N(P,T)^{n_a}$ (linearity) (note T is a point with non-trivial Weil-pairing)

Runtime

• Number of multiplication over \mathbb{F}_{q^d} is polynomial in $\log(N)$

Memory

• O(1) elements in \mathbb{F}_{q^d}

Correctness

^aCan be done in heuristic polynomial time.

Example of the MOV algorithm

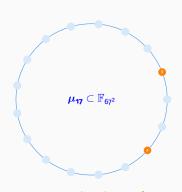
$$E: y^2 = x^3 + x \text{ over } \mathbb{F}_{67}$$

•
$$P = (64, 29), Q = (6, 50)$$

•
$$\#\langle P \rangle = 17$$

• 17 |
$$67^2 - 1 \Rightarrow d = 2$$

•
$$E[17] = \langle P, T \rangle$$
 with $T = (11i + 37, 22i + 42) \in E(\mathbb{F}_{67^2})$



MOV

•
$$g = e_{17}(P,T) = 39i + 50$$

•
$$A = e_{17}(Q,T) = 46i + 30$$

$$\Rightarrow \operatorname{dlog}_{P}(Q) = \operatorname{dlog}_{g}(A) = 14.$$

Consequences for Elliptic Curve Cryptography

Destructive

- ECDLP can be solved in subexponential time if the embedding degree is small (MOV + index calculus)
- ⇒ choose elliptic curves with large embedding degrees for Elliptic Curve Diffie-Hellman

Constructive

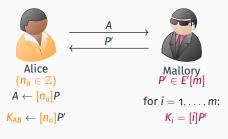
Pairings can also be used to construct more advanced cryptographic protocols

- Tripartite Diffie-Hellman key exchange (Antoine Joux, 2000)
- Identity-based encryption (Dan Boneh, Matthew Franklin, 2001)
- BLS Digital Signature (Dan Boneh, Ben Lynn, Hovav Shacham, 2004)
- ⇒ field of Pairing-based cryptography

Invalid curve attack

Invalid curve attack

by Ingrid Biehl, Bernd Meyer, Volker Müller (2000)



Setup
$$E: y^2 = x^3 + ax + b$$
 over \mathbb{F}_q , $P \in E(\mathbb{F}_q)$, $ord(P) = N$ is prime.

Mallory impersonates Bob, to find Alice's secret key.

- Choose $E': y^2 = x^3 + ax + b'$, and $P' \in E'(\mathbb{F}_q)$ with ord(P') = m small
- Mallory computes all possible $K_i = [i]P'$ and check if $K_i = K_{AB}$.
- \Rightarrow recover $n_a \pmod{m}$.

Main observation The addition formulas only depend on *a*, not on *b*.

Example of an invalid curve attack

Setup
$$E: y^2 = x^3 + x$$
 over \mathbb{F}_{67} , $P = (64, 29)$, $ord(P) = 17$.

Alice
$$(n_a = 14)$$

$$A = [14]P = (6,50)$$

$$K_{AB} = [14]P' = \infty$$

Mallory
$$P' = (12, 0)$$

$$K_0 = \infty$$

$$K_0 = \infty$$
 $K_1 = P'$

Mallory chooses

$$E': y^2 = x^3 + x + 2,$$

 $\#E'(\mathbb{F}_q) = 2^3 \cdot 3^2.$

(1)
$$P' = (12, 0)$$
 with $ord(P') = 2$

•
$$K_0 = [0]P' = \infty$$
, $K_1 = 1P'$.

$$\Rightarrow n_a \equiv 0 \pmod{2}$$
.

(2)
$$P' = (5,20)$$
 with $ord(P') = 3$

•
$$K_0 = \infty$$
, $K_1 = (5, 20)$, $K_2 = (5, 47)$.

$$\Rightarrow n_a \equiv 2 \pmod{3}$$
.

(3)
$$P' = (13, 1)$$
 with $ord(P') = 9$

•
$$K_2 = (36, 53)$$
, $K_5 = (18, 31)$, $K_8 = (13, 66)$.

$$\Rightarrow n_a \equiv 5 \pmod{9}$$
.

CRT:
$$n_a \equiv 14 \pmod{18}$$

Countermeasures

1. Public key validation

• Alice verifies that the point send by Bob lies on the curve. I.e. for $B = (x_B, y_B)$, she checks

$$y_B^2 \stackrel{?}{=} x_B^3 + ax_B + b.$$

→ Cheap and easy modification

2. x-only arithmetic

- Scalar multiplication is well defined for x-coordinates, i.e. there
 exist formulas that given x(P) and N, output x([N]P) (next slide)
- Alice and Bob only publish the x-coordinates x_A of A and x_B of B.
 This is enough to find the x-coordinate x_{AB} of K_{AB}.
- Formulas for x-only arithmetic implicitly check that a point is on the correct curve, and they are often faster than "normal" addition formulas.
- → Elegant solution

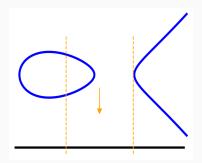
Digression: x-only arithmetic

Geometric description

- projection $\pi : E \to \mathbb{P}^1$ $\pi(P) = x_P$, where $P = (x_P, y_P)$
- $\pi(-P) = \pi(P)$ for all $P \in E$.
- $\#\pi^{-1}(X_0) = 2$, unless $(X_0, 0) \in E[2]$.

Remnants of the group structure

- ✓ Scalar multiplication [N]x(P) = x([N]P)
- ✓ Translation by 2-torsion points x(Q) + x(P) = x(Q + P) if one of P, Q is 2-torsion.
- **x** Addition of points x(P) + x(Q) = ?



Example X([2]P):

$$\frac{(3X(P)^2+a)^2}{4(X(P)^3+aX(P)+b)} - 2X(P)$$

Elliptic curves in cryptography

This lecture on Elliptic curve Diffie-Hellman (ECDH)

- The underlying hardness assumption is ECDLP, it can be solved in time $O(\sqrt{N})$ for any elliptic curve (generic algorithms).
- Weil pairing $e_N: E[N] \times E[N] \to \mu_N$ allows to translate ECDLP to DLP when the embedding degree is small (MOV attack)
- In the implementation: prevent invalid curve attacks

More attacks on special parameters using fancy math

- Over \mathbb{F}_q with $q=p^k$ and k>2, there are better attacks than generic attack using Weil descent to obtain a DLP on an abelian variety (Gerhard Frey, 1998); or a variant of index calculus (Pierrick Gaudry, 2009)
- For E with $E(\mathbb{F}_p) = p$, the ECDLP can be solved in polynomial time by computing in the formal group of an elliptic curve.