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What we learned so far

Lecture 1 The Diffie-Hellman key exchange - first protocol in public
key cryptography.

Lecture 2 DLP in a prime order group (order N) in finite fields.

and : O(V'N)

: subexponential running time
Lecture 3 We discussed elliptic curves (mostly over finite fields).

+ Addition law on the set of points
+ Cryptographic one-way function given by scalar multiplication

This lecture We study Elliptic Curve Diffie-Hellman and the ECDLP



Introducing ECDH and ECDLP




Elliptic curve Diffie-Hellman (ECDH)

Q. 3
Setup ( B \

\
« Elliptic curve E over F e Bdb//

(na E€Z) (nb (S Z)
A« [n,|P B <« [ny]P
I<AEJ — [nn]B KBA & [nb]A
* Point P € E(Fy), + Secret keys and (n, € Z)
#(P) =N « Public keys A and B ¢ E(F,)

« Shared key Kag = Kga € E(Fg)



ECDH Example

Setup E : y> = x3 — 3x + 1 0over Fy3,and P = (0,1) € E(Fy3),

ord(P) = 19.
sage: Fp = GF(13) (1’8) \ ;
sage: E = EllipticCurve(Fp, (-3, (41)

1)) \'
sage: P = E([0,1]) -
sage: A = 5 % P; A Alice Bob
(1 :8: 1) (nb:12)
sage: K = 5 » E([4,1]); K
(10 : 3 : 1) A=[5]P=(1,8) B = [12]P = (4,1)

— (514 1) = Kea = [12](1,8) = (10,3)

Real-world setup (Secp256k1 used in Bitcoin)
sage: p = oXfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffcaf
sage: Fp = GF(p)

sage: a = Fp(o)

sage: b = Fp(7)

sage: E = EllipticCurve(Fp, (a, b))

sage: P = E(ox79be667efodcbbac55a06295ce870bo7029bfcdb2dce28d959f2815b16f81798, o

x483ada7726a3c4655dasfbfcoe1108a8fd17b448a68554199c47de8ffhiedsbs)



Elliptic curve discrete logarithm problem

For P € E(K) and Q € (P), the ECDLP asks to find n, € Z
so that [ng]P = Q.
Notation: n, = dlog,(Q).

+ Natural analogue of DLP
= the word logarithm is used even though E is an additive
group.

« If DLP is hard, then scalar multiplication is a cryptographic
one-way function.



Analysis of ECDH and ECDLP

How hard is it to compute logp(Q) for some P € E(K) of order N?

What we already know
(from the generic group setting)

. For N =[] p; composite, the hardness only
depends on the largest prime factor p;

. We can solve logp(Q) in time O(+/N) and constant
memory

What we will study now
(specific to elliptic curves)

. (Menezes-Okamoto-Vanstone): subexponential
algorithm for some (weak) parameters.

. : implementation specific attack on ECDH



The MOV attack




Let G,, G, H be groups. A pairing is a map
€:G;xGy, —H, (9+,9,) — h=e(g4,9,)
which is and

In this lecture, we study pairings, where
+ G, = G, = E[N]: The N-torsion group of an elliptic curve E

+ His an “easier group”

Main idea of MOV
Use a pairing to translate ECDLP in E(FF5) to DLP in Fa.



Determinant pairing

E/Fq elliptic curve, N € N, gcd(q, N) = 1. Write
E[N] = (., To) = Z/NZ x Z/NZ.
The determinant pairing w.r.t. (T, T,) is

det : E[N] x E[N] — Z/NZ, (aT,+bTs, cT,+dT,) — ad—bc

Properties: bilinear, alternating, non-degenerate
(a) bilinear:
det(P; + P,, Q) = det(P,, Q) + det(P,, Q),
det(P, Q, + Q,) = det(P, Q,) + det(P, Q,),
for all P4, P,,Q4,Q, € E[N]



Solving ECDLP with the determinant pairing (?)

ECDLP challenge: Q € (P), find n, = dlog,(Q).
(E/TFq elliptic curve, N = #(P))

1. Find T € E[N] with o = det(P, T) has order N.
2. Compute det(Q, T) = .
3. Note that det(P+--- + P, T) = ng - det(P, T) (linearity),
= Nng=f/a € Z/Nni.
Two problems with this approach

« The full torsion group E[N] is only defined over a field
extension, i.e.

* It is not known
efficiently.



The Weil pairing (André Weil '1940) is a pairing
ey : E[N] X E[N] — un C qu

with E/Fq elliptic curve, gcd(N, q) = 1 and py the group of N-th roots
of unity.
- Properties: bilinear, alternating, nondegenerate (and more)
« Relation with the determinant pairing (exercise):
en(P, Q) = p*"9, where 1 = ey(T;, T,)
+ Evaluation of ey is efficient (in F,¢) using Miller’s algorithm
(Victor Miller, 1986)
We use the Weil pairing, and Miller’s algorithm as a black box.

5SDCE You can compute ey(P, Q) using P.weil_pairing(Q,N)
(more details on the evaluation of ey in the lecture notes)



Example N =2

¢ E[2] = {(a1,0), (042,0), (04370),00}
{P;,P,,P;, P}

' E:y>=x3+ax+boverF,
/RN « Write X3 + ax 4+ b = (x — as)(X — ) (X — a3)

The 2-Weil pairing e, : E[2] x E[2] — {£1}

(PP s {1 ifi=jorooe {ij}

—1 otherwise
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Embedding degree

Let N be a positive integer, and F, a finite field. The smallest
value d with N | g? — 1is called the embedding degree of N in
Fq.

* Fge is the smallest field extension with uy C Fea.
* If gcd(N,q — 1) = 1, then E[N] C E(F,q) (Silverman, Lemma XI.6.2)

Examples (slide 3)

(@) E(F13) = 19, and the smallest integer d with 19 | 139 — 1 is
(b) E(F,) = N = 2% (Secp256k1)
d = 1929868153955269923726183083478131797547292737984581739
7100860523586360249056, in particular

"



The MOV algorithm

by Alfred Menezes, Scott Vanstone, Tatsuaki Okamoto (1991)

Algorithm 1 MOV algorithm

Input: P € E(F,;) with ord(P) = N, Q € (P),

and ged(g — 1,N) = 1.

Output: g,A € I, with dlog,(A) = dlogp(Q).
1. d < embedding degree of N in I,
: Determine E(Fqa) = Z/N\Z x Z/N,Z °

2
3: repeat

i TEE(Fg)

5 T+« [N./N]-T

6: g+ ey(P,T) € uy C ]F;d
7- until ord(g) = N

8 A+ ey(QT)e uyC Foa

9: return (g,A)

aCan be done in heuristic polynomial time.

Correctness

‘/ eN(Q7 T) = eN([na]P7 T) =
en(P,T)" (linearity)
(note T is a point with
non-trivial Weil-pairing)

Runtime

» Number of multiplication
is polynomial in
log(N)
Memory

* 0(1) elements in Fq
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Example of the MOV algorithm

E:y*>=x3+xoverFg
L]

) ° . Lt o, y )
o . . /
’ . '.: ° . ¢ ®e ° °
0 ° o o R |
EM ’ ° : : | Mz C ]F672
@ .. '... ¢ ’ [} .. e
. ‘ . MOV
10 o
. e © . ® R . .. = AN
« P =(64,29),Q = (6,50) * g=ey(P,T)= 39I'+ 50
* #{P) =17 * A=ey(Q,T) = 46i +30

c17|62-1=>d=2
* E[17] = (P, T) with T = = dlogp(Q) = dlogy(A) = 14.

(110 +37,22i + 42) € E(Fep2)
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Consequences for Elliptic Curve Cryptography

Destructive

« ECDLP can be solved in time if the

(MOV + index calculus)
= choose elliptic curves with

Constructive
Pairings can also be used to construct more advanced cryptographic
protocols

« Tripartite Diffie-Hellman key exchange (Antoine Joux, 2000)

- Identity-based encryption (Dan Boneh, Matthew Franklin, 2001)

« BLS Digital Signature (Dan Boneh, Ben Lynn, Hovav Shacham,
2004)

= field of Pairing-based cryptography
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Invalid curve attack




Invalid curve attack

by Ingrid Biehl, Bernd Meyer, Volker Miiller (2000)

B Mallory impersonates Bob, to find
— Alice’s secret key.
\ —

» Choose E' : y> = x3 +ax + b/,

(f,ﬁlifi) and P’ € E'(IFq) with
A <« [nJ]P Foft e e i1 ord(P") = m small
Kag < [na]P’ Ki = [i]P’ « Mallory computes all
possible K; = [i]P" and check
Setup £ : y*> = x3 + ax + b over Fy, if Ki = Kas.
P € E(Fy), ord(P) = N is prime. = recover nq (mod m).

Main observation The addition formulas only depend on a, not on b.
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Example of an invalid curve attack

/ H /7
Setup £ : 2 = X* + x over e, (1) P = (12,0) with ord(P") = 2
P = (64,29), ord(P) = 17. * Ko = [O]P" = o0, Ky = 1P".
= Ng =0 (mod 2).

Q (6,50) ﬁ (2) P’ = (5,20) with ord(P') = 3

(12,0)
P» ————— “ + Ko = 00, Ky = (5.20), K, = (5.47).
Ali =

iy Iciq) P’Nfl(l‘lozr,yoi = Ng =2 (moc.l 3).
A = [14]P = (6,50) K — o0 (3) P = (13,1) with ord(P") = 9
Kag = [14]P" = 0o Ki=P * Ky = (36,53), Ks = (18,31),

Ks = (13, 66).
Mallory chooses = Ng =5 (mod 9).

E y>=x3+x+2
#E' (Fq) =23 - 32 [ CRT: ng = 14 (mod 18) ]




Countermeasures

1. Public key validation
« Alice verifies that the point send by Bob lies on the curve. l.e. for
B = (xs, ys), she checks
y3 = X3 + axs + b.
—

2. x-only arithmetic

- Scalar multiplication is well defined for x-coordinates, i.e. there
exist formulas that given x(P) and N, output x([N]P) (next slide)

« Alice and Bob only publish the x-coordinates x, of A and xg of B.
This is enough to find the x-coordinate xag of Kag.

+ Formulas for x-only arithmetic implicitly check that a point is on
the correct curve, and they are often faster than “normal”
addition formulas.



Digression: x-only arithmetic

Geometric description

m(P) = xp, where P = (Xp, ¥p)
« n(—P) = w(P) forall P € E. O
g , unless

(X0,0) € E[2].

Remnants of the group structure
v Scalar multiplication
[NIx(P) = x([N]P)
v Translation by 2-torsion points
x(Q) + x(P) = x(Q + P) if one of
P,Q is 2-torsion. (3x(PY +a)°

x Addition of points x(P) + x(Q) =? e

Example x([2]P):

2x(P)




Summary and outlook




Elliptic curves in cryptography

This lecture on Elliptic curve Diffie-Hellman (ECDH)

+ The underlying hardness assumption is ECDLP, it can be solved
in time O(+/N) for any elliptic curve (generic algorithms).

+ Weil pairing ey : E[N] x E[N] — uy allows to translate ECDLP to
DLP when the embedding degree is small (MOV attack)

+ In the implementation: prevent invalid curve attacks
More attacks on special parameters using fancy math

* Over Fq with g = pfand k > 2, there are better attacks than
generic attack using Weil descent to obtain a DLP on an abelian
variety (Gerhard Frey, 1998); or a variant of index calculus
(Pierrick Gaudry, 2009)

« For E with E(F,) = p, the ECDLP can be solved in polynomial
time by computing in the formal group of an elliptic curve.
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