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What are elliptic curves



Elliptic curves

Convention in this lecture: K field, char(p) ̸= 2, 3.

Elliptic curve

An elliptic curve E defined over K consists of a point at infinity
∞ and points (x, y) in the plane satisfying an equation of the
form

y2 = x3 + ax + b

with a,b ∈ K and 4a3 + 27b2 ̸= 0.

• Such an equation is called short Weierstrass equation.
• 4a3 + 27b2 ̸= 0 ensures smoothness
⇒ ∆ = −16(4a3 + 27b2) is the discriminant of E.
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Typical pictures of elliptic curves (over R)

(a) E1/R defined by
y2 = x3 − 3x + 1.

(b) E2/R defined by
y2 = x3 − x + 2.

(c) C/R (not elliptic)
y2 = x3 − 3x + 2
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Points on elliptic curves



Rational points

Points on elliptic curves

Let E : y2 = x3 + ax + b elliptic curve over K. For any field
extension L/K, the set

E(L) = {(u, v) ⊂ L2 | v2 = u3 + au+ b}︸ ︷︷ ︸
affine points

∪ {∞}

is called the set of L-rational points of E.

• Questions we discuss in this lecture:
What can we say about the order of an elliptic curve: #E(K)
(over R, over Q, over Fq)?
What is the “structure” of the set E(L)?
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Example E : y2 = x3 − 3x + 1

• E/R: infinitely many points
∞, P1 = (0, 1), P2 = (−1,

√
3),

P3 = (2,
√

3), P4 = (3,
√

19), . . .

• E/Q: infinitely many (here!)
∞, P1 = (0, 1), P2 = (0,−1),( 9

4 ,
19
8
)
,
(

−152
81 , 107

729

)
, . . . ,

• E/F13: 19 points
∞, (0, 1), (0,−1), (1, 5), (1,−5),
(2, 4), . . .
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The point at infinity

An elliptic curve with short Weierstrass equation y2 = x3 + ax + b
should really be viewed as a planar projective curve.

• It lives in the projective plane P2
K

• elements of P2
K :

(X, Y, Z) ∈ K3 \ {(0,0,0)} modulo the equivalence relation
(X, Y, Z) ∼ (λX, λY, λZ)

→ notation: (X : Y : Z) ∈ P2
K(K).

• It is defined by a homogeneous polynomial F ∈ K[X, Y, Z] (all
monomials have the same degree):

E : Y2Z = X3 + aXZ2 + bZ3 in P2.

Points on the projective curve:

• affine points: (x : y : 1)
• points at infinity (x : y : 0) ⇒ here: only one ∞ = (0 : 1 : 0)
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Elliptic curves in SageMath

# Example over QQ
sage: E1 = EllipticCurve([-3,1]); E1
Elliptic Curve defined by yˆ2 = xˆ3 - 3*x + 1 over Rational

Field
sage: P1 = E1([0,1]); P1
(0 : 1 : 1)
sage: P2 = E1([9/4,19/8]); P2
(9/4 : 19/8 : 1)
sage: P2 == E1([18,19,8])
True

# Example over a finite field
sage: E2 = EllipticCurve(GF(13),[-3,1]); E2
Elliptic Curve defined by yˆ2 = xˆ3 + 10*x + 1 over Finite Field

of size 13
sage: E2.points()
[(0 : 1 : 0), (0 : 1 : 1), (0 : 12 : 1), (1 : 5 : 1), (1 : 8 :

1), (2 : 4 : 1), (2 : 9 : 1), (4 : 1 : 1), (4 : 12 : 1), (6
: 2 : 1), (6 : 11 : 1), (9 : 1 : 1), (9 : 12 : 1), (10 : 3
: 1), (10 : 10 : 1), (11 : 5 : 1), (11 : 8 : 1), (12 : 4 :
1), (12 : 9 : 1)]
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The group law



Geometric description

Adding points P,Q ∈ E.

• Line L through P and Q
• There is a third intersection

point R ∈ E ∩ L (Bezout’s
Theorem)

• P+Q is the reflection of R across
the x-axis

P

Q
R

P + Q
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Explicit formulas

Group law

E : y2 = x3 + ax + b elliptic curve over K,
P1 = (x1, y1),P2 = (x2, y2) ∈ E(K̄), then P1 + P2 = P3 = (x3, y3)

as follows:
(a) If x1 ̸= x2, then (x3, y3) = (m2 − x1 − x2,m(x1 − x3)− y1)

with m = y2−y1
x2−x1

.
(b) If x1 = x2 and y1 = y2 ̸= 0, then

(x3, y3) = (m2 − 2x1,m(x1 − x3)− y1) with m =
3x2

1+a
2y1

.
(c) If x1 = x2 and y1 ̸= y2 or y1 = y2 = 0, then P1 + P2 = ∞.

Moreover, we define P+∞ = P for all P ∈ E(K̄).

Then (E(K̄),+) is an abelian group with identity element ∞.
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Relation with the geometric interpretation

Setup: E : y2 = x3 + ax + b elliptic curve over K,
P1 = (x1, y1),P2 = (x2, y2) ∈ E(K̄), then P1 + P2 = P3 = (x3, y3):

(a) If x1 ̸= x2, then (x3, y3) = (m2 − x1 − x2,m(x1 − x3)− y1) with
m = y2−y1

x2−x1
.

(handwritten notes)
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Proving the group law

• neutral element: P+∞ = P for P (by definition)
⇒ 0E = ∞ ✓

• existence of inverses: P1 = (x1, y1), then −P1 = (x1,−y1)

(case (c) of the group law). ✓
• associativity:

• tedious computation with many case distinctions
use computer algebra software ( )

• elegant proof using divisors (requires more algebraic geometry)
. (✓)

• commutativity: swap P1 and P2 everywhere - nothing changes ✓
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Example E : y2 = x3 − 3x + 1 over Q (doubling)

P1 = (0, 1) , P2 =

(
9
4 ,

19
8

)
∈ E(Q).

• x1 = 0 ̸= 9/4 = x2
⇒ case (a)

• m =
19
8 −1
9
4 −0 = 11

18

• x3 =
( 11

18
)2 − 0 − 9

4 = −152
81

• y3 =
11
18
(
0 − −152

18
)
− 1 =

107
729 ,

P1 + P2 =
(

−152
81 , 107

729

)
.
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Scalar multiplication and torsion



Scalar multiplication

Notation

Let E be an elliptic curve over K, and N ∈ Z an integer.

[N] : E(K) → E(K), P 7→ P+ · · ·+ P︸ ︷︷ ︸
N times

,

is the scalar multiplication by N.

Spoiler: Scalar multiplication is a conjectural cryptographic
one-way function

• Evaluation is fast using a double-and-add strategy (Exercises)
• Example: [210]P = [2]([2] · · · ([2]P)
→ 10 = log2(210) doublings

• Inversion is (conjecturally) hard: next lecture
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Torsion

N-torsion group

Let E be an elliptic curve over K, N ≥ 1 and integer. The group
of points of order N is denoted by

E[N] = {P ∈ E(K̄) | [N]P = ∞}.

We say that E[N] is the N-torsion group of E.

Example 1: N = 2
E1 : y2 = x3 − 3x + 1 over Q
• x3 − 3x+ 1 = (x− α1)(x− α2)(x− α3)

• E[2] = {(α1,0), (α2,0), (α3,0),∞},
but E(Q)[2] = {∞}

• Note: (α1,0) + (α2,0) = (α3,0)
⇒ E[2] ∼= Z/2Z× Z/2Z 13



Structure of the torsion group

Structure of E[N]

Let E be an elliptic curve over K and N ≥ 1 an integer.
1. If char(K) = 0 or char(K) = p with p ∤ N. Then

E[N] ∼= Z/NZ× Z/NZ.

2. If char(K) = p > 0, then one of the following is true:
(i) E[pk] ∼= {∞} for all k ≥ 1.

(ii) E[pk] ∼= Z/pkZ for all k ≥ 1.

• Proof reference: Silverman Corollary III.6.4
• Main idea: study [N], the multiplication by N map, and find that

it is of degree N2 (requires more ingredients).
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Elliptic curves over finite fields



Hasse’s theorem

What’s the number of Fq-rational points of an elliptic curve E?

• Very rough bounds: ∞ ∈ E(Fq) and (x, y) ∈ E \ {∞} ⊂ Fq × Fq

1 ≤ #E(Fq) ≤ 1 + q2.

• Better upper bound: Let x0 ∈ Fq, then y2 = x3
0 + ax0 + b has at

most two solutions ±y0.

1 ≤ #E(Fq) ≤ 1 + 2q.

Theorem (Hasse, 1936)

Let E be an elliptic curve over a finite field Fq. Then

q+ 1 − 2√q ≤ #E(Fq) ≤ q+ 1 + 2√q.
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A concrete formula (special case)

Lemma

Let p ≡ 2 (mod 3) be a prime , and consider the elliptic curve
E : y2 = x3 + 1. Then #E(Fp) = p+ 1.

Let y0 ∈ Fp. How many solutions x0 ∈ Fp with x3
0 = y2

0 − 1 are there?

• Which elements in Fp are cubes?
Since, p ≡ 2 (mod 3), all elements are cubes!

• 0 = 03 is a cube
• For g ∈ F∗

p , we have 3√g = h = g(2p−1)/3 ∈ Fp∗ .
• How many cube roots can exist?

Exactly one, note that Fp does not contain primitive third roots
of unity.

Conclusion: For every y0 ∈ Fp, there exists a unique x0 ∈ Fp so that
(x0, y0) ∈ E(Fp) ⇒ p affine points, and in total #E(Fp) = p+ 1.
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Group structure of the rational points

Proposition

Let E be an elliptic curve over Fq. Then

E(Fq) ∼= Z/N1Z× Z/N2Z

for some integers N1,N2 ≥ 1 and N2 | N1.

Proof
• Let N = #E(Fq). Then [N] · P = ∞ for every element P ∈ E(Fq)

(finite group) ⇒ E(Fq) ⊂ E[N].
• E(Fq) ∼= G ⊂ Z/NZ× Z/NZ (slide 15)
⇒ G = Z/N1Z× Z/N2Z with N1,N2 | N, and N2 | N1.

Question What are the possible group structures for E:

1. E : y2 = x3 − 3x + 1 over F13, #E(F13) = 19 (slide 4)
2. E : y2 = x3 + x + 1 over F13, #E(F13) = 18.
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Example E : y2 = x3 − x over F5

Goal: Determine the
group structure of

E : y2 = x3 − x
over F5

1. Find a point P1 ∈ E(F5) \ {∞} : P1 = (0,0)
2. Compute the order of P1: [2]P1 = ∞

⇒ Z/2Z ∼= ⟨P1⟩ ⊂ E(F5)

3. Find a point P2 ∈ E(F5) \ ⟨P1⟩ : P2 = (1,0)
4. Compute the order of P2: [2]P2 = ∞

⇒ Z/2Z× Z/2Z ∼= ⟨P1,P2⟩ ⊂ E(F5)

5. Find a point P3 ∈ E(F5) \ ⟨P1,P2⟩ : P3 = (2, 1)
6. Compute the order of P3: [2]P3 = (0,0) = P1

⇒ Z/4Z× Z/2Z ∼= ⟨P3,P2⟩ ⊂ E(F5).
We are done here! Why?

• Hasse bound: 2 ≤ #E(F5) ≤ 10.
• our computations: 8 | #E(F5).

E(F5) ∼= Z/4Z× Z/2Z
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Summary of Lecture 3

Elliptic curves: geometric objects with a group
structure
• Addition law P+ Q for P,Q ∈ E(K)

• Explicit formulas
• Geometric interpretation

• Scalar multiplication [N] : E→ E, and torsion points E[N]
• Elliptic curves over finite fields Fq

• Hasse bound: 1 + q− 2√q ≤ #E(Fq) ≤ 1 + q+ 2√q
• Group structure: E(Fq) ∼= Z/N1Z× Z/N2Z.

Next lecture Elliptic curves in cryptography

• Why are elliptic curves better generic groups?
• Why are some elliptic curves worse generic groups?
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