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What are elliptic curves



Convention in this lecture: K field, char(p) # 2,3.

An elliptic curve E defined over K consists of a point at infinity
oo and points (x,y) in the plane satisfying an equation of the
form

v =x3+ax+b q

with a, b € K and 4a3 + 27b% # o.

+ Such an equation is called short Weierstrass equation.

* 4a3 + 27b% # 0 ensures smoothness
= A = —16(4a® + 27b?) is the discriminant of E.



Typical pictures of elliptic curves (over R)
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(a) E1/R defined by (b) E5 /R defined by (c) C/R (not elliptic)
Y2 =x3 —3x+1. Y2 =x3 —x+2. Y2 =x3 —3x+2



Points on elliptic curves



Rational points

Let E : y> = x3 + ax + b elliptic curve over K. For any field
extension L/K, the set

E(L) = {(u,v) c L*|v* =u®+au+ b} U {0}

affine points

is called the set of L-rational points of E.

+ Questions we discuss in this lecture:
What can we say about the order of an elliptic curve: #E(K)
(over R, over Q, over FFg)?
What is the “structure” of the set E(L)?



Example E : y> = x3 — 3x +1

E/R: infinitely many points
o, P1 - (O>1)r P2 = (_17 \/§),
P3:(27\/§)’ P4:(3,\/ﬁ),

E/Q: infinitely many (here!)
o0, P1 = (071), P2 = (O, 71),

(2 E)‘ —152 107

478 8 729 )

E/Fi5: 19 points
00, (07 1)! (O> _1)r (175)! (17 _5)1
(2,4), ...

~/



The point at infinity

An elliptic curve with short Weierstrass equation y2 = x3 + ax + b
should really be viewed as a planar projective curve.

« It lives in the projective plane P%

+ elements of P%:
(X,Y,Z) € K®\ {(0,0,0)} modulo the equivalence relation
(X,Y,2Z) ~ (AX,AY, \2)
— notation: (X : Y : Z) € Px(K).

« Itis defined by a (all
monomials have the same degree):

in P2
Points on the projective curve:

« affine points: (x : y : 1)
« points at infinity (x : y : 0) = here: only one coc = (0:1: 0)



Elliptic curves in SageMath

# Example over QQ

sage: E1 = EllipticCurve([-3,1]); E1

Elliptic Curve defined by y"2 = x"3 - 3*x + 1 over Rational
Field

sage: P1 = E1([0,1]); P2

(0 : 1 : 1)

sage: P2 = E1([9/4,19/8]); P2

(9/4 : 19/8 : 1)

sage: P2 == Ea([18,19,8])

True

# Example over a finite field
sage: E2 = EllipticCurve(GF(13),[-3,12]1); E2
Elliptic Curve defined by y"2 = x"3 + 10*x + 1 over Finite Field
of size 13
sage: E2.points()
[(6:12:0), (0 :2:12), (06 :122:12), (2 :5:1), (2 :8:
1), (2 : 4 : 1), (2 :9:1), (4 :1:12), (4 : 22 : 1), (6
:2:1), (6 : 121 : 1), (9 :1:1), (9 :12: 1), (106 : 3
1), (10 : 20 : 1), (212 : 5 : 1), (12 : 8 : 1), (12 : 4 :
1), (12 : 9 : 1)]



The group law



Geometric description

Adding points P,Q < E.

« Line L through P and Q

» There is a third intersection
point R € EN L (Bezout's
Theorem)

« P+ Qs the reflection of R across
the x-axis




Explicit formulas

E:y? = x3 + ax + b elliptic curve over K,
P1 = (X1,¥1), P2 = (X2,¥2) € E(K), then P, + P, = P; = (X3,V3)
as follows:

(@) If X; # X,, then (X3,¥3) = (M? — X1 — X, M(X; — X3) — V1)
withm = 2=2

Xo—Xq°
(b) If X, = x, and y;, =y, # 0, then

(X3,¥3) = (M* — 2X;, (X7 — X3) — y1) with m = 3)(23%.
(c) Ifx, =x,and y; # y, ory, =y, = O, then P, + P, = <.

Moreover, we define P 4+ co = P for all P € E(K).

Then (E(K),+) is an abelian group with identity element occ.



Relation with the geometric interpretation

Setup: E : y? = x3 + ax + b elliptic curve over K,

Pr = (X1,¥1), P2 = (X2, ¥2) € E(K), then Py + P, = P3 = (x3,¥3):
(a) IfX1 #X2, then (X3y3) = (m2 7X1 7X2. m(Xq 7)(3) — y1) With

— Ya—h
m = pramral

(handwritten notes)



Proving the group law

+ neutral element: P + oo = P for P (by definition)
= 0=V
- existence of inverses: P, = (x;,V,), then —P; = (X4, —y1)
(case (c) of the group law). v
+ associativity:
- tedious computation with many case distinctions

use computer algebra software (SDJE)
« elegant proof using divisors (requires more algebraic geometry)

+ commutativity: swap P, and P, everywhere - nothing changes
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Example E :

y2 = x3 — 3x + 1 over Q (doubling)

° X1:O#9/A:X2

= case (a)
¥
em= & )
20 18
. M\2 _ 4 _ 9 _ —152
X3_(1 O0— 4= =
' ey, — M (g =152\ _4_
—3 4 Y3 =1 (0 18) 1=
107
729!

PP = (2,2).

1"



Scalar multiplication and torsion




Scalar multiplication

Let E be an elliptic curve over K, and N € Z an integer.
[N]: E(K) — E(K), P+ P+---+P,
H-,_/
N times

is the scalar multiplication by N.

Spoiler: Scalar multiplication is a conjectural cryptographic
one-way function

« Evaluation is fast using a (Exercises)
« Example: [2'°]P = [2]([2] - - - ([2]P)
— 10 = log,(2'°) doublings

« Inversion is (conjecturally) hard:
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Torsion

Let E be an elliptic curve over K, N > 1 and integer. The group
of points of order N is denoted by

E[N] = {P € E(K) | [N]P = oo}.

We say that E[N] is the N-torsion group of E.

Example 1: N =2
E,:y>=x3—-3x+10verQ

e X3 =3X+1=(X—a1)(X— )X —as)

/1\ . E[2] = {(05170), (04230)7 (a3,0),oo},
N

g T\ but E(Q)P] = {OO}
- * Note: (aq,0) + (az,0) = (a3,0)

= 13



Structure of the torsion group

Let E be an elliptic curve over K and N > 1 an integer.
1. If char(K) = o or char(K) = p with p { N. Then
E[N] = Z/NZ x Z/NZ.

2. If char(K) = p > 0, then one of the following is true:
(i) E[p*] = {co} forall k > 1.
(i) E[p*] = z/p*zZ forall k > 1.

+ Proof reference: Silverman Corollary 111.6.4

« Main idea: study [N], the multiplication by N map, and find that
it is of degree N2 (requires more ingredients).
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Elliptic curves over finite fields




Hasse's theorem

What's the number of FF,-rational points of an elliptic curve E?

+ Very rough bounds: co € E(Fg) and (x,y) € E\ {oo} C Fq x Fq

1< #E(Fq) <1+ q°.
- Better upper bound: Let x, € Fq, then y? = x3 + ax, + b has at
most two solutions +y,.

1< #E(Fq) <1+ 2q.

Let E be an elliptic curve over a finite field F,. Then
q+1-2yq < #E(Fq) <qg+1+2V4q.
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A concrete formula (special case)

Let p = 2 (mod 3) be a prime, and consider the elliptic curve
E:y*> =x3+1. Then #E(F,) =p +1.

Let y, € Fp. How many solutions x, € Fp, with x3 = y2 — 1 are there?

+ Which elements in I, are cubes?
Since, p =2 (mod 3), all elements are cubes!
+ 0=0°isacube
- Forg € F; , we have y/g = h = g®P="/3 ¢ ..
+ How many cube roots can exist?
Exactly one, note that F, does not contain primitive third roots
of unity.

Conclusion: For every y, € Fp, there exists a unique x, € Fp, so that
(X0, ¥0) € E(F,) = p affine points, and in total #E(F,) =p+1. O



Group structure of the rational points

Let E be an elliptic curve over Fg. Then
E(Fq) & Z/NZ x Z/N,Z

for some integers N,, N, > 1and N, | N,.

Proof
« Let N = #E(Fq). Then [N] - P = o for every element P € E(Fg)
(finite group) = E(FF4) C E[N].
« E(Fq) = G C Z/NZ x Z/NZ (slide 15)
= G = Z/N.Z x Z/N,Z with Ny, N, | N, and N, | N, O

What are the possible group structures for E:

1. E:y? = x3 — 3x+ 10ver Fyy, #E(Fy3) = 19 (slide 4)



Example E : y> = x> — x over [,

Goal: Determine the
group structure of

/

SN

E:y?=x3—x
over Fs

. Find a point P, € E(FF5) \ {0} :
. Compute the order of P;: [2]P; = oo

= C E(Fs)

3. Find a point P, € E(Fs) \ (P,):
. Compute the order of P,: [2]P, = o

= C E(Fs)

5. Find a point P; € E(F5) \ (P, P,) :
6. Compute the order of P;: [2]P; = (0,0) = P,

= C E(Fs).
We are done here! Why?

+ Hasse bound: 2 < #E(Fs) < 10.

+ our computations: 8 | #E(Fs).

E(F5) = Z/4Z x 7./27



Summary of Lecture 3

Elliptic curves: geometric objects with a group
structure

+ Addition law P + Q for P, Q € E(K)

« Explicit formulas
- Geometric interpretation

« Scalar multiplication [N] : E — E, and torsion points E[N]
« Elliptic curves over finite fields I,

+ Hasse bound: 14+ q — 2,/ < #E(Fg) <1+ qg+2,/4
« Group structure: E(Fq) 2 Z/N1Z x Z/N,Z.

Next lecture Elliptic curves in cryptography
« Why are elliptic curves better generic groups?

« Why are some elliptic curves worse generic groups?
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