Introduction to mathematical cryptography

Lecture 3: Elliptic Curves

Sabrina Kunzweiler Preliminary Arizona Winter School 2025

What are elliptic curves

Elliptic curves

Convention in this lecture: K field, $char(p) \neq 2,3$.

Elliptic curve

An **elliptic curve** E defined over K consists of a point at infinity ∞ and points (x,y) in the plane satisfying an equation of the form

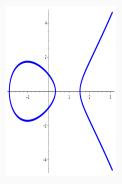
$$y^2 = x^3 + ax + b$$

with $a, b \in K$ and $4a^{3} + 27b^{2} \neq 0$.

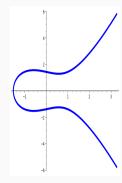
• $4a^3 + 27b^2 \neq 0$ ensures smoothness $\Rightarrow \Delta = -16(4a^3 + 27b^2)$ is the discriminant of E.

1

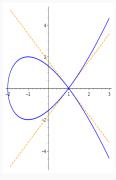
Typical pictures of elliptic curves (over \mathbb{R})



(a) E_1/\mathbb{R} defined by $y^2 = x^3 - 3x + 1$.



(b) E_2/\mathbb{R} defined by $y^2 = x^3 - x + 2$.



(c)
$$C/\mathbb{R}$$
 (not elliptic)
 $y^2 = x^3 - 3x + 2$

Points on elliptic curves

Rational points

Points on elliptic curves

Let $E: y^2 = x^3 + ax + b$ elliptic curve over K. For any field extension L/K, the set

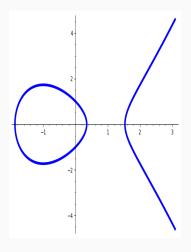
$$E(L) = \underbrace{\{(u,v) \subset L^2 \mid v^2 = u^3 + au + b\}}_{\text{affine points}} \cup \{\infty\}$$

is called the set of L-rational points of E.

• Questions we discuss in this lecture: What can we say about the order of an elliptic curve: #E(K) (over \mathbb{R} , over \mathbb{Q} , over \mathbb{F}_q)? What is the "structure" of the set E(L)?

3

Example $E: y^2 = x^3 - 3x + 1$



- E/\mathbb{R} : infinitely many points ∞ , $P_1 = (0, 1)$, $P_2 = (-1, \sqrt{3})$, $P_3 = (2, \sqrt{3})$, $P_4 = (3, \sqrt{19})$, ...
- E/\mathbb{Q} : infinitely many (here!) ∞ , $P_1 = (0, 1)$, $P_2 = (0, -1)$, $(\frac{9}{4}, \frac{19}{8})$, $(\frac{-152}{61}, \frac{107}{729})$, ...,
- E/\mathbb{F}_{13} : 19 points ∞ , (0, 1), (0, -1), (1, 5), (1, -5), (2, 4), ...

The point at infinity

An elliptic curve with short Weierstrass equation $y^2 = x^3 + ax + b$ should really be viewed as a planar projective curve.

- It lives in the projective plane \mathbb{P}^2_K
 - elements of \mathbb{P}^2_K : $(X,Y,Z) \in K^3 \setminus \{(0,0,0)\}$ modulo the equivalence relation $(X,Y,Z) \sim (\lambda X, \lambda Y, \lambda Z)$
 - \rightarrow notation: $(X : Y : Z) \in \mathbb{P}^2_K(K)$.
- It is defined by a homogeneous polynomial $F \in K[X, Y, Z]$ (all monomials have the same degree):

$$E: Y^2Z = X^3 + aXZ^2 + bZ^3$$
 in \mathbb{P}^2 .

Points on the projective curve:

- affine points: (x : y : 1)
- points at infinity $(x : y : 0) \Rightarrow$ here: only one $\infty = (0 : 1 : 0)$

Elliptic curves in SageMath

```
# Example over QQ
sage: E1 = EllipticCurve([-3,1]); E1
Elliptic Curve defined by y^2 = x^3 - 3*x + 1 over Rational
    Field
sage: P1 = E1([0,1]); P1
(0 : 1 : 1)
sage: P2 = E1([9/4,19/8]); P2
(9/4 : 19/8 : 1)
sage: P2 == E1([18,19,8])
True
```

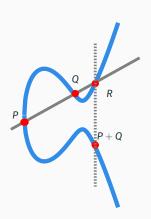
```
# Example over a finite field
sage: E2 = EllipticCurve(GF(13),[-3,1]); E2
Elliptic Curve defined by y^2 = x^3 + 10*x + 1 over Finite Field
    of size 13
sage: E2.points()
[(0 : 1 : 0), (0 : 1 : 1), (0 : 12 : 1), (1 : 5 : 1), (1 : 8 :
        1), (2 : 4 : 1), (2 : 9 : 1), (4 : 1 : 1), (4 : 12 : 1), (6
        : 2 : 1), (6 : 11 : 1), (9 : 1 : 1), (9 : 12 : 1), (10 : 3
        : 1), (10 : 10 : 1), (11 : 5 : 1), (11 : 8 : 1), (12 : 4 :
        1), (12 : 9 : 1)]
```

The group law

Geometric description

Adding points $P, Q \in E$.

- Line L through P and Q
- There is a third intersection point R ∈ E ∩ L (Bezout's Theorem)
- P + Q is the reflection of R across the x-axis



Explicit formulas

Group law

 $E: y^2 = x^3 + ax + b$ elliptic curve over K, $P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in E(\bar{K})$, then $P_1 + P_2 = P_3 = (x_3, y_3)$ as follows:

- (a) If $x_1 \neq x_2$, then $(x_3, y_3) = (m^2 x_1 x_2, m(x_1 x_3) y_1)$ with $m = \frac{y_2 y_1}{x_2 x_1}$.
- (b) If $x_1 = x_2$ and $y_1 = y_2 \neq 0$, then $(x_3, y_3) = (m^2 2x_1, m(x_1 x_3) y_1)$ with $m = \frac{3x_1^2 + a}{2y_1}$.
- (c) If $x_1 = x_2$ and $y_1 \neq y_2$ or $y_1 = y_2 = 0$, then $P_1 + P_2 = \infty$.

Moreover, we define $P + \infty = P$ for all $P \in E(\overline{K})$.

Then $(E(\overline{K}), +)$ is an abelian group with identity element ∞ .

Relation with the geometric interpretation

Setup:
$$E: y^2 = x^3 + ax + b$$
 elliptic curve over K , $P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in E(\bar{K})$, then $P_1 + P_2 = P_3 = (x_3, y_3)$:

(a) If
$$x_1 \neq x_2$$
, then $(x_3, y_3) = (m^2 - x_1 - x_2, m(x_1 - x_3) - y_1)$ with $m = \frac{y_2 - y_1}{x_2 - x_1}$.

(handwritten notes)

Proving the group law

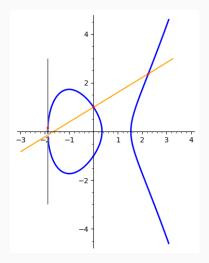
• **neutral element:** $P + \infty = P$ for P (by definition)

$$\Rightarrow$$
 O_E $= \infty \checkmark$

- existence of inverses: $P_1 = (x_1, y_1)$, then $-P_1 = (x_1, -y_1)$ (case (c) of the group law). \checkmark
- · associativity:
 - tedious computation with many case distinctions use computer algebra software (502)
 - elegant proof using divisors (requires more algebraic geometry)
 - . (🗸)
- **commutativity**: swap P_1 and P_2 everywhere nothing changes \checkmark

Example $E: y^2 = x^3 - 3x + 1$ over \mathbb{Q} (doubling)

$$P_1=\left(0,1\right),\quad P_2=\left(\frac{9}{4},\frac{19}{8}\right)\in E(\mathbb{Q}).$$



•
$$x_1 = 0 \neq 9/4 = x_2$$

 \Rightarrow case (a)

•
$$m = \frac{\frac{19}{8} - 1}{\frac{2}{4} - 0} = \frac{11}{18}$$

•
$$X_3 = \left(\frac{11}{18}\right)^2 - 0 - \frac{9}{4} = \frac{-152}{81}$$

•
$$y_3 = \frac{11}{18} \left(O - \frac{-152}{18} \right) - 1 = \frac{107}{729}$$

$$P_1 + P_2 = \left(\frac{-152}{81}, \frac{107}{729}\right)$$
.

Scalar multiplication and torsion

Scalar multiplication

Notation

Let *E* be an elliptic curve over *K*, and $N \in \mathbb{Z}$ an integer.

$$[N]: E(K) \to E(K), \quad P \mapsto \underbrace{P + \cdots + P}_{N \text{ times}},$$

is the scalar multiplication by N.

Spoiler: Scalar multiplication is a *conjectural* cryptographic one-way function

- Evaluation is fast using a double-and-add strategy (Exercises)
 - Example: $[2^{10}]P = [2]([2] \cdots ([2]P)$ $\rightarrow 10 = \log_2(2^{10}) \text{ doublings}$
- Inversion is (conjecturally) hard: next lecture

Torsion

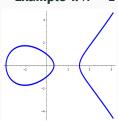
N-torsion group

Let *E* be an elliptic curve over *K*, $N \ge 1$ and integer. The group of points of order *N* is denoted by

$$E[N] = \{ P \in E(\overline{K}) \mid [N]P = \infty \}.$$

We say that E[N] is the N-torsion group of E.

Example 1: *N* = 2



$$E_1: y^2 = x^3 - 3x + 1 \text{ over } \mathbb{Q}$$

•
$$x^3 - 3x + 1 = (x - \alpha_1)(x - \alpha_2)(x - \alpha_3)$$

•
$$E[2] = \{(\alpha_1, 0), (\alpha_2, 0), (\alpha_3, 0), \infty\},$$

but $E(\mathbb{Q})[2] = \{\infty\}$

• Note:
$$(\alpha_1, 0) + (\alpha_2, 0) = (\alpha_3, 0)$$

$$\Rightarrow E[2] \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$

Structure of the torsion group

Structure of E[N]

Let *E* be an elliptic curve over *K* and $N \ge 1$ an integer.

1. If $char(K) = o \text{ or } char(K) = p \text{ with } p \nmid N$. Then

$$E[N] \cong \mathbb{Z}/N\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z}$$
.

- 2. If char(K) = p > o, then one of the following is true:
 - (i) $E[p^k] \cong {\infty}$ for all $k \ge 1$.
 - (ii) $E[p^k] \cong \mathbb{Z}/p^k\mathbb{Z}$ for all $k \geq 1$.
- Proof reference: Silverman Corollary III.6.4
- Main idea: study [N], the multiplication by N map, and find that it is of degree N² (requires more ingredients).

Elliptic curves over finite fields

Hasse's theorem

What's the number of \mathbb{F}_q -rational points of an elliptic curve E?

• Very rough bounds: $\infty \in E(\mathbb{F}_q)$ and $(x,y) \in E \setminus \{\infty\} \subset \mathbb{F}_q \times \mathbb{F}_q$

$$1 \leq \#E(\mathbb{F}_q) \leq 1 + q^2.$$

• Better upper bound: Let $x_0 \in \mathbb{F}_q$, then $y^2 = x_0^3 + ax_0 + b$ has at most two solutions $\pm y_0$.

$$1 \leq \# E(\mathbb{F}_q) \leq 1 + 2q.$$

Theorem (Hasse, 1936)

Let *E* be an elliptic curve over a finite field \mathbb{F}_q . Then

$$q+1-2\sqrt{q}\leq \#E(\mathbb{F}_q)\leq q+1+2\sqrt{q}.$$

A concrete formula (special case)

Lemma

Let $p \equiv 2 \pmod{3}$ be a prime , and consider the elliptic curve $E: y^2 = x^3 + 1$. Then $\#E(\mathbb{F}_p) = p + 1$.

Let $y_0 \in \mathbb{F}_p$. How many solutions $x_0 \in \mathbb{F}_p$ with $x_0^3 = y_0^2 - 1$ are there?

• Which elements in \mathbb{F}_p are cubes?

Since, $p \equiv 2 \pmod{3}$, all elements are cubes!

- $O = O^3$ is a cube
- For $g \in \mathbb{F}_p^*$, we have $\sqrt[3]{g} = h = g^{(2p-1)/3} \in \mathbb{F}_{p^*}$.
- How many cube roots can exist?
 Exactly one, note that F_p does not contain primitive third roots of unity.

Conclusion: For every $y_0 \in \mathbb{F}_p$, there exists a unique $x_0 \in \mathbb{F}_p$ so that $(x_0, y_0) \in E(\mathbb{F}_p) \Rightarrow p$ affine points, and in total $\#E(\mathbb{F}_p) = p + 1$. \square

Group structure of the rational points

Proposition

Let *E* be an elliptic curve over \mathbb{F}_q . Then

$$E(\mathbb{F}_q) \cong \mathbb{Z}/N_1\mathbb{Z} \times \mathbb{Z}/N_2\mathbb{Z}$$

for some integers $N_1, N_2 \ge 1$ and $N_2 \mid N_1$.

Proof

- Let $N = \#E(\mathbb{F}_q)$. Then $[N] \cdot P = \infty$ for every element $P \in E(\mathbb{F}_q)$ (finite group) $\Rightarrow E(\mathbb{F}_q) \subset E[N]$.
- $E(\mathbb{F}_q) \cong G \subset \mathbb{Z}/N\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z}$ (slide 15) $\Rightarrow G = \mathbb{Z}/N_1\mathbb{Z} \times \mathbb{Z}/N_2\mathbb{Z}$ with $N_1, N_2 \mid N_1$, and $N_2 \mid N_1$.

Question What are the possible group structures for *E*:

1.
$$E: y^2 = x^3 - 3x + 1$$
 over \mathbb{F}_{13} , $\#E(\mathbb{F}_{13}) = 19$ (slide 4)

2.
$$E: y^2 = x^3 + x + 1$$
 over \mathbb{F}_{13} , $\#E(\mathbb{F}_{13}) = 18$.

Example $E: y^2 = x^3 - x$ over \mathbb{F}_5

Goal: Determine the group structure of

$$E: y^2 = x^3 - x$$
over \mathbb{F}_5

- 1. Find a point $P_1 \in E(\mathbb{F}_5) \setminus \{\infty\} : P_1 = (0,0)$
- 2. Compute the order of P_1 : $[2]P_1 = \infty$ $\Rightarrow \mathbb{Z}/2\mathbb{Z} \cong \langle P_1 \rangle \subset E(\mathbb{F}_5)$
- 3. Find a point $P_2 \in E(\mathbb{F}_5) \setminus \langle P_1 \rangle : P_2 = (1, 0)$
- 4. Compute the order of P_2 : [2] $P_2 = \infty$ $\Rightarrow \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \cong \langle P_1, P_2 \rangle \subset E(\mathbb{F}_5)$
- 5. Find a point $P_3 \in E(\mathbb{F}_5) \setminus \langle P_1, P_2 \rangle : P_3 = (2, 1)$
- 6. Compute the order of P_3 : $[2]P_3 = (0,0) = P_1$ $\Rightarrow \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \cong \langle P_3, P_2 \rangle \subset E(\mathbb{F}_5).$

We are done here! Why?

- Hasse bound: $2 \le \#E(\mathbb{F}_5) \le 10$.
- our computations: $8 \mid \#E(\mathbb{F}_5)$.

$$E(\mathbb{F}_5)\cong \mathbb{Z}/4\mathbb{Z}\times \mathbb{Z}/2\mathbb{Z}$$

Summary of Lecture 3

Elliptic curves: geometric objects with a group structure

- Addition law P + Q for $P, Q \in E(K)$
 - Explicit formulas
 - · Geometric interpretation

- Scalar multiplication [N] : $E \rightarrow E$, and torsion points E[N]
- Elliptic curves over finite fields \mathbb{F}_q
 - Hasse bound: $1+q-2\sqrt{q} \le \#E(\mathbb{F}_q) \le 1+q+2\sqrt{q}$
 - Group structure: $E(\mathbb{F}_q) \cong \mathbb{Z}/N_1\mathbb{Z} \times \mathbb{Z}/N_2\mathbb{Z}$.

Next lecture Elliptic curves in cryptography

- Why are elliptic curves better generic groups?
- Why are some elliptic curves worse generic groups?