# Introduction to mathematical cryptography

Lecture 2: Analysing the Discrete Logarithm Problem (DLP)

Sabrina Kunzweiler Preliminary Arizona Winter School 2025







# The discrete logarithm problem (recap)

#### Discrete Logarithm Problem (DLP)

For  $g \in \mathbb{F}_p^*$  primitive element and  $A \in \mathbb{F}_p^*$ , the DLP asks to find  $a \in \mathbb{Z}$  so that  $\exp_g(a) = A$ . Notation:  $a = \operatorname{dlog}_q(A)$ .

- Security of the Diffie-Hellman key exchange protocol is based on the difficulty of solving DLP.
- Morally, the hardness of DLP depends on the order of g.
- DLP becomes easier when ord(g) is composite (Pohlig-Hellman)  $\Rightarrow$  we work in a prime-order subgroup  $\langle g \rangle \subset \mathbb{F}_p^*$  (with g not primitive, but ord(g) = q prime).

1

# Linear search (naive algorithm)

# **Algorithm o** Linear search

```
Input: g \in \mathbb{F}_p^* with ord(g) = q, and A \in \langle g \rangle
Output: a = \operatorname{dlog}_g(A)

1: x \leftarrow 1

2: for i = 1, \dots, q do

3: x \leftarrow g \cdot x

4: if A = x then

5: return i

6: end if

7: end for
```

#### Correctness

- In Line 4, at step i:  $x = g^i$ , so  $A = x \Leftrightarrow i = \text{dlog}_q(A)$ .
- ⇒ Algorithm o terminates and the output is correct.

#### Runtime

(in number of multiplications M)

- Best case:  $a = 1 \Rightarrow 1 M$
- Worst case:  $a = q \Rightarrow q M$
- big-O notation: $^a O(q)$

## Memory O(1)

af(n) = O(h(n)) if  $\exists c > 0$ ,  $n_0 \in \mathbb{N}$ :  $|f(n)| \le c|h(n)| \ \forall n > n_0$ .

Baby-step giant-step algorithm

# **BSGS algorithm (informal)**

Baby-step giant-step algorithm (BSGS) by David Shanks (1971)

**Idea**: decompose the solution  $a = dlog_g(A)$  as

$$a = jm + i$$
, with  $m = \lfloor \sqrt{q} \rfloor + 1$ ,  $i, j \in \{0, \ldots, m-1\}$ .

· baby steps:

$$g_0 = 1, \ g_1 = g, \ g_2 = g^2, \ \ldots, \ g_{m-1} = g^{m-1}.$$

giant steps:

$$A_0 = A, \ A_1 = g^{-m} \cdot A, \ A_2 = (g^{-m})^2 \cdot A, \ \ldots, \ (g^{-m})^{m-1} \cdot A.$$

• A match  $g_i = A_{j}$  provides us with the solution a = jm + i.

3

# **Example**

**Challenge** find  $a = \operatorname{dlog}_q(A)$  where  $g = 4 \in \mathbb{F}_{83}^*$ ,  $A = 68 \in \langle g \rangle$ .



# Precomputations:

$$m = \lfloor \sqrt{41} \rfloor + 1 = 7$$
,  
 $h = g^{-7} = 78$ .

### baby steps

 $1,\, 4 \overline{(4)},\, 16,\, 64,\, 7,\, 28\,\, 29.$ 

#### giant steps

68, 75, 40, 49, 4, ...

# **Formal description**

#### **Algorithm 1** Shank's BSGS algorithm

```
Input: g \in \mathbb{F}_p^* with ord(g) = q, A \in \langle g \rangle
Output: a = dlog_a(A)
  1: m \leftarrow |\sqrt{q}| + 1
  2: q_0 \leftarrow 1
  3: for i = 1, ..., m - 1 do
  4: q_i \leftarrow q \cdot q_{i-1}
  5: end for
  6: \tilde{A} \leftarrow A
  7: for i = 0, ..., m-1 do
          if \tilde{A} = q_i for some i then
  8:
                return jm + i \pmod{q}
  9:
        else
10:
               \tilde{A} \leftarrow \tilde{A} \cdot q^{-m}
 11:
          end if
 12:
 13: end for
```

#### Correctness

✓ For 
$$a \in \{1, ..., q-1\}$$
,  
 $\exists o \le i, j \le m-1$  with  
 $a = jm + i$ .

#### Runtime

(in  $\mathbb{F}_p$  multiplications M)

- baby steps: (m-1) M
- giant steps:< (m 1) M</li>
- total  $O(m) = O(\sqrt{q})$

#### Memory

(in  $\mathbb{F}_p$  elements)

• list of baby steps:  $O(\sqrt{q})$ 

5

# Time-memory trade-offs

Having enough memory to store  $O(\sqrt{q})$   $\mathbb{F}_p$ -elements memory is unrealistic for a "real-world DLP" challenge.

#### ⇒ Variant of BSGS with memory restrictions

- Available storage:  $m \ll \sqrt{q}$  (finite field elements)
- baby steps:  $g_0 = 1, g_1 = g, ..., g_{m-1} = g^{m-1}$
- giant steps:  $A_0 = A$ ,  $A_1 = g^{-m} \cdot A$ , ...,  $A_{\lfloor q/m \rfloor} = (g^{-m})^{\lfloor q/m \rfloor}$
- Runtime: O(q/m)  $\mathbb{F}_p$ -multiplications
- Memory: O(m)  $\mathbb{F}_p$ -elements

#### **Remarks**

- If  $m = \sqrt{q}$ , then  $O(q/m) = O(\sqrt{q})$  (as in the standard BSGS algorithm).
- If we allow  $m > \sqrt{q}$ , is the above variant of BSGS faster?
  - $\triangle$  The runtime O(q/m) is only correct if  $m \leq \sqrt{q}$ .
    - A different (!) variant can provide a time-memory trade-off in the other direction (see exercises).

# Example (with time-memory trade-off)

**Challenge** find  $a = \operatorname{dlog}_q(A)$  where  $g = 4 \in \mathbb{F}_{83}^*$ ,  $A = 68 \in \langle g \rangle$ .



#### Standard BSGS:

$$m = \lfloor \sqrt{41} \rfloor + 1 = 7$$
,  $h = g^{-7} = 78$ .

# Time-memory trade-off:

$$m = 5$$
,  $h = g^{-5} = 3$ 

Pollard's rho algorithm

# Pollard's rho algorithm (informal)

Pollard's rho algorithm suggested by John M. Pollard (1978)

**Idea** to find  $a = dlog_g(A)$ .

Create a sequence

$$x_0 = g^0 A^0, \ x_1 = g^{k_1} A^{\ell_1}, \ x_2 = g^{k_2} A^{\ell_2}, \ \dots$$

 $\Rightarrow$  Collision in the sequence  $x_i = x_i$  yields a solution:

$$g^{k_i}\mathsf{A}^{\ell_i}=g^{k_j}\mathsf{A}^{\ell_j}\quad\Leftrightarrow\quad \mathsf{A}^{\ell_i-\ell_j}=g^{k_j-k_i}$$
 so  $a=(k_i-k_i)/(\ell_i-\ell_i)$  if  $\ell_i
eq \ell_i\pmod q$ .

#### How to construct a suitable sequence?

- Given  $x_i$ , we need to be able to compute (or already know)  $\ell_i$ ,  $k_i$ .
- The sequence should look random. Then the birthday paradox tells us that a collision occurs after  $O(\sqrt{q})$  steps.

# A pseudorandom sequence

Consider  $f: \mathbb{F}_p^* \to \mathbb{F}_p^*$  defined by

$$\mathbf{x} = g^{k} \mathbf{A}^{\ell} \quad \mapsto \quad \mathbf{x'} = egin{cases} g^{k} \mathbf{A}^{\ell+1} & \text{if o} < \mathbf{x} < p/3, \\ g^{2k} \mathbf{A}^{2\ell} & \text{if } p/3 < \mathbf{x} < 2p/3, \\ g^{k+1} \mathbf{A}^{\ell} & \text{if } 2p/3 < \mathbf{x} < p. \end{cases}$$

Slight abuse of notation:  $f: \mathbb{F}_p^* \times \mathbb{Z}/q\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z} \to \mathbb{F}_p^* \times \mathbb{Z}/q\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$ , i.e.  $(x, k, \ell) \mapsto (x', k', \ell')$  to keep track of the exponents.

#### **Pseudorandom sequence**

$$x_0 = g^0 A^0, x_1 = f(x_0) = g^{k_1} A^{\ell_1}, x_2 = f(x_1) = g^{k_2} A^{\ell_2}, \ldots$$

- This sequence is periodic, since  $\mathbb{F}_p^*$  is finite.
- It enters into a loop at some point.

# Illustration of the Pollard's rho



- Tail  $x_0, \ldots, x_T$  of tail length T
- Loop  $x_T, \dots, x_{T+L-1}, x_{T+L} = x_T$  of loop length L
- Birthday paradox In a class of 30 students, what's the probability that at least two of them share the same birthday?

$$ightarrow 1 - \prod_{i=1}^{29} (1 - rac{i}{365}) pprox 71\%$$

 $\Rightarrow$  **Rule of thumb**: Drawing elements at random from a set of size *N*, we expect a collision after  $\sqrt{\pi N/2}$  draws.

If  $x_0, x_1, \ldots$  is a random sequence, we expect  $T + L \approx \sqrt{\pi q/2}$ .

# Example of a Pollard's rho



# **Detecting collisions**

Given a sequence  $x_0, x_1, \ldots$  with tail length T and loop length L, find a collision  $x_i = x_j$ .

- Naive strategy Compute and store  $x_0, x_1, x_2, ...$  until a collision occurs.
  - runtime:  $\mathit{L} + \mathit{T} \approx \sqrt{\pi q/2} \ \mathbb{F}_{\mathit{p}}^*$ -multiplications
  - memory:  $L+T \approx \sqrt{\pi q/2}$   $\mathbb{F}_p$ -elements
- Memory-less variant Compute  $(x_i, x_{2i})$  for i = 1, 2, ... until  $x_i = x_{2i}$  for some i.
  - memory: constant (sequence elements are not stored)
  - runtime:  $\leq 3 \cdot (T+L) \approx 3\sqrt{\pi q/2}$   $\mathbb{F}_p^*$ -multiplications Proof idea: We have  $x_i = x_{L+i}$  for all  $i \geq T$ , hence

$$x_i = x_{2i} \iff i \equiv 2i \pmod{L}$$
 and  $i \ge T$ .

There is precisely one value  $T \le i < T + L$  satisfying these conditions.

# Pollard's rho algorithm

# **Algorithm 2** Pollard's rho algorithm

```
Input: g \in \mathbb{F}_p^* with ord(g) = q, A \in \langle g \rangle
Output: a = dlog_a(A)
  1: (x, k, \ell) = (1, 0, 0)
  2: (x', k', \ell') = (x, k, \ell)
  3: while True do
      (x, k, \ell) \leftarrow f(x, k, \ell)
  4:
                                                            \triangleright X = X_i
      (x', k', \ell') \leftarrow f(x', k', \ell')
      (x', k', \ell') \leftarrow f(x', k', \ell')
                                                         \triangleright X' = X_{2i}
      if x' = x then
  7:
               if gcd(\ell' - \ell, q) = 1 then
  8:
                    return (k - k')(\ell' - \ell)^{-1} \pmod{q}
  9:
               else
10:
                    go back to 1 (and change x_0)
 11:
               end if
 12:
          end if
 13:
14: end while
```

#### Correctness

✓ If the algorithm terminates (Line 9), the output is correct.

#### Runtime

(in  $\mathbb{F}_p^*$ -multiplications)

• If f is sufficiently random, then the runtime is expected to be  $O(\sqrt{q})$ .

#### Memory

(in  $\mathbb{F}_p$  elements)

 only the current sequence elements (x<sub>i</sub>, x<sub>2i</sub>): O(1)

# Example (Pollard's rho algorithm)



Compute  $\mathrm{dlog}_g(\mathsf{A})$  for  $g=\mathsf{4}\in\mathbb{F}_{83}^*$ ,  $\mathsf{A}=\mathsf{68}\in\langle g
angle$ , recall  $q=\mathsf{41}$ . (Example from Slide 11)

- T = 4
- L = 9
- ightarrow expected collision  $x_i = x_{2i}$ :  $4 \le i < 13$  with  $i \equiv 2i \pmod{9}$ .  $\Rightarrow i = 9$ .
  - We compute  $(x_9,k_9,\ell_9)=(33,18,18) \text{ and } \\ (x_{18},k_{18},\ell_{18})=(33,3,27) \text{, and } \\ \text{find}$

 $dlog_4(68) = (18 - 3) \cdot (27 - 9)^{-1} \equiv 29 \pmod{41}.$ 

**Index calculus** 

# **Index calculus (informal)**

Index calculus method going back to Maurice Kraitchik (1922)

**Main ingredient** Lift  $x \in \mathbb{F}_p^*$  to  $\hat{x} \in \{1, \dots, p-1\} \subset \mathbb{Z}$ 

**Setup** (to find  $a = dlog_q(A)$ )

• Set  $\mathcal{P}_B = \{p_1, \dots, p_b\}$  primes  $p_i \leq B$  for some smoothness bound B. Denote  $x_i = \operatorname{dlog}_g p_i$ 

#### Phase 1: Relation creation

• Find b + 1 relations among  $x_1, \ldots, x_b$  and a, i.e. relations of the form

$$e_1x_1 + \dots e_bx_b + a \equiv e \pmod{p-1}$$
.

**Phase 2**: Linear algebra over  $\mathbb{Z}/(p-1)\mathbb{Z}$ .

• Solve the system of b+1 relations in  $x_1, \ldots x_b$  and a

### Phase 1: Relation creation

**Goal** Find b + 1 relations among  $x_1, \ldots, x_b$  and a with  $x_i = dlog_g(p_i)$ .

Set  $\mathcal{R} = \{\}$ , until  $\#\mathcal{R} = b + 1$ , repeat the following:

- (1) Let  $e \in \{1, ..., p-1\}$  random.
- (2) Compute the lift  $z = \widehat{g^e/A} \in \{1, \dots, p-1\} \subset \mathbb{Z}$
- (3) If z is B-smooth, i.e. if  $z = \prod_{i=1}^{b} p_i^{e_i}$  for some  $e_i$ : add  $R_e$ :  $e \equiv e_1x_1 + \cdots + e_bx_b + a$  to  $\mathcal{R}$ .

# **number of primes** $p_i$ :

 $b=\pi(B) \approx B/\log(B)$ (Prime Number Theorem by Hadamard and de la Vallée Poussin, 1896)

### **Testing** *B***-smoothness**:

O(b), for example using trial division<sup>a</sup>

#### **Number of iterations** *N*:

 $N pprox u^u$ , where  $u = \log p/\log B$  (Dickman–de Bruijn function, proportion of smooth number )

<sup>&</sup>lt;sup>a</sup>There are faster methods like the elliptic curve method (ECM).

# Phase 2: Linear algebra, and overall runtime

**Phase 2:** A system of linear equations over  $\mathbb{Z}/(p-1)\mathbb{Z}$ 

$$\begin{cases} e = e_1 x_1 + \dots e_b x_b + a \\ \vdots \\ e' = e'_1 x_1 + \dots e'_b x_b + a \end{cases}$$

can be solved in  $\tilde{O}(b^3)$ , or even  $\tilde{O}(b^2)$  using special properties of the system.

⇒ time complexity is neglible compared to Phase 1

# **Overall complexity**

- Dependence on B: time for smoothness testing increases while number of iterations decreases for increasing B.
- Optimal choice:  $B \approx e^{1/2\sqrt{\log p \log \log p}}$  (in our setting)  $\Rightarrow$  Runtime:  $O\left(e^{2\sqrt{\log p \log \log p}}\right)$  subexponential.

# Example (Index calculus)

Compute  $\operatorname{dlog}_a(A)$  for  $g=4\in\mathbb{F}_{83}^*$ ,  $A=68\in\langle g\rangle$ , recall q=41.

Factor base 
$$\mathcal{P}_{B} = \{2, 3, 5\}$$
, i.e.  $b = 3$ .

Phase 1 Choose random exponents  $e \in \{1, \ldots, 82\}$ , and check for smoothness.

| е  | $\widehat{g^e/A}$ | е    | $\widehat{g^e/A}$     |
|----|-------------------|------|-----------------------|
| 15 | 5 <sup>2</sup>    | 31   | <b>2</b> <sup>4</sup> |
| 59 | Х                 | 33   | Х                     |
| 60 | 3 <sup>2</sup>    | 17   | Х                     |
| 7  | Х                 | (72) | $(2^4)$               |
| 40 | X                 | 43   | 2 · 5                 |

#### Phase 2

$$\begin{cases} 15 = 2X_5 + a \\ 60 = 2X_3 + a \\ 31 = 4X_2 + a \\ 43 = X_2 + X_5 + a \end{cases} \Rightarrow a = 29 \equiv 70 \pmod{41}$$
The equation of the equation of the equation is a second of the equation of the equation of the equation is a second of the equation of the equa

(here: 
$$x_2 = dlog_4(2)$$
,  $x_3 = dlog_4(3)$ ,  $x_5 = dlog_4(5)$ )

Diffie-Hellman in generic groups

# Generalization of the Diffie-Hellman protocol

Let  $(\mathbb{G},\circ)$  be a commutative group. For  $g\in\mathbb{G},\ a\in\mathbb{Z}$  define

$$\exp_g(a) = \underbrace{g \circ \cdots \circ g}_{a \text{ times}}.$$

#### Generalized Diffie-Hellman protocol



#### **Group Discrete Logarithm Problem (Group-DLP)**

For  $g \in \mathbb{G}$ ,  $A \in \langle g \rangle$  the <u>Group-DLP</u> asks to find  $a \in \mathbb{Z}$  so that  $\exp_a(a) = A$ . Notation:  $a = \operatorname{dlog}_a(A)$ .

# How hard is the Group-DLP?

# **Generic algorithms**

- Baby-step giant-step algorithm, Pollard's rho algorithm:
   They can be applied to any group, no special property of finite fields are used.
- $\Rightarrow$  Group-DLP can be solved in  $O(\sqrt{N})$ , where  $N=\#\mathbb{G}$ . This is best possible in a generic group with N prime (Shoup, 97)

### Non-generic algorithms

• Index calculus: This algorithm relies on working in finite fields (using lifts to  $\mathbb Z$  and factorization). It cannot be translated to arbitrary groups.

#### **Next lecture**

• Elliptic curves: Groups that are closer to "generic groups"

