Introduction to mathematical cryptography

Lecture 2: Analysing the Discrete Logarithm Problem
(DLP)

Sabrina Kunzweiler
Preliminary Arizona Winter School 2025

4 /)0/7
h,z Za THE UNIVERSITY imstitol ds
OF ARIZONA Mathématiques de

Bordeaux

The discrete logarithm problem (recap)

For g € F; primitive element and A € F,
the DLP asks to find a € Z so that expy(a) = A.
Notation: a = dlog,(A).

- Security of the Diffie-Hellman key exchange protocol is based
on the difficulty of solving DLP.

« Morally, the hardness of DLP depends on the order of g.

+ DLP becomes easier when ord(g) is composite (Pohlig-Hellman)
= we work in a prime-order subgroup (g) C F; (with g not
primitive, but ord(g) = q prime).

Linear search (naive algorithm)

Correctness
Algorithm o Linear search * In Line 4, at step i: x = g/,
Input: g € F} with ord(g) = g, S0 A = x < i = dlogy(A).
and A € (g) = Algorithm o terminates and
Output: a = dlogy(A) the output is correct.
B 2d— Runtime

2: fori=1,...,gdo
3: X<—g-X

(in number of multiplications M)

* Bestcase:a=1=1M

4 if A = x then

= return i + Worst case: a = q = gM
6 end if . 7 0(q)

7: end for Memory 0(1)

9f(n) = O(h(n)) if 3¢ > 0,n0 € N:
If(n)| < clh(n)| ¥V n > no.

Baby-step giant-step algorithm

BSGS algorithm (informal)

Baby-step giant-step algorithm (BSGS) by David Shanks (1971)

Idea: decompose the solution a = dlog,(A) as
a=jm+i, withm=1[,/q]+1,ije{o,....m—1}.

« baby steps:

m—1

go=1061=9G, Qz:gz, .y dm-1=4G

A=A A =g ™A A=(g ™A ... (g™ A

« A match g; = A- provides us with the solution a = jm +i.

Challenge find a = dlog,(A) where g = 4 € FFg;, A =68 € (g).

90 @@
Q Precomputations:

[4 Q@ m=|V&]+1=7,
(h=g7=78.

! ‘ baby steps
| ‘ 1, 4(&), 16, 64, 7, 28 29.

68, 75, 40, 49, (&), . ..

Formal description

Algorithm 1 Shank’s BSGS algorithm Correctness

v Forae{1,...,q9—1},
Jo<i,j <m—1with

Input: g € IF; with ord(g) = g, A € (g)
Output: a = dlog,(A)

M [/q]+1 a=Jjm-+1I.
2 go <1 Runtime
2 fori=1,....m—1do (in Fp multiplications M)
4 9i <9 Gi + baby steps: (m —1)M
5. end for . :
6: A A < (m—1)M
7. forj=o0,...,m—1do
e i . 0 -0
8: if A= g; for some i then total O(m) (vVa)
9: return jm +i (mod q) Memory

(in F, elements)

10: else
1 « list of baby steps:
12 end if 0(v/9)

13: end for

Time-memory trade-offs

Having enough memory to store O(,/q) F,-elements memory is
unrealistic for a “real-world DLP” challenge.

= Variant of BSGS with memory restrictions
« Available storage: m < /g (finite field elements)
+ babysteps: go =1,9:=9, ..., Gm—1=9"""
. A=A A=g"-A ... Agm = (g™
* Runtime: O(q/m) F,-multiplications
* Memory: O(m) Fy-elements

Remarks
- If m = /g, then O(q/m) = 0(,/q) (as in the standard BSGS
algorithm).

« If we allow m > ,/q, is the above variant of BSGS faster?
A\ The runtime 0(q/m) is only correct if m < ,/q.
« Adifferent (!) variant can provide a time-memory trade-off in the
other direction (see exercises).

Example (with time-memory trade-off)

Challenge find a = dlog,(A) where g = 4 € FFg;, A =68 € (g).

Standard BSGS:

m= V& +1=7,
h=g7=78.

Time-memory
trade-off:
m=5h=9—=3

Pollard’s rho algorithm

Pollard’s rho algorithm (informal)

Pollard’s rho algorithm suggested by John M. Pollard (1978)

Idea to find a = dlog(A).
Create a sequence

Xo = gvo7 X1 = gk1A£17 Xy = gszfz; 000

= Collision in the sequence x; = x; yields a solution:
gk,'AZ; — gk}Af) = AZI_ZJ = gkj—l?,'
SO0 a= (k] — I’(’,)/((, = EI) Iff, 75 g/ (mod Q)
How to construct a suitable sequence?

+ Given x;, we need to be able to compute (or already know) 4;, k;.
 The sequence should look random. Then the birthday paradox
tells us that a collision occurs after O(,/q) steps.

A pseudorandom sequence

Consider f : F; — T, defined by

grfA™T ifo < x < p/3,
Xx=grAY — X' ={g*A?’ ifp/3<x<2p/3
gk1AY if2p/3 < x < p.

Slight abuse of notation: f : F; X Z/qZ x Z/qZ — Fp X Z/qQZ X Z/qZ, i.e.
(x,R,£) — (X', R",£") to keep track of the exponents.

Pseudorandom sequence
Xo = G°A°, X1 = f(Xo) = gFAY, X, = f(X;) = gA%, ...

+ This sequence is periodic, since F;, is finite.
« It enters into a loop at some point.

Illustration of the Pollard’s rho
/@\’

e " ¢ Tail Xo, ..., xr of tail length T

/

° * O LOOp XTy oo oy XTHL—1, XTHL = XT of lOOp
. length L
/ \ s - Birthday paradox In a class of 30
@@\ . students, what's the probability that
: at least two of them share the same
. birthday?
2 1-[I2,(0- 55) = 1%
= Rule of thumb: Drawing elements at
° random from a set of size N, we
expect a collision after /7N /2
/ draws.

If Xo, X, ... IS arandom sequence, we expect T + L ~ /7q/2.

10

Example of a Pollard’s rho

/e\a Compute dlog,(A) for g = 4 € Fg,,
° A =68 € (g) (recall g = 41)

/
o)

\ 0 .
éo / X4 = gA" = 68
/ \°’/ e =gA =23 T=4
* X, =g°A> =3
L=9

g*A> = g*°A%® & g’ = A¥, so dlogy(A) =7-37" =29

?
@ . X13 = g¥AP = 31

1"

Detecting collisions

Given a sequence Xo, Xy, ... with tail length T and loop length L, find
a collision x; = x;.

+ Naive strategy Compute and store Xo, X;, X», ... until a collision
occurs.
« runtime: L + T ~ /7q/2 Fj-multiplications
« memory: L+ T~ /mq/2 Fp-elements
+ Memory-less variant Compute (x;, X,;) fori =1,2,... until
X; = X,; for some i.
+ memory: constant (sequence elements are not stored)
« runtime: <3-(T+L)~3y/7q/2 F;-multiplications
Proof idea: We have x; = x,; for all i > T, hence
Xi =Xy < i=2i (modLl)andi>T.
There is precisely one value T < i < T + L satisfying these
conditions.

12

Pollard’s rho algorithm

Algorithm 2 Pollard’s rho algorithm

Input: g € F, with ord(g) = q,A € (g)
Output: a = dlog,(A)

1 (x,R,¢) =(1,0,0)

2 (X, R, 0) = (x,R,0)

3: while True do

4: (X, R, 0) < f(x,R,) > X=X
5 (X, R, 0) <« f(X K, 0)
6: (X' R0« f(X' R,) DX = Xy
7: if X' = x then
8: if gcd(¢' — ¢,q) = 1then
o: return (kR — R')(¢' — ¢)~" (mod q)
10: else
1 go back to 1 (and change xo)
12 end if
13: end if

1: end while

Correctness

v If the algorithm
terminates (Line 9),
the output is correct.

Runtime
(in F,-multiplications)
« If f is sufficiently
random, then the
runtime is expected

to be O(\/Q).

Memory
(in Fp elements)

« only the current
sequence elements

(X3, Xsi): O(1)

13

Example (Pollard’s rho algorithm)

a Compute dlog,(A) for g = 4 € Fg,,

/ A =168 € (g), recall g = .
e l (Example from Slide 11)
\ o .
0. / “L=9
° */ — expected collision x; = x,;:

/ 4 <i<13withi=2i (mod9).
e =i=0.
/ + We compute
° (X9, Rg, £9) = (33,18,18) and
(X1, Rag, £18) = (33,3,27), and
J find

dlog,(68) = (18 —3) - (27 — 9) "' =29 (mod 41). 1%

Index calculus

Index calculus (informal)

Index calculus method going back to Maurice Kraitchik (1922)

Main ingredient Liftx c FytoX e {1,...,p—1} C Z

Setup (to find a = dlog,(A))

+ Set primes p; < B for some

. Denote x; = dlogyp;

Phase 1: Relation creation

» Find among x4, ...,Xp and a, i.e.relations of the

form
eX;+...epXp+a=e (mod p—1).

Phase 2: Linear algebra over Z/(p — 1)Z.

+ Solve the system of b + 1 relations in x,,...x, and a

15

Phase 1: Relation creation

Goal Find

Set R = {}, until
#R = b + 1, repeat the
following:

(1)

(2)

Letee {1,...,p—1}
random.

Compute the lift
z=ge/Ac
{1,...,p—1} CZ

If zis B-smooth, i.e. if
z =TI}, p¥ for some
&%

add R, :
e=eX;+- - +epXp+a
to R.

among X, .. ., Xp and a with x; = dlog,(p;).

number of primes p;:

b = w(B) ~ B/ log(B)

(Prime Number Theorem by Hadamard
and de la Vallée Poussin, 1896)

Testing B-smoothness:
O(b), for example using trial division?

Number of iterations N:

N =~ uY, where u = log p/ log B
(Dickman-de Bruijn function, proportion
of smooth number)

9There are faster methods like the elliptic
curve method (ECM).

Phase 2: Linear algebra, and overall runtime

Phase 2: A system of linear equations over Z/(p — 1)Z

e =ex;+...epxp+a

can be solved in O(b3), or even O(b?) using special properties of the
system.

= time complexity is neglible compared to Phase 1

Overall complexity

+ Dependence on B: time for smoothness testing increases while
number of iterations decreases for increasing B.

- Optimal choice: B ~ e'/?V/°gP1g198P (in our setting)
= Runtime: O (ezv log plog '°gp> subexponential.

Example (Index calculus)

Compute dlog,(A) for g = 4 € Fg;, A =68 € (g), recall g = 41.

e e
Factor base P = {2,3,5}, 2 Gu ‘ 2 O
ie. b —3. 55 } n 2
59 X 33 X
Phase 1 Choose random 60 32 ‘ 17 X
exponentse € {1,...,82}, 7 X | (2 (Y
and check for smoothness. 40 X ‘ 43 25

Phase 2
15 = 2Xs +a
=
31 = 4X; +a

B3= X + X+a
(here: x, = dlog,(2), x; =dlog,(3), xs=dlog,(5))

Diffie-Hellman in generic groups

Generalization of the Diffie-Hellman protocol

Generalized Diffie-Hellman protocol

Let (G, o) be a Q) -

commutative group.

Forg € G, a € Z define \ :
Alice Bob
expy(a) =go---og. (bez)
m A+ expg(a) B « expy(b)
<« expg(a) Kga < exp,(b)

For g € G, A € (g) the Group-DLP asks to find a € Z so that
exp,y(a) = A. Notation: a = dlog,(A).

19

How hard is the Group-DLP?

Generic algorithms

- Baby-step giant-step algorithm, Pollard’s rho algorithm:
They can be applied to any group, no special property of finite
fields are used.
= Group-DLP can be solved in O(v/N), where N = #G.
This is best possible in a generic group with N prime (Shoup, 97)

Non-generic algorithms
This algorithm relies on working in finite fields
(using lifts to Z and factorization). It cannot be translated to
arbitrary groups.

Next lecture

« Elliptic curves: Groups that are closer

to “generic groups”
20

	Baby-step giant-step algorithm
	Pollard's rho algorithm
	Index calculus
	Diffie-Hellman in generic groups

