
Introduction to mathematical cryptography
Lecture 2: Analysing the Discrete Logarithm Problem
(DLP)

Sabrina Kunzweiler
Preliminary Arizona Winter School 2025

The discrete logarithm problem (recap)

Discrete Logarithm Problem (DLP)

For g ∈ F∗
p primitive element and A ∈ F∗

p,
the DLP asks to find a ∈ Z so that expg(a) = A.
Notation: a = dlogg(A).

• Security of the Diffie-Hellman key exchange protocol is based
on the difficulty of solving DLP.

• Morally, the hardness of DLP depends on the order of g.
• DLP becomes easier when ord(g) is composite (Pohlig-Hellman)
⇒ we work in a prime-order subgroup ⟨g⟩ ⊂ F∗

p (with g not
primitive, but ord(g) = q prime).

1

Linear search (naive algorithm)

Algorithm 0 Linear search
Input: g ∈ F∗

p with ord(g) = q,
and A ∈ ⟨g⟩

Output: a = dlogg(A)
1: x← 1
2: for i = 1, . . . ,q do
3: x← g · x
4: if A = x then
5: return i
6: end if
7: end for

Correctness
• In Line 4, at step i: x = gi,

so A = x⇔ i = dlogg(A).
⇒ Algorithm 0 terminates and

the output is correct.
Runtime
(in number of multiplications M)

• Best case: a = 1⇒ 1M
• Worst case: a = q⇒ qM
• big-O notation:a O(q)

Memory O(1)
af(n) = O(h(n)) if ∃ c > 0, n0 ∈ N :
|f(n)| ≤ c|h(n)| ∀ n > n0.

2

Baby-step giant-step algorithm

BSGS algorithm (informal)

Baby-step giant-step algorithm (BSGS) by David Shanks (1971)

Idea: decompose the solution a = dlogg(A) as

a = jm+ i, with m = ⌊
√
q⌋+ 1, i, j ∈ {0, . . . ,m− 1}.

• baby steps:

g0 = 1, g1 = g, g2 = g2, . . . , gm−1 = gm−1.

• giant steps:

A0 = A, A1 = g−m · A, A2 =
(
g−m

)2 · A, . . . ,
(
g−m

)m−1 · A.

• A match gi = Aj· provides us with the solution a = jm+ i.

3

Example

Challenge find a = dlogg(A) where g = 4 ∈ F∗
83, A = 68 ∈ ⟨g⟩.

41
16

64
7

28

29

68

75

40

49

4

Precomputations:
m = ⌊

√
41⌋+ 1 = 7,

h = g−7 = 78.

baby steps
1, 4 4 , 16, 64, 7, 28 29.

giant steps
68, 75, 40, 49, 4 , . . .

4

Formal description

Algorithm 1 Shank’s BSGS algorithm

Input: g ∈ F∗
p with ord(g) = q, A ∈ ⟨g⟩

Output: a = dlogg(A)
1: m← ⌊√q⌋+ 1
2: g0 ← 1
3: for i = 1, . . . ,m− 1 do
4: gi ← g · gi−1
5: end for
6: Ã← A
7: for j = 0, . . . ,m− 1 do
8: if Ã = gi for some i then
9: return jm+ i (mod q)

10: else
11: Ã← Ã · g−m

12: end if
13: end for

Correctness
✓ For a ∈ {1, . . . ,q− 1},
∃ 0 ≤ i, j ≤ m− 1 with
a = jm+ i.

Runtime
(in Fp multiplications M)

• baby steps: (m− 1)M
• giant steps:
≤ (m− 1)M

• total O(m) = O(√q)
Memory
(in Fp elements)

• list of baby steps:
O(√q)

5

Time-memory trade-offs

Having enough memory to store O(√q) Fp-elements memory is
unrealistic for a “real-world DLP” challenge.

⇒ Variant of BSGS with memory restrictions
• Available storage: m≪ √q (finite field elements)
• baby steps: g0 = 1, g1 = g, . . . , gm−1 = gm−1

• giant steps: A0 = A, A1 = g−m · A, . . . , A⌊q/m⌋ =
(
g−m)⌊q/m⌋

• Runtime: O(q/m) Fp-multiplications
• Memory: O(m) Fp-elements

Remarks

• If m =
√q, then O(q/m) = O(√q) (as in the standard BSGS

algorithm).
• If we allow m >

√q, is the above variant of BSGS faster?
△! The runtime O(q/m) is only correct if m ≤ √q.
• A different (!) variant can provide a time-memory trade-off in the

other direction (see exercises).
6

Example (with time-memory trade-off)

Challenge find a = dlogg(A) where g = 4 ∈ F∗
83, A = 68 ∈ ⟨g⟩.

1 4
16

64
7

28

29

1 4
16

64
7

68

75

40

49

4

68

38

31

10

30

7

Standard BSGS:
m = ⌊

√
41⌋+ 1 = 7,

h = g−7 = 78.

Time-memory
trade-off:
m = 5, h = g−5 = 3

7

Pollard’s rho algorithm

Pollard’s rho algorithm (informal)

Pollard’s rho algorithm suggested by John M. Pollard (1978)

Idea to find a = dlogg(A).
Create a sequence

x0 = g0A0, x1 = gk1Aℓ1 , x2 = gk2Aℓ2 , . . .

⇒ Collision in the sequence xi = xj yields a solution:

gkiAℓi = gkjAℓj ⇔ Aℓi−ℓj = gkj−ki

so a = (kj − ki)/(ℓi − ℓj) if ℓi ̸= ℓj (mod q).

How to construct a suitable sequence?

• Given xi, we need to be able to compute (or already know) ℓi, ki.
• The sequence should look random. Then the birthday paradox

tells us that a collision occurs after O(√q) steps.

8

A pseudorandom sequence

Consider f : F∗
p → F∗

p defined by

x = gkAℓ 7→ x′ =


gkAℓ+1 if 0 < x < p/3,
g2kA2ℓ if p/3 < x < 2p/3,
gk+1Aℓ if 2p/3 < x < p.

Slight abuse of notation: f : F∗
p × Z/qZ× Z/qZ→ F∗

p × Z/qZ× Z/qZ, i.e.
(x, k, ℓ) 7→ (x′, k′, ℓ′) to keep track of the exponents.

Pseudorandom sequence

x0 = g0A0, x1 = f (x0) = gk1Aℓ1 , x2 = f (x1) = gk2Aℓ2 , . . .

• This sequence is periodic, since F∗
p is finite.

• It enters into a loop at some point.

9

Illustration of the Pollard’s rho

xa

xb

xc

xd
xe

xf

xT

xT+1

xT+2

xT+L−1

xT−1

x1

x0

• Tail x0, . . . , xT of tail length T
• Loop xT , . . . , xT+L−1, xT+L = xT of loop

length L
• Birthday paradox In a class of 30

students, what’s the probability that
at least two of them share the same
birthday?
→ 1−

∏29
i=1(1− i

365) ≈ 71%
⇒ Rule of thumb: Drawing elements at

random from a set of size N, we
expect a collision after

√
πN/2

draws.

If x0, x1, . . . is a random sequence, we expect T + L ≈
√

πq/2.
10

Example of a Pollard’s rho

3

38

33

10
16

9

31

48

63

70

23

68

1

Compute dlogg(A) for g = 4 ∈ F∗
83,

A = 68 ∈ ⟨g⟩ (recall q = 41)

• x0 = g0A0 = 1
• x1 = g0A1 = 68
• x2 = g1A1 = 23

 T = 4
. . .

• x4 = g2A2 = 31
. . .

 L = 9
• x13 = g36A39 = 31

g2A2 = g36A39 ⇔ g7 = A37, so dlogg(A) = 7 · 37−1 = 29

11

Detecting collisions

Given a sequence x0, x1, . . . with tail length T and loop length L, find
a collision xi = xj.

• Naive strategy Compute and store x0, x1, x2, . . . until a collision
occurs.

• runtime: L+ T ≈
√

πq/2 F∗
p-multiplications

• memory: L+ T ≈
√

πq/2 Fp-elements
• Memory-less variant Compute (xi, x2i) for i = 1, 2, . . . until
xi = x2i for some i.

• memory: constant (sequence elements are not stored)
• runtime: ≤ 3 · (T + L) ≈ 3

√
πq/2 F∗

p-multiplications
Proof idea: We have xi = xL+i for all i ≥ T, hence

xi = x2i ⇔ i ≡ 2i (mod L) and i ≥ T.
There is precisely one value T ≤ i < T + L satisfying these
conditions.

12

Pollard’s rho algorithm

Algorithm 2 Pollard’s rho algorithm

Input: g ∈ F∗
p with ord(g) = q, A ∈ ⟨g⟩

Output: a = dlogg(A)
1: (x, k, ℓ) = (1,0,0)
2: (x′, k′, ℓ′) = (x, k, ℓ)
3: while True do
4: (x, k, ℓ)← f (x, k, ℓ) ▷ x = xi
5: (x′, k′, ℓ′)← f (x′, k′, ℓ′)
6: (x′, k′, ℓ′)← f (x′, k′, ℓ′) ▷ x′ = x2i

7: if x′ = x then
8: if gcd(ℓ′ − ℓ,q) = 1 then
9: return (k− k′)(ℓ′ − ℓ)−1 (mod q)

10: else
11: go back to 1 (and change x0)
12: end if
13: end if
14: end while

Correctness
✓ If the algorithm

terminates (Line 9),
the output is correct.

Runtime
(in F∗

p-multiplications)

• If f is sufficiently
random, then the
runtime is expected
to be O(√q).

Memory
(in Fp elements)

• only the current
sequence elements
(xi, x2i): O(1)

13

Example (Pollard’s rho algorithm)

3

38

33

10
16

9

31

48

63

70

23

68

1

Compute dlogg(A) for g = 4 ∈ F∗
83,

A = 68 ∈ ⟨g⟩, recall q = 41.
(Example from Slide 11)

• T = 4
• L = 9
→ expected collision xi = x2i:

4 ≤ i < 13 with i ≡ 2i (mod 9).
⇒ i = 9.

• We compute
(x9, k9, ℓ9) = (33, 18, 18) and
(x18, k18, ℓ18) = (33, 3, 27), and
find

dlog4(68) = (18− 3) · (27− 9)−1 ≡ 29 (mod 41). 14

Index calculus

Index calculus (informal)

Index calculus method going back to Maurice Kraitchik (1922)

Main ingredient Lift x ∈ F∗
p to x̂ ∈ {1, . . . ,p− 1} ⊂ Z

Setup (to find a = dlogg(A))

• Set PB = {p1, . . . ,pb} primes pi ≤ B for some smoothness
bound B. Denote xi = dloggpi

Phase 1: Relation creation

• Find b+ 1 relations among x1, . . . , xb and a, i.e.relations of the
form

e1x1 + . . . ebxb + a ≡ e (mod p− 1).

Phase 2: Linear algebra over Z/(p− 1)Z.

• Solve the system of b+ 1 relations in x1, . . . xb and a
15

Phase 1: Relation creation

Goal Find b+ 1 relations among x1, . . . , xb and a with xi = dlogg(pi).

Set R = {}, until
#R = b+ 1, repeat the
following:
(1) Let e ∈ {1, . . . ,p− 1}

random.
(2) Compute the lift

z = ĝe/A ∈
{1, . . . ,p− 1} ⊂ Z

(3) If z is B-smooth, i.e. if
z =

∏b
i=1 p

ei
i for some

ei:
add Re :
e ≡ e1x1 + · · ·+ ebxb + a
to R.

number of primes pi:
b = π(B) ≈ B/ log(B)
(Prime Number Theorem by Hadamard
and de la Vallée Poussin, 1896)

Testing B-smoothness:
O(b), for example using trial divisiona

Number of iterations N:
N ≈ uu, where u = log p/ logB
(Dickman–de Bruijn function, proportion
of smooth number)
aThere are faster methods like the elliptic

curve method (ECM).

16

Phase 2: Linear algebra, and overall runtime

Phase 2: A system of linear equations over Z/(p− 1)Z
e = e1x1 + . . . ebxb + a

...
e′ = e′1x1 + . . . e′bxb + a

can be solved in Õ(b3), or even Õ(b2) using special properties of the
system.
⇒ time complexity is neglible compared to Phase 1

Overall complexity

• Dependence on B: time for smoothness testing increases while
number of iterations decreases for increasing B.

• Optimal choice: B ≈ e1/2
√

log p log log p (in our setting)
⇒ Runtime: O

(
e2
√

log p log log p
)
subexponential.

17

Example (Index calculus)

Compute dlogg(A) for g = 4 ∈ F∗
83, A = 68 ∈ ⟨g⟩, recall q = 41.

Factor base PB = {2, 3, 5},
i.e. b = 3.

Phase 1 Choose random
exponents e ∈ {1, . . . , 82},
and check for smoothness.

e ĝe/A e ĝe/A

15 52 31 24

59 x 33 x
60 32 17 x
7 x (72) (24)

40 x 43 2 · 5

Phase 2
15 = 2x5 + a
60 = 2x3 + a
31 = 4x2 + a
43 = x2 + x5 + a

⇒ a = 29 ≡ 70 (mod 41)

(here: x2 = dlog4(2), x3 = dlog4(3), x5 = dlog4(5))
18

Diffie-Hellman in generic groups

Generalization of the Diffie-Hellman protocol

Let (G, ◦) be a
commutative group.
For g ∈ G, a ∈ Z define

expg(a) = g ◦ · · · ◦ g︸ ︷︷ ︸
a times

.

Generalized Diffie-Hellman protocol

Alice
(a ∈ Z)

A← expg(a)

Bob
(b ∈ Z)

B← expg(b)

KAB ← expB(a) KBA ← expA(b)

A
B

Group Discrete Logarithm Problem (Group-DLP)

For g ∈ G, A ∈ ⟨g⟩ the Group-DLP asks to find a ∈ Z so that
expg(a) = A. Notation: a = dlogg(A).

19

How hard is the Group-DLP?

Generic algorithms

• Baby-step giant-step algorithm, Pollard’s rho algorithm:
They can be applied to any group, no special property of finite
fields are used.

⇒ Group-DLP can be solved in O(
√
N), where N = #G.

This is best possible in a generic group with N prime (Shoup, 97)

Non-generic algorithms

• Index calculus: This algorithm relies on working in finite fields
(using lifts to Z and factorization). It cannot be translated to
arbitrary groups.

Next lecture
• Elliptic curves: Groups that are closer

to “generic groups”
20

	Baby-step giant-step algorithm
	Pollard's rho algorithm
	Index calculus
	Diffie-Hellman in generic groups

