Introduction to mathematical cryptography

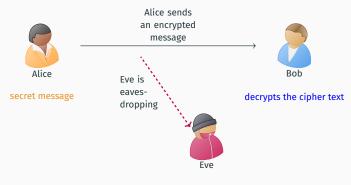
Lecture 1: Classical cryptography and discrete logarithms

Sabrina Kunzweiler Preliminary Arizona Winter School 2025

What is cryptography?

$$\underbrace{\kappa\rho\upsilon\pi\tau\mathbf{0}\varsigma}_{\text{to hide}} + \underbrace{\gamma\rho\alpha\varphi\epsilon\iota\nu}_{\text{to write}}$$

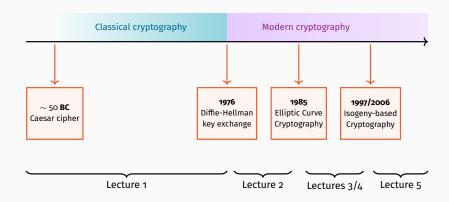
Cryptography is used to obscure information from an eavesdropper.



tries to find the message

1

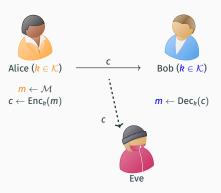
What will we learn in this course?



cryptography ——

A brief introduction to

Encryption scheme



 \mathcal{K} key space \mathcal{M} message space \mathcal{C} cipher text space

Encryption function: Enc : $\mathcal{K} \times \mathcal{M} \to \mathcal{C}$ Decryption function: Dec : $\mathcal{K} \times \mathcal{C} \to \mathcal{M}$

requirement: $Dec_k(Enc_k(m)) = m \quad \forall m \in \mathcal{M}, k \in \mathcal{K}$

3

Caesar cipher

historical cipher used by Julius Caesar (100 BC - 44 BC)

· Idea: Shift every letter in a word by 3 positions.

idea. Shire every tetter in a word by 3 positions.																	
Α	В	С	D	Е	F	G	Н	- 1	J	K	L	M	N	0	Р	Q	
D	E	F	G	Н	ı	J	K	L	М	N	0	Р	Q	R	S	T	

• Example: $HELLO \mapsto KHOOR$

Formal description

•
$$\mathcal{A} = \{A, \dots, Z\} = \{0, \dots, 25\}$$

•
$$\mathcal{M} = \mathcal{C} = \mathcal{A}^* = \{a_1 \dots a_n \mid a_i \in \mathcal{A}, n \in \mathbb{N}\}$$

•
$$Enc(m_1...m_n) = (c_1...c_n)$$
 with $c_i = m_i + 3 \pmod{26}$

•
$$Dec(c_1 ... c_n) = (m_1 ... m_n)$$
 with $m_i = c_i - 3 \pmod{26}$

⚠ There is no key.

Anyone knowing the encryption method can decrypt!

Kerckhoff's principle

Il faut qu'il [le système] n'exige pas le secret, et qu'il puisse sans inconvénient tomber entre les mains de l'ennemi.

- Auguste Kerckhoff, la cryptographie militaire, 1883
- → The system must be secure, even if everything about it, except the secret key, is public knowledge.
- \rightarrow Important for modern cryptography. Why?
 - makes cryptography better (public peer review)
 - keeping the scheme secret is unrealistic in most scenarios
 - easier to change a secret key than changing the entire system

Opposite principle: Security through obscurity.

- · unlikely to provide long-term security
- can be used to complement a (public) system

Improving the Caesar cipher?

Version 1: choose a secret shift $k \in \{0, ..., 25\}$

 \Rightarrow 26 keys.

Version 2: choose a secret linear transformation

$$m \mapsto k_a \cdot m + k_b \pmod{26}$$

 \Rightarrow 26 · 12 keys

 \Rightarrow The key spaces are too small.

An attacker can test all possible keys until a valid text is found.

Exercise 5002

Decipher: IFELTKH URFENHA FEEFSFU TSVGEDN ULTKFBF

Improving the Caesar cipher?

Version 3: choose a secret permutation of the letters

 \Rightarrow 26! \approx 2⁸⁸ keys

- ⇒ Still insecure against **frequency analysis**.
 - Idea: each language has a characteristic distribution of letters or other patterns
 - · English language
 - · most common letters: E, T, A
 - · most common pairs: TH, ER, ON
 - most common repeats: SS, EE, TT
 - first sources from 8th century: رسالة في استخراج المعمى (A Manuscript on Deciphering Cryptographic Messages, Al-Kindi)

Exercise 5DQL

Decipher: JIVQOJIV LEALAVQO KGOONDTV QOAELONE OAINYNGJ SOB-VQODB CLAVQOKG OONDTJIV QOJIVLEA EIBHTBLO YBLEQPIG AA

Symmetric cryptography vs public key cryptography

Symmetric cryptography

- Alice and Bob share the same secret key k
- Examples of symmetric encryption schemes:
 - variants of the Caesar cipher (historical, insecure)
 - AES = Advanced Encryption Standard (modern scheme, standardized in 2000)
- Alice and Bob need to agree on a secret key in advance

Public key cryptography

- Alice and Bob have their own secret key sk and a corresponding public key pk, related by a cryptographic one-way function
- important cryptographic primitive: Public key exchange
 allows Alice and Bob to find a shared secret key
 communicating over a public channel

Cryptographic one-way functions

Definition

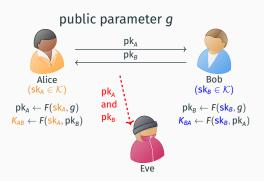
A function $f: X \to Y$ is a <u>cryptographic one-way function</u> if

- 1. f is easy to compute,
- 2. *f* is hard to invert.

Conjectured (!) examples

- Multiplication: $F:\mathcal{P}\times\mathcal{P}\to\mathbb{Z}$, where \mathcal{P} is the set of primes.
 - Given $p, q \in \mathcal{P}$, we can compute $p \cdot q$ in polynomial time
 - Factoring $N = p \cdot q$ is computationally (!) hard.
- Modular exponentiation (Section 2)
- Elliptic curve multiplication (Section 3)
- Isogenies (Section 4)

Public key exchange

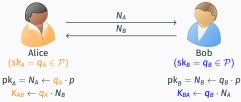


- sk: secret key
- pk: public key
- F: one-way functions
 - \Rightarrow Given pk_A it is hard to find sk_A.

requirement:
$$F(sk_A, F(sk_A, g)) = F(sk_B, F(sk_A, g))$$

 $\forall sk_A, sk_B$, so that $K_{AB} = K_{BA}$

Example based on factorizationNon-example



- correctness \checkmark $K_{AB} = q_A \cdot N_B = q_A \cdot (q_B \cdot p) = q_B \cdot (q_A \cdot p) = q_B \cdot N_A = K_{BA}$
- security x¹
 Given N_A, the secret key q_A is efficiently computed as q_A = N_A/p.
 ⇒ f_p: P → N with f_p(q) = p · q is not a one-way function.

¹It has proven to be difficult to construct key exchange based on factorization, but there is an important public key encryption scheme related to this problem: RSA.

Discrete logarithm problem and

Diffie-Hellman key exchange

New directions in cryptography

644

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-22, NO. 6, NOVEMBER 1976

New Directions in Cryptography

Invited Paper

WHITFIELD DIFFIE AND MARTIN E. HELLMAN, MEMBER, IEEE

- 1976: Whitfield Diffie and Martin Hellman propose the first key exchange protocol
- Marks the beginning of "modern cryptography": changing the ancient art into a science
- Diffie-Hellman key exchange is the basis of many modern protocols

Modular exponentiation and the discrete logarithm problem

In this lecture, we consider modular exponentiation for some prime field \mathbb{F}_p :

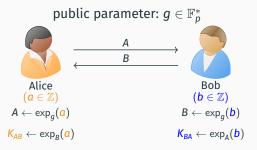
$$\exp_a : \mathbb{Z} \to \mathbb{F}_p, \quad a \mapsto g^a,$$

Discrete Logarithm Problem (DLP)

For $g \in \mathbb{F}_p^*$ primitive root, $A \in \mathbb{F}_p^*$, the <u>DLP</u> asks to find $a \in \mathbb{Z}$ so that $\exp_g(a) = A$. Notation: $a = \operatorname{dlog}_a(A)$.

- exp_g is easy to compute (square-and-multiply techniques)
- No polynomial-time algorithms for computing dlog_g are known (next lecture)
- ⇒ exp_g is a (conjectured) cryptographic one-way function.

Diffie-Hellman key exchange

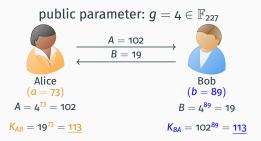


correctness
$$\checkmark$$
 $K_{AB} = \exp_B(a) = (g^b)^a = (g^a)^b = \exp_A(b) = K_{BA}$

security

- Given g and $pk_A = A$, it is hard to compute $sk_A = a = dlog_g(A)$ if the DLP is hard in \mathbb{F}_p .
- Given g, $pk_A = A$, $pk_B = B$, it seems hard to compute $K_{AB} = K_{BA}$ without solving the DLP (slide 17).

Example: Diffie-Hellman key exchange



Note
$$ord(4) = 113 \neq 226 = p - 1$$

• This choice is made on purpose in order to work in a prime-order subgroup of \mathbb{F}_p^*

For $g \in \mathbb{F}_p^*$, $A \in \langle g \rangle$, the DLP and the notation $dlog_g(A)$ are well-defined (analogous to the definition on slide 13).

Why work in a prime order subgroup?

How hard is it to solve the DLP for some parameters $g \in \mathbb{F}_p^*$ and A?

- Naive approach: For all $a \in \{0, ..., q-1\}$ check if $\exp_g(a) = A$. better algorithms in the next lecture
- \Rightarrow Intuitively, the hardness depends on q = ord(g).
 - We can do better if ord(g) = q is composite!

Example p=443, $g=2\in \mathbb{F}_p^*$ with $ord(g)=442=2\cdot 13\cdot 17$. We want to find $a=\operatorname{dlog}_g(A)$ with A=74.

- $a \pmod{2}$: Compute $A^{221} = 442 \neq 1$, hence $a \equiv 1 \pmod{2}$.
- $a \pmod{13}$: Compute $A' = A^{2\cdot 17} = 356$ and $g' = g^{2\cdot 17} = 35$. $A' \in \langle g' \rangle$ and ord(g') = 13. We find $dlog_{g'}(A') = 6$, hence $a \equiv 6 \pmod{13}$.
- $a \pmod{17}$: Analogously, we find $a \equiv 4 \pmod{17}$.
- \Rightarrow Chinese remainder theorem: $a \equiv 123 \pmod{2 \cdot 13 \cdot 17}$

General approach: Pohlig-Hellman algorithm (see the exercises)

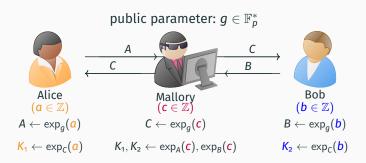
The computational Diffie-Hellman problem

Computational Diffie-Hellman problem (CDH)

For $g \in \mathbb{F}_p^*$, $A = g^a$, $B = g^b$ with (secret) a, b, the CDH asks to find $C = g^{ab}$.

- If CDH is hard, then DLP is hard (CDH reduces to DLP)
- Are the problems equivalent? open question
 - The best known algorithms to solve CDH rely on solving DLP
 - Maurer reduction: reduction from DLP in group A to CDH in group B (constructing B is not easy)
 - Algbraic group model: equivalence proven under the assumption that the adversary is algebraic
- Food for thought: Which of the following are easy to compute? q^{a+b} , q^{a-b} , q^{a^2} , q^{2a} , q^{-a} , $q^{1/a}$, $q^{a/b}$

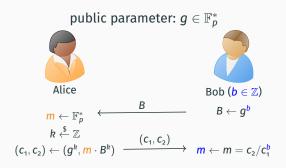
Man-in-the-middle-attack



- \Rightarrow The Diffie-Hellman key exchange protocol is not secure against active adversaries
 - · additional authentication is required
 - Diffie-Hellman key exchange serves as an important building block for such advanced protocols

El Gamal Encryption

Public key encryption scheme based on DLP, proposed by Taher Elgamal in 1985.



Security

- If DLP or CDH are easy, then the ElGamal system is insecure.
- It can be shown that the system is CPA secure if the Decisional Diffie-Hellman problem is hard as well.

Summary of Lecture 1

Caesar cipher and variants

- symmetric: Alice and Bob possess the same secret key
- substitution ciphers (letters are encrypted individually)
- · historic, today insecure

Diffie-Hellman key exchange

- asymmetric: Alice and Bob have different secret keys
- based on modular exponentiation in a finite field \mathbb{F}_p
- security is based on the hardness of DLP and CDH

Next lecture

- · How hard is the DLP?
- Babystep-giantstep, Pollard's rho and index calculus algorithm