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What is cryptography?

κρυπτoς︸ ︷︷ ︸
to hide

+ γραφϵιν︸ ︷︷ ︸
to write

Cryptography is used to obscure information from an eavesdropper.

Alice Bob

secret message decrypts the cipher text

Alice sends
an encrypted

message

Eve

tries to find the message

Eve is
eaves-
dropping
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What will we learn in this course?

Classical cryptography Modern cryptography

∼ 50 BC
Caesar cipher

1976
Diffie-Hellman
key exchange

1985
Elliptic Curve
Cryptography

1997/2006
Isogeny-based
Cryptography

Lecture 1 Lecture 2 Lectures 3/4 Lecture 5
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A brief introduction to
cryptography



Encryption scheme

Alice (k ∈ K) Bob (k ∈ K)

m←M
c← Enck(m) m← Deck(c)

c

Eve

c

K key space
M message space
C cipher text space

Encryption function: Enc : K ×M→ C
Decryption function: Dec : K × C →M

requirement: Deck(Enck(m)) = m ∀m ∈M, k ∈ K
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Caesar cipher

historical cipher used by Julius Caesar (100 BC - 44 BC)

• Idea: Shift every letter in a word by 3 positions.
A B C D E F G H I J K L M N O P Q . . .
D E F G H I J K L M N O P Q R S T . . .

• Example: HELLO 7→ KHOOR

Formal description

• A = {A, . . . , Z} = {0, . . . , 25}
• M = C = A∗ = {a1 . . .an | ai ∈ A,n ∈ N}
• Enc(m1 . . .mn) = (c1 . . . cn) with ci = mi + 3 (mod 26)
• Dec(c1 . . . cn) = (m1 . . .mn) with mi = ci − 3 (mod 26)

△! There is no key.
Anyone knowing the encryption method can decrypt!
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Kerckhoff’s principle

Il faut qu’il [le système] n’exige pas le secret, et
qu’il puisse sans inconvénient tomber entre les mains de
l’ennemi.

— Auguste Kerckhoff, la cryptographie militaire, 1883

→ The system must be secure, even if everything about it, except
the secret key, is public knowledge.

→ Important for modern cryptography. Why?
• makes cryptography better (public peer review)
• keeping the scheme secret is unrealistic in most scenarios
• easier to change a secret key than changing the entire system

Opposite principle: Security through obscurity.
• unlikely to provide long-term security
• can be used to complement a (public) system
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Improving the Caesar cipher?

Version 1: choose a secret shift k ∈ {0, . . . , 25} ⇒ 26 keys.

Version 2: choose a secret linear transformation
m 7→ ka ·m + kb (mod 26)

⇒ 26 · 12 keys
⇒ The key spaces are too small.
An attacker can test all possible keys until a valid text is found.

Exercise

Decipher: IFELTKH URFENHA FEEFSFU TSVGEDN ULTKFBF
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Improving the Caesar cipher?

Version 3: choose a secret permutation of the letters
⇒ 26! ≈ 288 keys

⇒ Still insecure against frequency analysis.
• Idea: each language has a characteristic distribution of letters

or other patterns
• English language

• most common letters: E, T, A
• most common pairs: TH, ER, ON
• most common repeats: SS, EE, TT

• first sources from 8th century:
(A Manuscript on Deciphering Cryptographic Messages, Al-Kindi)

Exercise

Decipher: JIVQOJIV LEALAVQO KGOONDTV QOAELONE OAINYNGJ SOB-
VQODB CLAVQOKG OONDTJIV QOJIVLEA EIBHTBLO YBLEQPIG AA
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Symmetric cryptography vs public key cryptography

Symmetric cryptography

• Alice and Bob share the same secret key k
• Examples of symmetric encryption schemes:

• variants of the Caesar cipher (historical, insecure)
• AES = Advanced Encryption Standard (modern scheme,

standardized in 2000)
• Alice and Bob need to agree on a secret key in advance

Public key cryptography

• Alice and Bob have their own secret key sk and a corresponding
public key pk, related by a cryptographic one-way function

• important cryptographic primitive: Public key exchange
⇒ allows Alice and Bob to find a shared secret key
communicating over a public channel
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Cryptographic one-way functions

Definition

A function f : X → Y is a cryptographic one-way function if
1. f is easy to compute,
2. f is hard to invert.

Conjectured (!) examples

• Multiplication: F : P × P → Z, where P is the set of primes.
• Given p,q ∈ P , we can compute p · q in polynomial time
• Factoring N = p · q is computationally (!) hard.

• Modular exponentiation (Section 2)
• Elliptic curve multiplication (Section 3)
• Isogenies (Section 4)
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Public key exchange

public parameter g

Alice
(skA ∈ K)

pkA ← F(skA,g)

Bob
(skB ∈ K)

pkB ← F(skB,g)
KAB ← F(skA,pkB) KBA ← F(skB,pkA)

pkA

pkB

Eve

pkA
and
pkB

• sk: secret key
• pk: public key
• F: one-way functions

⇒ Given pkA it is hard
to find skA.

requirement: F(skA, F(skA,g)) = F(skB, F(skA,g))
∀skA, skB, so that KAB = KBA
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Example based on factorizationNon-example

Public parameter: p ∈ P large prime

Alice
(skA = qA ∈ P)

pkA = NA ← qA · p

Bob
(skB = qB ∈ P)

pkB = NB ← qB · p
KAB ← qA · NB KBA ← qB · NA

NA

NB

• correctness ✓

KAB = qA · NB = qA · (qB · p) = qB · (qA · p) = qB · NA = KBA

• security x1

Given NA, the secret key qA is efficiently computed as qA = NA/p.
⇒ fp : P → N with fp(q) = p · q is not a one-way function.

1It has proven to be difficult to construct key exchange based on factorization, but
there is an important public key encryption scheme related to this problem: RSA.
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Discrete logarithm problem and
Diffie-Hellman key exchange



New directions in cryptography

• 1976: Whitfield Diffie and Martin Hellman propose the first key
exchange protocol

• Marks the beginning of “modern cryptography”:
changing the ancient art into a science

• Diffie-Hellman key exchange is the basis of many modern
protocols
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Modular exponentiation and the discrete logarithm problem

In this lecture, we consider modular exponentiation for some prime
field Fp:

expg : Z→ Fp, a 7→ ga,

Discrete Logarithm Prob-
lem (DLP)

For g ∈ F∗
p primitive root,

A ∈ F∗
p,

the DLP asks to find a ∈ Z
so that expg(a) = A.
Notation: a = dlogg(A).

• expg is easy to compute
(square-and-multiply
techniques)

• No polynomial-time
algorithms for computing
dlogg are known (next
lecture)

⇒ expg is a (conjectured)
cryptographic one-way
function.
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Diffie-Hellman key exchange

public parameter: g ∈ F∗
p

Alice
(a ∈ Z)

A← expg(a)

Bob
(b ∈ Z)

B← expg(b)

KAB ← expB(a) KBA ← expA(b)

A
B

correctness ✓

KAB = expB(a) = (gb)a = (ga)b = expA(b) = KBA

security
• Given g and pkA = A, it is hard to compute skA = a = dlogg(A)

if the DLP is hard in Fp.
• Given g, pkA = A, pkB = B, it seems hard to compute KAB = KBA

without solving the DLP (slide 17).
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Example: Diffie-Hellman key exchange

public parameter: g = 4 ∈ F227

Alice
(a = 73)

A = 473 = 102

Bob
(b = 89)

B = 489 = 19
KAB = 1973 = 113 KBA = 10289 = 113

A = 102
B = 19

Note ord(4) = 113 ̸= 226 = p− 1
• This choice is made on purpose in order to work in a

prime-order subgroup of F∗
p

For g ∈ F∗
p, A ∈ ⟨g⟩, the DLP and the notation dlogg(A) are

well-defined (analogous to the definition on slide 13).
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Why work in a prime order subgroup?

How hard is it to solve the DLP for some parameters g ∈ F∗
p and A?

• Naive approach: For all a ∈ {0, . . . ,q− 1} check if expg(a) = A.
better algorithms in the next lecture

⇒ Intuitively, the hardness depends on q = ord(g).
• We can do better if ord(g) = q is composite!

Example p = 443, g = 2 ∈ F∗
p with ord(g) = 442 = 2 · 13 · 17.

We want to find a = dlogg(A) with A = 74.

• a (mod 2): Compute A221 = 442 ̸= 1, hence a ≡ 1 (mod 2).
• a (mod 13): Compute A′ = A2·17 = 356 and g′ = g2·17 = 35.

A′ ∈ ⟨g′⟩ and ord(g′) = 13. We find dlogg′(A′) = 6, hence a ≡ 6
(mod 13).

• a (mod 17): Analogously, we find a ≡ 4 (mod 17).
⇒ Chinese remainder theorem: a ≡ 123 (mod 2 · 13 · 17)

General approach: Pohlig-Hellman algorithm (see the exercises)
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The computational Diffie-Hellman problem

Computational Diffie-Hellman problem (CDH)

For g ∈ F∗
p, A = ga, B = gb with (secret) a,b, the CDH asks to

find C = gab.

• If CDH is hard, then DLP is hard (CDH reduces to DLP)
• Are the problems equivalent? open question

• The best known algorithms to solve CDH rely on solving DLP
• Maurer reduction: reduction from DLP in group A to CDH in group

B (constructing B is not easy)
• Algbraic group model: equivalence proven under the assumption

that the adversary is algebraic

• Food for thought: Which of the following are easy to compute?
ga+b, ga−b, ga2

, g2a, g−a, g1/a, ga/b
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Man-in-the-middle-attack

public parameter: g ∈ F∗
p

Alice
(a ∈ Z)

A← expg(a)

Bob
(b ∈ Z)

B← expg(b)

K1 ← expC(a) K2 ← expC(b)

A
B

Mallory
(c ∈ Z)

C ← expg(c)

CA
C B

K1,K2 ← expA(c), expB(c)

⇒ The Diffie-Hellman key exchange protocol is not secure against
active adversaries

• additional authentication is required
• Diffie-Hellman key exchange serves as an important building

block for such advanced protocols
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El Gamal Encryption

Public key encryption scheme based on DLP, proposed by Taher
Elgamal in 1985.

public parameter: g ∈ F∗
p

Alice Bob (b ∈ Z)
B← gb

m← F∗
p

k $←− Z
(c1, c2)← (gk,m · Bk) m← m = c2/cb

1

B

(c1, c2)

Security

• If DLP or CDH are easy, then the ElGamal system is insecure.
• It can be shown that the system is CPA secure if the Decisional

Diffie-Hellman problem is hard as well.
19



Summary of Lecture 1

Caesar cipher and variants

• symmetric: Alice and Bob possess the same secret key
• substitution ciphers (letters are encrypted individually)
• historic, today insecure

Diffie-Hellman key exchange

• asymmetric: Alice and Bob have different secret keys
• based on modular exponentiation in a finite field Fp

• security is based on the hardness of DLP and CDH

Next lecture

• How hard is the DLP?
• Babystep-giantstep, Pollard’s rho and index calculus algorithm
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