PAWS 2025: ANALYSIS AND IMPLEMENTATION OF ALGORITHMS IN
NUMBER THEORY
PROBLEM SET 2

THOMAS BOUCHET, KATE FINNERTY, ASIMINA S. HAMAKIOTES, YONGYUAN HUANG

The goal for Problem Set 2 is to become comfortable using the key definitions in Lecture 2 and
connect them to the complexity concepts from the first problem set and lecture. The questions
are loosely in ascending order of difficulty. Feel free to skip around and try whatever exercises
would be the most helpful for you. Try as many as you can but don’t feel like you need to
complete them all!

1. BEGINNER PROBLEMS
Question 1: Recall that an algebraic extension can be written as a quotient Q[z]/(f), where

f(2) is irreducible. Also, recall that the ring of integers of an extension is the ring of all algebraic
integers (roots of monic polynomials whose coefficients are in Z) contained in said extension.

(a) Show that the ring of integers for Q(v/5) is Z[HT\@]
(b) For d a squarefree integer, describe a generator of the ring of integers for (@(\/&)

Question 2: Show that Res, (y"mq(z/y), mg(y)) has af as a root, so factoring this polynomial

will result in finding the minimal polynomial of a8. Similarly, show that you can recover the
minimal polynomial of a/8 from Res, (mq (xy), ma(y)).

Question 3: Consider the quadratic number field K = Q(v/—7). Note that +/—7 + 1 is an

element of K. Can you find its minimal polynomial? How is it related to the minimal polynomial
of /=77 Can you now find an algorithm to compute the minimal polynomial of any element
a + by/—7 € K7 Can you generalize this to any quadratic number field?

Question 4: Consider a large monic polynomial over Z[z] that one wants to factor. One way

you could create it in Magma is with:

R<t,y> := PolynomialRing(Integers(),2);

S<x> := PolynomialRing(Integers());

degree := 4;

f := x"degree + Evaluate(Random(degree-1,R,100), [x,1]);
This polynomial is almost surely irreducible. We can approximate one of the roots by:

r := Roots(PolynomialRing(ComplexField())'f) [1][1];

4 .5

Find the minimal polynomial of the root by checking what algebraic (integer) relations 1,7, 72,73, r4 r
hold. If you find an algebraic relation of degree smaller than 5, the polynomial is reducible. Oth-
erwise, does it show that it is irreducible? We will see that this can be done with LLL in Lecture

4.
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uestion 5: Let f(x) =23 —z — 2.
Q

(a) Find all roots of f(x) mod 2 in Z/2Z.

(b) Recall Hensel’s Lemma for integers (Lecture 2 Lemma 2.6). Which of the roots of f(x)
in 7Z/27 lift to a root in Z/2*7Z for every k > 1?

(c) For each root of f(z) in Z/27Z that lifts to a root in in Z/2*Z for every k > 1, find its
approximation modulo 2°.

2. INTERMEDIATE PROBLEMS

Question 6: Prove that a number field is an algebraic extension of Q.

Question 7: Let f(z) € Q[z] be an irreducible polynomial and « be a root of f. Recall Q(«)

denotes the smallest field that contains both Q and «. Explain why Q[a] = {p(a) : p € Q[z]} =
Q(«). Note that it is enough to write the inverse of « as a polynomial (over Q) in a. What is
the degree of Q(«) in terms of the degree of f(x)?

Question 8: Consider the biquadratic number field Q(+/a, v/b). Follow the proof of the Primitive

Element Theorem to find a primitive element 6 such that Q(v/a,vb) = Q(#). Can you find a
way to compute the minimal polynomial of §7 Can you write v/a and Vb as polynomials in 67
If you want, you can pick specific values for a and b.

Question 9: Recall the following discussion of multiplication in number fields: To make
multiplication more efficient, we can precompute and store those reductions. Suppose " =
—tp_16""t — ... —ty. Then for k > n, we have

n—1
(1) 0" =N " 0,
=0

where r; , = —t; and

. Thi—1 — tiTkm—1 ifi2>1,
kbl = o
—toT‘k’n,1 ifi=0.

Show that pre-computing the constants r; ;, as in takes O(kn) field operations.

3. ADVANCED PROBLEMS

Proposition 1 (Prop. 2.2 from the notes). Let f(x) € F,(z) be squarefree and assume that
its decomposition into irreducibles is f(z) = [[,<,<, Ti(x). The polynomials T'(x) € Fplx]| with

deg(T'(z)) < deg(f(x)) for which for each i with ¢ < i < r there exists s; € F, with T(z) = s;

(mod f(z)), are exactly the p" polynomials T'(z) such that deg(T(x)) < deg(f(x)) and T'(z)? =
T(x) (mod f(x)).

Question 10: Show that the Berlekamp algorithm for small p terminates and correctly com-
putes the factorization of f into irreducibles. You can follow the following steps.

(1) Asawarm-up, let f(z) € F,(z) be a polynomial of degree n. Show that f(z) is irreducible
if and only if B
(i) 2" =2 (mod f(z)); and
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(ii) for each prime g|n, gcd(mp”/q —x, f(z)) = 1.

(2) Prove Proposition

(3) Using the notation of Step 2 of the algorithm, show that any polynomial T'(x) in the
kernel of @ — I holds that T(x)? = T'(z) (mod f(z)).

(4) Explain why the dimension of ker(Q) — I) is exactly r and why the column vector
(1,0,...,0)* belongs to the kernel.

(5) Let T'(x) be a polynomial corresponding to a V;. Explain why the polynomials F' from
Step 4 of the algorithm correspond to irreducible factors once we have k = r.

Question 11: You can generate random integer polynomials of degree d with coefficients in
[—b,b] in Magma by running the script
R<t,y> := PolynomialRing(Integers(),2);

S<x> := PolynomialRing(Integers());
f := Evaluate(Random(d,R,b), [x,1]);

Create a polynomial that has 10 random divisors of degree 3. Run the steps of the Berlekamp
algorithm with at least two primes and compare results.
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