
Analysis and implementation of algorithms in number
theory

Preliminary Arizona Winter School, 2025

Juanita Duque-Rosero

Department of Mathematics and Statistics, Boston University

juanita@bu.edu

Introduction

Draft last updated: September 26, 2025

These lecture notes accompany the lectures for the Preliminary Arizona Winter School
2025: Algorithms in number theory. The main references I used are [Coh93, Har21]. Other
useful references are [Coh00, Ste, Voi21, vzGG13].

The course consists of an exploration of the algorithms and computational ideas that
power modern algebra and number theory. We will start with the basics: analyzing what
makes an algorithm e!cient, and working through classic methods in integer arithmetic and
linear algebra. These techniques will come up again and again in the rest of the lectures.

From there, we will study algebraic numbers and number fields. We will see how to
represent them and do arithmetic with them. We then move on to working with rings of
integers, discriminants, and integral bases. Then, we go back to algorithmic linear algebra
to look at the LLL Algorithm and its applications to the study of number fields. Finally,
we study ideals, class groups, and units and we pull everything together with examples from
imaginary quadratic fields.

Explicit computations
The ideal way to follow these notes is to try examples in your favorite computer algebra
system. I personally use Magma, but you are welcome to use whatever you prefer (SageMath,
PARI/GP, Oscar, etc.). You can find Magma examples here. Also, here is a list of random
tricks that I have compiled and here is a scavenger hunt to get you started.

Prerequisites
This course will assume fluency with algebra at a beginning graduate level and familiarity
with the basic objects of algebraic number theory (such as number fields and their rings of
integers). Some good references are [Mil, Lan94].

A note from the author
Despite my best e!orts, these notes will contain typos. If you spot any, please feel free to
email me, I appreciate your help!

An (irrelevant) note from the author
When I think about foundational algorithms that have really made a di!erence in my own
number theory research, Gröbner bases are on top of my list. They are very useful for
arithmetic geometry, and they have “saved” my work more than once. Unfortunately, I could
not find space in these lecture notes to cover them. If you are curious, the book [CLO15] is
beautifully written, and has a lot of the relevant theory.

ii

https://magma.maths.usyd.edu.au/magma/
https://www.sagemath.org
https://pari.math.u-bordeaux.fr
https://www.oscar-system.org
https://magma.maths.usyd.edu.au/magma/pdf/examples.pdf
https://juanitaduquer.github.io/Documents/magmaIntro.pdf
https://juanitaduquer.github.io/Documents/scavengerHunt.pdf

iii

Acknowledgments
I thank John Voight for insightful discussions while I was preparing these notes. Also,
thank you to David Harvey for his helpful feedback on an earlier draft. Thanks to Jennifer
Balakrishnan, Jerson Caro, Aashraya Jha, and Padmavathi Srinivasan for their valuable
input. Finally, thanks to the problem session leaders Thomas Bouchet, Kate Finnerty,
Asimina S. Hamakiotes, and Yongyuan Huang for the careful reading and feedback.

Lecture 1: Arithmetic and linear algebra
Even when you are doing advanced computation, you will end up using basic algorithms in
arithmetic and linear algebra. In this first lecture, we explore some of those algorithms to
compute basic arithmetic, greatest common divisors, and matrices normal forms. They will
be useful in the rest of the course. This lecture follows [Har21, §2] and [vzGG13, Chapter 2].
Other useful references are [BZ11] and [Coh93].

1.1 Analysis of algorithms

When analyzing the e!ectiveness of an algorithm, we can consider many factors, such as the
amount of memory used, or the number of operations required for completion. We start by
introducing some useful notation.

1.1.1 Big-O notation

Definition 1.1. Let f(n) and g(n) be functions defined on the natural numbers. We
say that f(n) is big-O of g(n), and write

f(n) = O(g(n)),

if there exist constants C > 0 and n0 → N such that

|f(n)| ↑ C |g(n)|

for all n ↓ n0.

You can think of O(g(n)) as describing a multiplicative bound on the growth of f(n), for
large n. That is, f(n) does not grow faster than a constant multiple of g(n) for su"ciently
large inputs.

Lemma 1.2. Let f(n), g(n), a(n), and b(n) be functions satisfying f(n) = O(g(n)) and

a(n) = O(b(n)). Then

f(n) + a(n) = O
(
max(|g(n)|, |b(n)|)

)

and

f(n)a(n) = O
(
g(n)b(n)

)
.

Exercise 1.3. Prove Lemma 1.2.

1

2 LECTURE 1: ARITHMETIC AND LINEAR ALGEBRA

In this lecture, we will use the term input size for an algorithm, which depends on how
the data is represented. Precise analysis sometimes requires care in defining what counts as
a single operation (for example, adding two numbers versus multiplying two numbers), but
for most algorithms in arithmetic and linear algebra we will focus on basic operations such
as integer addition, multiplication, and comparisons.

Lemma 1.4. Let f(n) be a function defined over N. Then f(n) = O(log(n)) if and only if

f(n) = O(logk(n)) for any k > 1. In this case, we write O(log(n)) = O(logk(n)).

Proof. We recall the relation between logarithms: log(n) = logk(n)/logk(10). This shows
that f(n) = O(log(n)) if and only if there is a constant C such that for all large enough n,

|f(n)| ↑ C| log(n)| = C
| logk(n)|

| logk(10)|
=

C

logk(10)
| logk(n)| = C →

| logk(n)|.

This shows that f(n) = O(log(n)) if and only if f(n) = O(logk(n)).

1.1.2 Computational models
When deciding on the complexity of an algorithm, it is of vital importance to decide which
computational model we are considering. That is, setting a formal framework for what it
means to “compute”. We have many choices available, for example, Turing machine, Random
Access Machine, or even quantum computer. Each choice makes some analysis cleaner or
more awkward. One good reference to learn about this is [Pap94]. In this course, we follow
the choice of [Har21] and use the deterministic multitape Turing model. Even though this
will not be the focus of this course, we give an intuition of what this model does.

(Deterministic) Turing machines

Figure 1.1: A Turing machine to add 4 + 3.

We can think of a (deterministic) Turing
machine as an infinite tape together with a
head. The head moves along the tape and
can read and modify the contents of each
position. For a given Turing machine, you
need to pick the alphabet (possible symbols
in the tape), a set of states (what is the ma-
chine doing at a given time), and a function
describing the behavior of the machine given
the state and symbol.

Example 1.5. Just for fun, we can consider
a very simple Turing machine that adds 4+
3. We represent the numbers 4 = |||| and
3 = |||. The head always starts at the start
symbol ↭. It moves right until it encounters
the symbol ↔. Then, it deletes ↔, changes
it state to “adding”, and moves to the right.

1.1. ANALYSIS OF ALGORITHMS 3

While in this state, whenever we encounter a symbol |, we delete it, move to the left, add
a symbol |, and move twice to the right. When the head reads a blank at this state, the
new state is “halt” since we are done with the addition. You can see a picture of this in
Figure 1.1. You can check that the total number of steps this machine takes to get to “halt”
is 15.

Exercise 1.6. Can you describe a Turing machine that adds 4 + 3 using less steps than in
Example 1.5 but using the same alphabet {↭,↫, ↔, |}?

Exercise 1.7. Can you change the alphabet and describe a Turing machine that adds 4+ 3
using less steps than in Example 1.5?

Deterministic multitape Turing machines

Instead of working with one tape in a Turing machine, we can consider the case when we
have finitely many tapes and one head that reads one position on each tape. It turns out
that multitape Turing machines are as capable as Turing machines, but faster. For instance,
one can describe a multitape Turing machine that performs the operation of Example 1.5 in
9 less steps!

Definition 1.8. The complexity of a multitape Turing machine model refers to the
number of steps executed by the machine over the course of a computation. Each step
that a Turing machine takes is called a bit operation.

Remark 1.9. The complexity of an algorithm depends on what the alphabet of the multitape
Turing machine is. It it not the same to have a machine that reads any integer, to a machine
that only reads | and ↔, so we need to be specific about the alphabet.

In practice, we describe the complexity of turing Machines by writing the number of steps
in using Big-O notation for functions on the size (number of bits) of the input. We also note
that another useful thing to consider is the space complexity, i.e., the amount of memory
used by a computation. We will only focus on the time complexity, i.e. the number of steps
that it takes to terminate. For certain algorithms the space complexity becomes the main
bottleneck in practice, so it is good to remember that this might be a problem.

Definition 1.10. Given an algorithm that takes an input of n-bits and requires at
most O(f(n)) bit operations to complete, we say the algorithm runs in time O(f(n))
or has complexity O(f(n)).

Remark 1.11. Because we want to access the number theory and not the computational com-
plexity, through these lectures, we will not be very specific about the particular construction
of Turing machines for each algorithm.

4 LECTURE 1: ARITHMETIC AND LINEAR ALGEBRA

1.1.3 An example: addition of integers.
The first question we need to answer is how to represent the objects that we want to input,
or what is the alphabet of our Turing machine. In the next section, we discuss representing
integers more generally; here, we assume integers are given in binary.

Example 1.12. The integer 431 is represented by the 9-digit binary number 110101111
since

431 = 1 · 28 + 1 · 27 + 0 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 1 · 22 + 1 · 21 + 1 · 20.

Now we are ready to add two integers together. Without loss of generality, we can assume
that the length of the expansions is n (we can always pick the maximum length, and then
add zeros to the shortest one). Let’s look at Algorithm 1.13.

Algorithm 1.13 (Integer addition [HvdH21, Algorithm 2.1]).
The input is two binary expansions a = (an↑1, . . . , a1, a0) and b = (bn↑1, . . . , b1, b0) of length
n. This algorithm outputs the binary expansion for the integer c that is the sum a+ b.

1. Set ω0 := 0.

2. For i = 0, . . . , n↗ 1 do

(a) Set ci := ai + bi + ωi.
(b) If ci ↓ 2, set ci := ci ↗ 2 and ωi+1 := 1; otherwise, set ωi+1 := 0.

3. Set cn := ωn.

Return c = (cn, . . . , c1, c0).

Remark 1.14. The description of the algorithm does not explicitly give a multitape Turing
machine (§1.1.2), but you should convince yourself that it gives you all the information you
need to rigorously define the machine.

Theorem 1.15. The complexity of Algorithm 1.13 is O(n).

Proof. We analyze the complexity step by step. It is useful to recall arithmetic of big-O
notation from Lemma 1.2. Step 1 requires one bit operation, so its time is O(1). Step 2
iterates n times. Each iteration performs two bit addition operations, potentially subtracts
2, and sets the carry bit. Each of these operations is a constant-time word operation, so each
iteration takes O(1) time. In total, the complexity of Step 2 is O(n)O(1) = O(n). Finally,
Step 3 sets one bit, which is time O(1). Altogether, the total complexity of the algorithm is

O(1) +O(n) +O(1) = O(n).

1.2. INTEGER ARITHMETIC 5

Remark 1.16. The constant n in Theorem 1.15 denotes the length of the inputs, so if a and
b are the integers we want to add, then

n = log2(max{a, b}) = O(log(max{a, b})),

where the last equality follows from Lemma 1.4.

1.2 Integer arithmetic

With basic notation established, we now explore algorithms for integer arithmetic. First,
how do we represent integers? Then we move on to addition, multiplication, division, and
greatest common divisors.

1.2.1 Representing integers
We will represent numbers in binary, with another bit to represent the sign.

That could be the only line of this subsection. The following is a small detour relates to
expressing integers in actual computers.

Modern laptops use a 64-bit processor. That means that each integer can be up to 264↗1
in value (unsigned), or from ↗263 to 263 ↗ 1 (signed). The CPU can process (add, multiply,
etc.) two of these 64-bit numbers in one operation.

We can represent larger integers by an array of 64-bit words as follows

a = (↗1)s
n∑

i=0

ai2
64i, (1.17)

where s → {0, 1}, 0 ↑ n + 1 < 263, and ai → {0, . . . , 264 ↗ 1}. The numbers ai are the digits

in base 264 of a.

Definition 1.18. For an integer a, its standard representation is given by the array

(s · 263 + n+ 1, a0, . . . , an),

where s and ai are as in (1.17) and an is nonzero if a ↘= 0. If the standard representation of
a has length n we call a an n-bit integer.

1.2.2 Addition
To add integers using their binary representation, we can just use Algorithm 1.13 that has
complexity O(n), where n is the number of bits of the integers (in binary). We usually
just pick the largest number of bits and set that as n. By Remark 1.16, the complexity of
addition is the same as O(log(max(a, b))), where a and b are the integers we want to add.

If you went on the detour about the standard representation, you can modify Step 2 (b)
of Algorithm 1.13 by

If ci ↓ 264, then set ci = ci ↗ 264 and ωi+1 = 1.

6 LECTURE 1: ARITHMETIC AND LINEAR ALGEBRA

1.2.3 Multiplication
With addition, we noted that the naive algorithm to add integers (Algorithm 1.13) has
complexity O(n), where n is the number of bits. The naive algorithm that we use to multiply
integers runs in time O(n2). This is usually fine for smaller integers, but more e"ciency is
needed for larger integers.

Exercise 1.19. You can check the time that it takes Magma to run one line by writing time

at the beginning of the line:

> time 2^115032204*3^473444585;

Time: 312.990

Can you find two large integers (but maybe not as large as above) for which multiplication
takes longer than 0 seconds? How big are your integers? How long does it take to add them?

Exercise 1.20. Write and analyze an algorithm that implements naive multiplication for
integers. Your algorithm should use O(mn) word operations, where m and n are the number
of bits of the integers you are multiplying.

The theoretical state of the art is the Algorithm presented in [HvdH21]. This algorithm
has complexity O(n log n) and is believed to be optimal but maybe not practical.

In practice, many computer algebra systems use the GMP library, which is a “free li-
brary for arbitrary precision arithmetic”. GMP implements an algorithm whose theoretical
complexity comes very close to O(n log n) [Har21, Remark 2.12].

1.2.4 Division
Division of large integers is typically accomplished using algorithms based on repeated sub-
traction, long division, or more advanced methods such as Newton-Raphson iteration for
reciprocal approximation. For most practical purposes, the classical long division algorithm
su"ces.

In general, since Z is an Euclidean domain, given a, b → Z, the division algorithm to
divide a by b should return the unique integers q and r with 0 ↑ r < b such that a = qb+ r.
We call r the remainder of dividing a by b, or a modulo b, and denote it as rem(a, b).

Exercise 1.21. Describe the classical long division algorithm for binary integers. Prove that
the algorithm takes time O((n↗m)m), where the integers have m and n bits, respectively.

Just like with multiplication, we can improve this bound. A division algorithm that com-
bines fast multiplication with Newton’s method gives the same complexity as multiplication:
O(n log n).

1.2.5 Greatest common divisors
The greatest common divisor (gcd) of two integers a and b, denoted gcd(a, b), is the largest
integer that divides both. The standard method to compute gcd’s is the Euclidean Algorithm
(Algorithm 1.22).

https://gmplib.org

1.2. INTEGER ARITHMETIC 7

Algorithm 1.22 (Euclidean Algorithm for gcd).
Given integers a ↓ b > 0, compute g := gcd(a, b).

1. Set r0 := a and r1 := b.

2. Set i := 1 and while ri ↘= 0, do the following

(a) Set ri+1 := rem(ri↑1, ri) and i := i+ 1.

Return ri↑1.

Exercise 1.23. Explain why Algorithm 1.22 terminates and correctly computes the greatest
common divisor.
Theorem 1.24 ([vzGG13, Theorem 3.13]). Algorithm 1.22 for positive n-bit and m-bit

integers has complexity O(mn).

Exercise 1.25. Use Exercises 1.20 and 1.21 to prove Theorem 1.24.
Remark 1.26. As you might know, an essential property of the greatest common divisor
is that it corresponds to the smallest positive linear combination of a and b. That is,
there exist x, y → Z such that gcd(a, b) = ax + by. Running the Euclidean Algorithm for
gcd (Algorithm 1.22) is almost enough for computing x and y, we just need to “undo” the
operations. An optimized version of this algorithm runs in time O(n log2 n), where n is again
the number of bits of a and b.
Remark 1.27. In particular, Remark 1.26 implies that we can find the inverse of an n-bit
integer in Z/MZ for M ↓ 2 in time O(n log2 n).

1.2.6 Large powers
We will look at a basic (but useful) algorithm for computing powers gk, in the general case
when g is an element of any group G and k is an integer.

Algorithm 1.28 (Exponentiation algorithm [Coh93, Algorithm 1.2.1]).
The input is an element g of a multiplicative group G and an integer k. This algorithm
computes gk in G.

1. Set y := 1G. If k = 0, output y and terminate. If k < 0, let K := ↗k and z := g↑1.
Otherwise, set K := k and z := g.

2. If K is odd set y := z · y.

3. Set K := ≃K/2⇐. If K = 0, output y as the answer and terminate. Otherwise, set
z = z · z and go to Step 2.

Exercise 1.29. Prove that Algorithm 1.28 computes gk using O(log |k|) group multiplica-
tions. In particular, when g is an integer, prove that the algorithm runs in O(n log n) time,
where n is the number of bits of the input g.

8 LECTURE 1: ARITHMETIC AND LINEAR ALGEBRA

1.2.7 Summary
We end this section with a summary of results on integer arithmetic in Table 1.1.

Operation (of n-bit integers) Naive Algorithm Optimized Algorithm

Addition O(n) O(n)
Multiplication O(n2) O(n log n)
Division O(n2) O(n log n)
GCD O(n2) O(n log2 n)
Exponentiation (to k-bit integer) O(n2) O(n log n)

Table 1.1: Summary of complexity for basic arithmetic algorithms.

1.3 More arithmetic

We will use what we learned about integer arithmetic to study the complexity of modular
and polynomial arithmetic.

1.3.1 Modular arithmetic
Let M ↓ 2. Elements of Z/MZ can be represented as integers x → {0, . . . ,M ↗ 1}. In
particular, elements of Z/MZ occupy at most log(M) bits of space. We describe the basic
arithmetic operations in this ring and record a summary in Table 1.2.

• To add two elements of Z/MZ, we can add their representatives and subtract M if the
result is ↓ M . This algorithm has complexity O(log(M)).

• To multiply, we multiply the representatives and then take the reminder modulo M ,
so the complexity of multiplication is O(logM log logM).

• Division is achieved by running the Euclidean Algorithm as in Remark 1.27 to in-
vert the denominator (complexity O(logM(log logM)2)), and then multiplying by the
numerator (complexity O(logM log logM)). In total, the complexity of division is
O(logM(log logM)2).

• For exponentiation, one can use Algorithm 1.28 in time O(logM(log logM) log k).

Remark 1.30. One can estimate the time of performing any arithmetic operation over Z/MZ
by O(log1+ω M). This is sometimes enough information for complexity computations.

Operation over Z/MZ Running Time

Addition O(logM)
Multiplication O(logM log logM)
Division O(logM log2(logM))
Exponentiation (xk) O(logM log logM log k)

Table 1.2: Summary of running times for modular arithmetic.

1.4. LINEAR ALGEBRA 9

1.3.2 Polynomial arithmetic

We can use what we have studied about integer arithmetic to determine the complexity of
arithmetic in Z[x] or Q[x]. In general, polynomials in Z[x] can be represented as polynomials
over finite rings Z/MZ for large enough M . Polynomials in Z/MZ[x] of degree < n can be
represented as a sequence of n coe"cients. Also, note that each coe"cient can be represented
using O(logM) bits, so to encode a polynomial in Z/MZ[x] of degree < n, we need space
O(n logM). The running times for algorithms for polynomial multiplication are related to
the ones for integer multiplication. Let Mint(n) denote the cost of multiplying n-bit integers.
Then, the cost of polynomial arithmetic is summarized in Table 1.3. The interested reader
can look at [Har21, §2].

Operation over Z/MZ[x] of deg n Running Time

Addition O(n logM)
Multiplication O(Mint(n log(nM)))
Division O(Mint(n log(nM)))

Table 1.3: Summary of running times for polynomial arithmetic.

1.4 Linear algebra

Now that we have looked at basic arithmetic, we move on to linear algebra, an area that
also allows us to make (fast) explicit computations. The complexity of arithmetic operations
on matrices depends on the complexity of arithmetic over the base field or ring. As we saw
in §1.2 and §1.3, this complexity varies and that is why we focus on the number of ring
operations (multiplications/divisions) needed for each algorithm. For basic arithmetic of
matrices, one can easily find (upper bounds) for the complexity of adding and multiplying
matrices with Z coe"cients, so we leave this as an exercise. We will skip the basic arithmetic
and move on to more interesting matrix manipulations.

Exercise 1.31. Compute a function f(n) such that O(f(n)) represents the number of field
multiplications needed to compute the product of two n⇒ n matrices. Why can you ignore
the number of addition operations?

Remark 1.32. The best known bound for the number of operations (over a field) needed to
multiply two n⇒ n matrices is O(n2.3728596) [Har21, Remark 2.5.1].

1.4.1 Gaussian elimination

This is perhaps one of the most useful and widely used algorithms in linear algebra. It gives
us a way of solving linear systems, compute determinants, and find inverses and pseudo-
inverses, etc. Because of the applications, we focus on square matrices.

The number of multiplications/divisions needed in Algorithm 1.33 is O(n3/3). Now we
can look at a couple applications of the ideas from this algorithm.

10 LECTURE 1: ARITHMETIC AND LINEAR ALGEBRA

Algorithm 1.33 (Gaussian Elimination for square matrices [Coh93, Algorithm 2.2.1]).
The input is an n ⇒ n matrix M with entries in a field and a vector B of length n. This
algorithm returns a vector X such that MX = B if M is invertible and false if not.

1. Set j := 0.

2. Let j := j + 1. If j > n, then go to Step 6.

3. If mi,j = 0 for all i ↓ j, then return false and terminate. Otherwise, let i ↓ j be
some index such that mi,j ↘= 0.

4. If i > j, for l = j, . . . , n exchange mi,l and mj,l and then exchange bi and bj.

5. Note that mj,j ↘= 0. Set d := m↑1
j,j and for all k > j set ck := dmk,j. For all k > j and

l > j set mk,l := mk,l ↗ ckmj,l. Finally, for k > j set bk := bk ↗ ckbj and go to Step 2.

6. Note that M is now upper-triangular! For i = n, n↗ 1, . . . , 1 set

xi :=

(
bi ↗

∑

i<j↓n

mi,jxj

)
/mi,i,

output X = (xi)1↓i↓n, and terminate.

Exercise 1.34. Modify Algorithm 1.33 to compute the inverse of a square matrix. Check
how many multiplications/divisions does it take to run your algorithm. Can you get the
number of operations to be asymptotic to 4n3/3?

Exercise 1.35. Modify Algorithm 1.33 to compute the determinant of a square matrix.
Check how many multiplications/divisions does it take to run your algorithm. Can you get
the number of operations to be asymptotic to n3/3?

Remark 1.36. Algorithm 1.33 hinges on being able to invert mj,j in Step 5. This is an
obstacle for computing determinants of matrices with coe"cients in integral domains but
not fields (which will be essential in the following lectures). The reader can check [Coh93,
Algorithm 2.2.6] for an example of an algorithm to solve this. The algorithm takes O(n3)
operations.

1.4.2 Normal forms and picking a basis
Gaussian elimination allows us to represent a matrix by a similar matrix that is simpler.
This is definitely not the only normal form for a matrix. In §5.1.1, we will describe and use
the Hermite normal form, which works over the integers Z, and allows us to represent ideals
in orders.

Other normal forms that we will not focus on here, but which are very useful, include the
Smith normal form (which helps with module and abelian group structure computations)
and the Jordan normal form.

1.4. LINEAR ALGEBRA 11

Finding normal forms is just finding a new basis for your space, in which the linear
operator represented by the matrix can be written in a simpler way. The last special basis
that we will explore in Lecture 4 is the LLL-reduced basis, for which there is a highly e"cient
algorithm to compute.

Lecture 2: Algebraic numbers and
number fields

Number fields are at the heart of number theory. They are a natural setting where arithmetic
and algebraic structures meet. You can find them in the study of Diophantine equations,
class field theory, Galois representations, etc. In this lecture, we will focus on studying the
basics of number fields and algebraic numbers from a computational perspective. Topics are
mostly from [Coh93, Chapters 3 and 4]. For further reading, the reader can consult, for
example, [Mil], [Lan94], or [Ste].

2.1 Factoring in Z[x]
As a warm-up, we first go back to the arithmetic of polynomials. Thorough these lectures,
we will mainly be working with irreducible polynomials over Z. In this section, we study
the di"cult problem of factoring polynomials over Z[x] or certifying that said polynomial is
irreducible. Many approaches rely on being able to factor over finite fields and the use of
Hensel’s lemma. Another way of solving the problem uses the LLL algorithm, which we will
study in Lecture 4. In this section, we will investigate a method that uses field operations
(which, in practice, gives a faster approach).

Let f(x) be a non-zero polynomial in Z[x]. We may assume that the greatest common
divisor of the coe"cients of f(x) is 1 by dividing by any common factor; such a polynomial
is called primitive. By Gauss’s Lemma, deciding if f(x) is irreducible over Q[x] is equivalent
to deciding if it is irreducible over Z[x], so there is nothing to gain by considering operations
over Q.

We sketch the steps to decide if a primitive polynomial f(x) → Z[x] is irreducible, or find
a nontrivial factorization (for details, see [Coh93, Algorithm 3.5.7]). The method relies on
picking a suitable prime number p.

Step 1: reduce to squarefree polynomials

Deciding if f(x) is squarefree reduces to computing gcd(f(x), f →(x)), as shown in Exercise 2.1.
If we want to factor the polynomial, then we can then factor f(x)/ gcd(f(x), f →(x)), which
is squarefree by construction.

Exercise 2.1. Let f(x) → Z[x] be a monic polynomial. Show that f(x) is squarefree in Z[x]
if and only if gcd(f(x), f →(x)) = 1.

Step 2: bound the coe!cients of the factors

Assume f(x) → Z[x] is primitive and squarefree. For integer polynomials f(x) and g(x)
with g(x)|f(x), there is an explicit bound for the absolute value of the coe"cients of g(x) in
terms of the coe"cients of f(x) (see [Coh93, Theorem 3.5.1]). This allows us to find B > 0

12

2.1. FACTORING IN Z[x] 13

bounding the coe"cients of all irreducible factors of f(x) of degree ↑ deg(f(x))/2. Let
ε(f(x)) be the leading coe"cient of f(x). Choose e to be the smallest exponent for which
pe > 2ε(f̄)B.

Step 3: find a factorization over a finite field

Let Fp be the field Z/pZ. In this step, we find a factorization of f(x) over Fp[x]. There are
many algorithms to do this, but we pick one that works well for small p to show the main
ideas (see Algorithm 2.3). We will not show that the algorithm is correct, but the interested
reader can look at Exercise 2.4. The main idea of this algorithm relies on the following
proposition.

Proposition 2.2 ([Coh93, Proposition 3.4.9]). Let f̄(x) → Fp(x) be squarefree and assume

that its decomposition into irreducibles is f̄(x) =
∏

1↓i↓r Ti(x). The polynomials Ti(x) →

Fp[x] with deg(Ti(x)) < deg(f̄(x)) for which for each i with q ↑ i ↑ r there exists si → Fp with

Ti(x) ⇑ si (mod f̄(x)), are exactly the pr polynomials Ti(x) such that deg(Ti(x)) < deg(f̄(x))
and Ti(x)p ⇑ Ti(x) (mod f̄(x)).

Algorithm 2.3 (Berlekamp for small p [Coh93, Algorithm 3.4.10]).
The input is a squarefree polynomial f̄ → Fp[x] of degree n, this algorithm computes the
factorization of f̄(x) into irreducible factors.

1. Compute inductively for 0 ↑ k < n values qi,k → Fp such that

xpk
⇑

∑

0↓i<n

qi,kx
i (mod f̄(x)).

2. Let Q := [qi,k]i,k. Find a basis V1, . . . , Vr of the kernel Q↗ I such that V1 is the column
vector (1, 0, . . . , 0)t. Set E := {f̄(x)}, k := 1, and j := 1.

3. If k = r, output E as the set of irreducible factors of f̄(x) and terminate. Otherwise,
set j := j + 1, and let T (x) :=

∑
0↓i<n(Vj)ixi.

4. For each polynomial g(x) → E such that deg(g(x)) > 1 do the following. For each
s → Fp compute gcd(g(x), T (x) ↗ s). Let F be the set of such gcd’s whose degree is
greater than or equal to 1. Set E := (E ↗ g(x)) ⇓ F and k := k ↗ 1 + |F |. If in the
course of this computation we reach k = r, output E and terminate the algorithm.
Otherwise, go to Step 3.

Exercise 2.4. Show that Algorithm 2.3 terminates and correctly computes the factorization
of f̄ into irreducibles. You can follow the following steps.

1. As a warm-up, let f̄(x) → Fp(x) be a polynomial of degree n. Show that f̄(x) is
irreducible if and only if

14 LECTURE 2: ALGEBRAIC NUMBERS AND NUMBER FIELDS

(i) xpn
⇑ x (mod f̄(x)); and

(ii) for each prime q|n, gcd(xpn/q
↗ x, f̄(x)) = 1.

2. Prove Proposition 2.2.

3. Using the notation of Step 2 of the algorithm, show that any polynomial T (x) in the
kernel of Q↗ I holds that T (x)p ⇑ T (x) (mod f̄(x)).

4. Explain why the dimension of ker(Q ↗ I) is exactly r and why the column vector
(1, 0, . . . , 0)t belongs to the kernel.

5. Let T (x) be a polynomial corresponding to a Vj. Explain why the polynomials F from
Step 4 of the algorithm correspond to irreducible factors once we have k = r.

Step 4: lift the factorization

This step shows a very useful technique when trying to approximate a solution by its residues
modulo p. This is done, for example, when working with p-adic integers. The idea is to use
Hensel’s Lemma, which we recall since it is a fundamental result.

Lemma 2.5 (Hensel’s Lemma for integers). Let f(x) → Z[x] and let p be a prime. Suppose

there exists a0 → Z such that

f(a0) ⇑ 0 (mod p), and f →(a0) ↘⇑ 0 (mod p).

Then for every k ↓ 1, there exists an integer ak such that

f(ak) ⇑ 0 (mod pk) and ak ⇑ a0 (mod p).

There is a similar version for polynomials

Lemma 2.6 (Hensel’s Lemma for polynomials). Let p be a prime and f(x) → Z[x]. Suppose

f(x) ⇑ g0(x)h0(x) (mod p), where g0(x), h0(x) → Z[x] are monic and coprime modulo p.
Then, for each k ↓ 1, there exist monic polynomials gk(x), hk(x) → Z[x] such that

f(x) ⇑ gk(x)hk(x) (mod pk), gk(x) ⇑ g0(x) (mod p), hk(x) ⇑ h0(x) (mod p),

and gk(x), hk(x) remain coprime modulo p.

This last Lemma allows us to lift the factorizations from Step 3 to

f(x) ⇑ ε(f)T̃1(x) · · · T̃r(x) (mod pe),

where e is as in Step 2 and the polynomials T̃i(x) are monic.

2.2. NUMBER FIELDS 15

Step 5: combine multiple factors

We now repeat for every d → {1, . . . , r/2}. For every combination of factors Ū := T̃i1 · · · T̃id ,
where we take id := 1 if d = 1/2r, compute the unique polynomial U → Z[x] such that all
the coe"cients of U are in [↗1/2pe, 1/2pe), and satisfying

U ⇑ ε(f)Ū (mod pe), if deg(U) ↑ 1/2 deg(f),

U ⇑ f/U (mod pe), if deg(U) > 1/2 deg(f).

If U divides ε(f)f in Z[x], output the factor F = U/ gcd(ui), set f(x) = f(x)/F , and
remove the corresponding T̃i from the list of factors modulo pe. If d ↓ (1/2)r, terminate the
algorithm by outputting f(x).

If we are done looking at all the possible combinations, we have shown that f(x) is
irreducible.

Exercise 2.7. Look through the sketch of the steps of the algorithm to factor primitive
polynomials f(x) → Z[x] and decide what primes are good candidates to run the algorithm
on.

Exercise 2.8. You can generate random integer polynomials of degree d with coe"cients in
[↗b, b] in Magma by running the script

R<t,y> := PolynomialRing(Integers(),2);

S<x> := PolynomialRing(Integers());

f := Evaluate(Random(d,R,b),[x,1]);

Create a polynomial that has 10 random divisors of degree 3. Run the steps of the algorithm
with at least two primes and compare results.

2.2 Number fields

We are now ready to embark on our study of algebraic number theory! To establish notation,
we first review the basic definitions for number fields.

Definition 2.9. A number field K is a field such that K is a finite-dimensional Q-vector
space.

Definition 2.10. Let K be a number field, the degree of K, denoted [K : Q], is the dimension
of K as a Q-vector space.

A really good place to find examples of number fields is the number field database of the
LMFDB. They even have pictures(!), like the one in Figure 2.1.

Also, if you want to work with number fields in Magma, you can download the database
Anf.tar.gz, “comprising over 2.6 million number fields of degrees between 2 and 9 (inclusive)”.

Now, we are ready to look at some examples.

https://www.lmfdb.org/NumberField/
https://www.lmfdb.org/NumberField/
https://magma.maths.usyd.edu.au/magma/download/db/

16 LECTURE 2: ALGEBRAIC NUMBERS AND NUMBER FIELDS

Figure 2.1: Number field 6.0.9747.1.

Example 2.11. The field of rational numbers Q is a number field (of degree 1).

Example 2.12. Let d → Z be a nonzero integer that is not a square. The vector space

Q
(⇔

d
)
:= {a+ b

⇔

d : a, b → Q}

is a number field. A Q-basis is {1,
⇔
d}, so the number field has degree 2. These number

fields are called quadratic fields. To create them in Magma, you can type

K<s> := QuadraticField(d);

The variable s represents
⇔
d (or ↗

⇔
d, they are indistinguishable). Indeed, you can check

assert s^2 eq d;

Exercise 2.13. Prove that Q(
⇔
d) is the smallest field containing

⇔
d.

Example 2.14. Let n ↓ 2 be an integer and let ϑn := exp(2ϖi/n) be a primitive n-th root
of unity. Then

Q(ϑn) :=

{
n↑1∑

i=0

aiϑ
i
n : ai → Q

}

is a number field and it is called the n-th cyclotomic field. The degree [Q(ϑn) : Q] = ϱ(n),
where ϱ(n) is Euler’s totient function. You can define this number field in Magma as

K<z> := CyclotomicField(n);

and just as with quadratic fields, z represents ϑn (or any power ϑkn with gcd(k, n) = 1).

Example 2.15. For a more general example, consider an irreducible polynomial f(x) → Q[x]
of degree d. The quotient Q[x]/(f) is called an algebraic extension of Q and is a number field
of degree d.

Let f(x) → Q[x] be an irreducible polynomial. Let ς be a root of f(x). The field Q(ς)
denotes the smallest field that contains both Q and ς. Then, we have Q[x]/(f(x)) ↖ Q(ς)
via x ↙∝ ς. In this sense, note that it does not matter which root of f(x) we pick: they all
produce isomorphic fields. When we pick a root ς, we pick an explicit embedding

Q[x]/(f(x)) ↖ Q(ς) ′ C. (2.16)

Exercise 2.17. With the notation above, convince yourself that Q[ς] = Q(ς). Note that
it is enough to write the inverse of ς as a polynomial (over Q) in ς. What is the degree of
Q(ς) in terms of the degree of f(x)?

https://www.lmfdb.org/NumberField/6.0.9747.1

2.2. NUMBER FIELDS 17

Lemma 2.18. If K and L are number fields with K ′ L, then [K : Q] divides [L : Q].

Proof. This follows from basic facts about vector spaces. By definition, [K : Q] is the
dimension of K as a Q-vector space, and [L : Q] is the dimension of L as a Q-vector space.
Also, because K ′ L, then L is a K-vector space of finite dimension n. Choose a Q-basis
k1, . . . , km for K, where m = [K : Q], and a K-basis ε1, . . . , εn for L. Then the set

{εikj | 1 ↑ i ↑ n, 1 ↑ j ↑ m}

forms a Q-basis for L. Therefore, [L : Q] = nm.

Examples 2.12 and 2.14 are particular instances of Example 2.15. Indeed,

Q(
⇔

d) ↖ Q[x]/(x2
↗ d) and Q(ϑn) ↖ Q[x]/(!n(x)),

where !n(x) is the cyclotomic polynomial of degree ϱ(n). It turns out that we have described
all number fields just by looking at Example 2.15!

Theorem 2.19. If K is a number field, then K is an algebraic extension of Q.

Exercise 2.20. Prove Theorem 2.19.

Remark 2.21. Given a number field K = Q(ς) of degree n over Q, the choices of roots of
mε(x) provide n distinct embeddings of K in C, as constructed in (2.16). In fact, we will
show that every number field can be written as Q(φ), so every number field of degree n comes
equipped with n distinct embeddings

↼i : K ↽∝ C, ↼i(ς) = ςi.

In fact, every element ς of a number field K is a root of a polynomial in Q[x], which
implies that Q(ς) is a number field too. This invites the following definition.

Definition 2.22. Let ς → C, we say that ς is an algebraic number if ς is a root of
a nonzero polynomial in Q[x]. The minimal polynomial of ς is a monic polynomial
mε(x) → Q[x] of minimal degree. We call all the roots of mε(x) the conjugates of ς.
We denote the set of algebraic numbers as Q̄.

Remark 2.23. If ς → C is an algebraic number, then we can copy the definition from Ex-
ample 2.15 to see that Q(ς) ↖ Q[x]/(mε(x)), where mε(x) is the minimal polynomial of
ς.

Example 2.24. Let ς1, . . . ,ςk be algebraic numbers. The number field Q(ς1, . . . ,ςk) is
the smallest field that contains Q and ς1, . . . ,ςk. Equivalently, it is the compositum of the
number fields Q(ς1), . . . ,Q(ςk).

18 LECTURE 2: ALGEBRAIC NUMBERS AND NUMBER FIELDS

Example 2.25. Working with number fields in Magma can be tricky. Let’s consider the
number fields K := Q(

⇔
6) and L := Q(

⇔
2)Q(

⇔
3) = Q(

⇔
2,
⇔
3), the compositum of Q(

⇔
2)

and Q(
⇔
3):

K<z> := QuadraticField(6);

L := Compositum(QuadraticField(2), QuadraticField(3));

The variable z is representing
⇔
6. Since

⇔
6 =

⇔
2
⇔
3, we could argue that z is an element

of L. However, asking something like: z in L; gives an error. The problem? You do not
know yet an embedding from K to L, so Magma does not know in advance that they are
related. You can first ask IsSubfield(K,L);, which stores the field embedding K ∞ L, and
allows you to write z as an element of K. Now, z in L; returns true. Moreover, trying
L!z; writes z in the basis of L.

Lemma 2.26. Let ς is an algebraic number with minimal polynomial mε(x). Assume that

f(x) → Q[x] satisfies f(ς) = 0. Then mε(x) divides f(x) in Q[x].

Exercise 2.27. Prove Lemma 2.26 by using the Euclidean Algorithm.

The set of algebraic numbers, Q̄, is strictly contained in the complex numbers. The
numbers in the di!erence of these sets are called transcendental numbers. You can find an
interesting Quanta Magazine article on the history of transcendental numbers here.

Another structural fact about algebraic numbers is that Q̄ forms a field. You might have
seen proofs of this, that follow directly from using Theorem 2.19. But what if we care about
representing ς+⇀, ς⇀, and ς/⇀ as algebraic numbers for ς, ⇀ → Q̄? Let’s see what we mean.

2.3 Representing algebraic numbers

From an algorithmic perspective, it is useful to be able to represent algebraic numbers
e"ciently. We will discuss various explicit representations of algebraic numbers and analyze
their computational properties, particularly with respect to arithmetic operations such as
addition, multiplication, and inversion.

2.3.1 Using minimal polynomials
Let ς be an algebraic number with minimal polynomial mε(x). Remark 2.23 gives an
isomorphism Q(ς) ↖ Q[x]/(mε(x)), so ς can be represented as the class of x in the quotient
ring Q[x]/(mε(x)). We now need to figure out how to add, multiply, and divide algebraic
numbers using this representation.

Given two algebraic numbers ς and ⇀, the minimal polynomials of ς + ⇀, ς⇀, or ς/⇀
can be computed using resultants.

Definition 2.28. Let R be an integral domain with fraction field K, and let K̄ be the
algebraic closure of K. Let A(x), B(x) → R[x] be polynomials of degree m and n, respectively.
Decompose A(x) = a

∏m
i=1(x ↗ ςi) and B(x) = b

∏n
i=1(x ↗ ⇀i) in K̄, so ς1, . . . ,ςm are the

https://www.quantamagazine.org/recounting-the-history-of-maths-transcendental-numbers-20230627/

2.3. REPRESENTING ALGEBRAIC NUMBERS 19

roots of A and ⇀1, . . . , ⇀n are the roots of B. The resultant of A(x) and B(x), denoted
Res(A(x), B(x)), is given by one of the equivalent formulas

Res(A(x), B(x)) = anB(ς1) · · ·B(ςm)

= (↗1)mnbmA(⇀1) · · ·A(⇀n)

= anbm
∏

1↓i↓m
1↓j↓n

(ςi ↗ ⇀j).

Equivalently, the resultant of two polynomials A(x) =
∑m

i=0 aix
i and B(x) =

∑n
i=0 bix

i

is the determinant of the Sylvester matrix associated to A(x) and B(x):

Res(A(x), B(x)) = det





am am↑1 · · · a0 0 0 0
0 am am↑1 · · · a0 0 0
...

...
0 0 0 am am↑1 · · · a0
bn bn↑1 · · · b0 0 0 0
0 bn bn↑1 · · · b0 0 0
...

...
0 0 0 bn bn↑1 · · · b0





. (2.29)

As we saw in Remark 1.36, computing the determinant of the matrix has cost O((m+ n)3)
integer multiplications.
Remark 2.30. If you want to explore a more e"cient algorithm for computing resultants,
you can check [Coh93, Algorithm 3.3.7].

Now we are ready to compute minimal polynomials! Recall our goal: for two algebraic
numbers ς and ⇀, we want to find the minimal polynomials of ς+ ⇀, ς⇀, and ς/⇀ from the
information of the minimal polynomials mε(x) and mϑ(x). Let ς1, . . . ,ςm and ⇀1, . . . , ⇀n be
the roots of mε(x) and mϑ(x), respectively.

We add an auxiliary variable y, then compute

mε(x↗ y) =
m∏

i=1

(x↗ y ↗ ςi) = (↗1)m
m∏

i=1

(y ↗ (x↗ ςi)),

so x↗ςi are the roots of mε(x↗ y), seen as a polynomial in y. Consequently, by definition,
the resultant of mε(x↗ y) and mϑ(y) seen as polynomials in y is

Resy(mε(x↗ y),mϑ(y)) =
∏

1↓i↓m
1↓j↓n

((x↗ ςi)↗ ⇀j) =
∏

1↓i↓m
1↓j↓n

(x↗ (ςi + ⇀j)).

By construction, this polynomial in x is monic and has ς+⇀ as a root. It also has coe"cients
in Q by (2.29). If the polynomial is irreducible, then it must be the minimal polynomial of
ς+⇀. If not, then the minimal polynomial mε+ϑ(x) must divide it by Lemma 2.26. We can
then factor it using [Coh93, Algorithm 3.5.7].

Exercise 2.31. Show that Resy(ymmε(x/y),mϑ(y)) has ς⇀ as a root, so factoring this
polynomial will result on finding the minimal polynomial of ς⇀. Similarly, show that you
can recover the minimal polynomial of ς/⇀ from Resy(mε(xy),mϑ(y)).

20 LECTURE 2: ALGEBRAIC NUMBERS AND NUMBER FIELDS

2.3.2 Primitive element theorem and the standard representation
A much easier situation occurs when we work inside a number field Q(ς), where we can find
representations by using information from mε(x). This is easier to see for quadratic number
fields, as shown by the following exercise.

Exercise 2.32. Consider the quadratic number field K := Q(
⇔
↗7). Note that

⇔
↗7 + 1 is

an element of K. Can you find its minimal polynomial? How is it related to the minimal
polynomial of

⇔
↗7? Can you now find an algorithm to compute the minimal polynomial of

any element a+ b
⇔
↗7 → K? Can you generalize this to any quadratic number field?

In general, we have the following theorem.

Theorem 2.33 (Primitive Element Theorem). Let K be a number field, then there

exists an element φ → K such that K = Q(φ). We say that φ is a primitive element.

Sketch of the proof. Let K = Q(ς1,ς2, . . . ,ςm) be a number field generated over Q by alge-
braic numbers ςi. We will show that there is φ → K such that K = Q(φ). It su"ces to show
this for K = Q(ς, ⇀) (by induction on the number of generators). If ς and ⇀ are both in
Q, then K = Q. Otherwise, consider the elements φ = ς + c⇀ for c → Q. It turns out that
K = Q(φ) for all but finitely many c (proving this fact requires using automorphisms of K,
so we skip it for brevity). Pick one of the infinitely many c so K = Q(φ)1.

Exercise 2.34. Consider the biquadratic number field Q(
⇔
a,
⇔
b). Follow the proof of

Theorem 2.33 to find a primitive element φ such that Q(
⇔
a,
⇔
b) = Q(φ). Can you find a

way to compute the minimal polynomial of φ? Can you write
⇔
a and

⇔
b as polynomials in

φ? If you want, you can pick specific values for a and b.

Remark 2.35. The proof of Theorem 2.33 gives an explicit algorithm for computing a primi-
tive element for any number field K. Given K = Q(ς1, . . . ,ςm), you need to try combinations
φ(c) :=

∑m
i=1 ciςi for ci → Q until you get K = Q(φ(c)). This process will terminate since there

are only finitely many vectors (c) for which Q(φ(c)) ⊋ K. However, this algorithm depends
on being able to compute if two number fields are equal. We will study this problem in
Lecture 4.

Going back to our problem of representing algebraic numbers, Theorem 2.33 gives us a
way to perform easier arithmetic when the algebraic numbers belong to the same number
field (Given ς, ⇀ → Q̄, we have that Q(ς, ⇀) is indeed a number field containing all the
relevant quantities we care about).

If K is a number field of degree n, then we can find a primitive element φ with minimal
polynomial mϖ(x) of degree n. Then, all elements ς → K = Q(φ) can be represented uniquely
as

∑n↑1
i=0 biφi for bi → Q. Note that this just means that {1, φ, . . . , φn↑1

} is a Q-basis of K.
1In practice, trying ω+ ε is always a good choice.

2.3. REPRESENTING ALGEBRAIC NUMBERS 21

Taking d as the (positive) greatest common divisor of the rational numbers bi, we arrive to
the representation

ς =

∑n↑1
i=0 aiφi

d
, d > 0, ai → Z, and gcd(a0, . . . , an↑1, d) = 1,

called the standard representation of ς with respect to φ.
Remark 2.36. Magma represents elements of number fields using the standard representation
with respect to a primitive element which is stored when you create the number field.

Example 2.37. We can consider the number field K = Q(
⇔
2, ϑ3). we can create this field

in Magma by writing it as the compositum of Q(
⇔
2) and Q(ϑ3). Every time you create a

number field in Magma, it comes with a primitive element φ that we can recover

N1<s> := QuadraticField(2);

N2<z> := CyclotomicField(3);

K<theta> := Compositum(N1, N2);

Then we can check that z+s eq theta;, so s + z is chosen as the primitive element of K.
We can also check that the elements of K are written in the standard representation with
respect to φ. For example, -(1/50)*s+1+3*z^2+(3/2)*z; returns

1/550*(-148*theta^3 - 222*theta^2 - 159*theta - 730)

Let’s understand the complexity of working with this standard representation. Adding
elements of K reduces to (basically) vector addition in Qn+1, so it takes O(n) integer oper-
ations. To study multiplication, let mϖ(x) =

∑n
i=0 tix

i
→ Q[x] be the minimal polynomial of

φ, so tn = 1. We note that we can reduce

φn = ↗tn↑1φ
n↑1

↗ · · ·↗ t0,

and the use recursion to reduce any power k ↓ n. To make multiplication more e"cient, we
can precompute and store those reductions. Let k ↓ n and write

φn+k =
n↑1∑

i=0

ri,kφ
i (2.38)

so ri,n = ↗ti and

rk+1,i =

{
rk,i↑1 ↗ tirk,n↑1 if i ↓ 1,

↗t0rk,n↑1 if i = 0.

Exercise 2.39. Show that precomputing the constants ri,k as in (2.38) takes O(kn) field
operations.

Once we know the coe"cients ri,k, we can compute the product of any two elements
⇀, ω → K using Algorithm 2.40.

Exercise 2.41. Study the complexity of Algorithm 2.40 in terms of the number of integer
operations. You might find the estimates of § 1.3.2 useful.

22 LECTURE 2: ALGEBRAIC NUMBERS AND NUMBER FIELDS

Algorithm 2.40 (Multiplication in standard representation).
The input is two algebraic numbers in K = Q(φ), written in the standard representation
⇀ = 1

dω

∑n↑1
i=0 biφi and ω = 1

dε

∑n↑1
j=0 cjφ

j, where bi, cj → Z. We also input the precomputed
values ri,k up to k = (n↗ 1)2.

1. Set d := dϑdϱ.

2. Compute the product polynomial: h(x) :=
(∑n↑1

i=0 bixi
)(∑n↑1

j=0 cjx
j
)
=

∑(n↑1)2

i=0 hixi.

3. Set ai := hi for i → {1, . . . , n↗ 1}.

4. For k in n, . . . , (n↗ 1)2

(a) Set ai := ai + ri,k for i = 0, . . . , n↗ 1.

5. Compute g := gcd(a1, . . . an↑1, d)

6. Set d := d/g and the coe"cients ai := ai/g.

Return the standard representation of the product: 1
d

∑n↑1
i=0 aiφi.

Remark 2.42. As you can see in Algorithm 2.40, multiplying two algebraic numbers in the
standard multiplication is equivalent to computing a product of two polynomials and then
reducing that product modulo mϖ(x). You can learn more about this in [Coh93, Chapter 3].
However, precomputing the coe"cients ri,k makes the algorithm more e"cient.

For division, we can use our idea of representing elements of K using polynomials in
Z[x] (plus another integer for the denominator). Then, finding the quotient of ⇀ by ω ↘= 0
is equivalent to computing the quotient of the corresponding polynomials modulo mϖ(x).
This can be done as follows. Let B(x) and C(x) be the polynomials associated to ⇀ and ω,
respectively. The polynomial C(x) coprime to mϖ(x) since ω ↘= 0 and the degree C(x) is at
most n↗ 1. Then we can explicitly compute U(x) such that

U(x)C(x) + V (x)mϖ(x) = gcd(C(x),mϖ(x)) = 1

as part of the computation of the gcd (see §1.3.2). Combined with the multiplication algo-
rithm, we can then obtain the standard representation of ⇀/ω.

2.3.3 Other representations
Using minimal polynomials or the standard representation are not the only ways to represent
algebraic numbers. We will not discuss more ways because of time. If you are curious, you
can look at, for example [Coh93, § 4.2].

Bibliography

[BZ11] Richard P. Brent and Paul Zimmermann. Modern computer arithmetic, volume 18
of Cambridge Monographs on Applied and Computational Mathematics. Cam-
bridge University Press, Cambridge, 2011. ∈1.

[CLO15] David A. Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms.
Undergraduate Texts in Mathematics. Springer, Cham, fourth edition, 2015. An
introduction to computational algebraic geometry and commutative algebra. ∈ii.

[Coh93] Henri Cohen. A course in computational algebraic number theory, volume 138 of
Graduate Texts in Mathematics. Springer-Verlag, Berlin, 1993. ∈ii, 1, 7, 10, 12,
13, 19, 22, 25, 28, 30, 33, 35, 36, 39, 40.

[Coh00] Henri Cohen. Advanced topics in computational number theory, volume 193 of
Graduate Texts in Mathematics. Springer-Verlag, New York, 2000. ∈ii.

[Har21] David Harvey. Counting points on hyperelliptic curves over finite fields, 2021.
IAS/Park City Mathematics Series. ∈ii, 1, 2, 6, 9.

[HvdH21] David Harvey and Joris van der Hoeven. Integer multiplication in time O(n log n).
Ann. of Math. (2), 193(2):563–617, 2021. ∈4, 6.

[Lan94] Serge Lang. Algebraic number theory, volume 110 of Graduate Texts in Mathe-

matics. Springer-Verlag, New York, second edition, 1994. ∈ii, 12.

[LLL82] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with
rational coe"cients. Math. Ann., 261(4):515–534, 1982. ∈32.

[Mil] J. S. Milne. Algebraic number theory. https://www.jmilne.org/math/

CourseNotes/ant.html. ∈ii, 12.

[Pap94] Christos H. Papadimitriou. Computational complexity. Addison-Wesley Publish-
ing Company, Reading, MA, 1994. ∈2.

[Sta67] H. M. Stark. A complete determination of the complex quadratic fields of class-
number one. Michigan Math. J., 14:1–27, 1967. ∈39.

[Ste] William Stein. Algebraic number theory, a computational approach. https:

//wstein.org/books/ant/. ∈ii, 12, 30.

41

https://www.jmilne.org/math/CourseNotes/ant.html
https://www.jmilne.org/math/CourseNotes/ant.html
https://wstein.org/books/ant/
https://wstein.org/books/ant/

42 BIBLIOGRAPHY

[Voi21] John Voight. Quaternion algebras, volume 288 of Graduate Texts in Mathematics.
Springer, Cham, [2021] ©2021. ∈ii.

[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra. Cam-
bridge University Press, Cambridge, third edition, 2013. ∈ii, 1, 7.

	Arithmetic and linear algebra
	Analysis of algorithms
	Big-O notation
	Computational models
	An example: addition of integers.

	Integer arithmetic
	Representing integers
	Addition
	Multiplication
	Division
	Greatest common divisors
	Large powers
	Summary

	More arithmetic
	Modular arithmetic
	Polynomial arithmetic

	Linear algebra
	Gaussian elimination
	Normal forms and picking a basis

	Algebraic numbers and number fields
	Factoring in Z[x]
	Number fields
	Representing algebraic numbers
	Using minimal polynomials
	Primitive element theorem and the standard representation
	Other representations

	More on number fields
	Working with algebraic numbers
	Trace and Norm
	Discriminant

	Algebraic integers
	The Structure Theorem
	The discriminant of a number field
	Computing integral bases
	Representing algebraic integers

	LLL and the subfield problem
	Preliminaries
	Lattices
	Gram-Schmidt

	The LLL Algorithm
	Application: Finding algebraic dependences
	Using LLL to recognize algebraic numbers

	Solving the subfield problem with LLL

	Ideals and units
	Orders and ideals
	Representing ideals with Hermite normal forms

	The class group
	The group of units
	Explicit computations: quadratic fields
	Quadratic forms
	Shanks's method for class groups
	Fundamental units

