
COUNTING POINTS ON HYPERELLIPTIC CURVES
OVER FINITE FIELDS

DAVID HARVEY

Abstract. This course is a gentle introduction to my paper “Computing zeta
functions of arithmetic schemes” (2015). We walk through the algorithms of that
paper in detail for the special case of a hyperelliptic curve over a prime field. In
particular, we explain how to obtain “square-root time” and “average polynomial
time” point counting algorithms for such a curve. The presentation is “elemen-
tary” in the sense that it does not rely on any cohomology.

Contents

0. Preface 1
1. Introduction 1
2. A crash course on fast arithmetic 6
3. Hyperelliptic curves and zeta functions 11
4. A modulo p trace formula 15
5. Recurrences for polynomial powers 20
6. A square-root time algorithm 26
7. An average polynomial time algorithm 32
8. A modulo pλ trace formula 43
Appendix A. AWS project descriptions 51
References 53

0. Preface

This 2026 Arizona Winter School course is based on a previous course that
I gave as part of the program Number Theory Informed by Computation at PCMI
(Park City Mathematics Institute) in 2022. Apart from minor formatting issues
and updates to the bibliography, this document is essentially identical to the
lecture notes for the PCMI course, including the numbering for sections, theorems
and problems. In addition, there is a new section (Appendix A) describing some
possible AWS student projects. (As of the time of writing, the lecture notes for the
PCMI course have not yet been officially published. A draft version is available
from my personal website.)

1. Introduction

1.1. What this course is about. This course has two main aims. The first is to
provide a gentle introduction to some of the ideas behind my paper “Computing
zeta functions of arithmetic schemes” [24]. That paper presented a number of

1

2 DAVID HARVEY

algorithms for counting points on algebraic varieties over finite fields, or in other
words, counting the number of solutions to systems of polynomial equations over
finite fields. In this course we will specialise the methods of [24] to the case of a
hyperelliptic curve over a prime field, i.e., a curve defined by an equation of the form
y2 = f(x) over a field Fp where p is an odd prime. (Here “hyperelliptic” includes
the case of elliptic curves; see Remark 3.1.2.) Here is a baby example of the kind
of problem we consider in this course:

Problem 1.1.1. Count (by hand) the number of solutions (x,y) ∈ F3 × F3 to the
equation y2 = x3 + x.

The second aim of this course is to serve as a jumping-off point for further
research. Sprinkled throughout these notes are sketches of a number of unpub-
lished point counting algorithms, and also a few other algorithms unrelated to
point counting. My hope is that someone reading these notes will be sufficiently
intrigued by one of these sketches to take up the challenge of fleshing out the
details, writing an efficient implementation, and publishing the results.

1.2. What this course is not about. In this course I will have almost nothing to
say about the many other approaches to point counting that have been developed
over the last few decades. These include algorithms based on analysing the group
structure of the Jacobian (see for example [17, §2] or [55]) and algorithms based
on ℓ-adic cohomology [45, 48]. There are some links between the approach taken
in this course and algorithms based on p-adic cohomology, such as [32, 57], but I
will make only a few brief comments on the latter. One should keep in mind that
it is often possible to combine information obtained from these different classes
of algorithms, and the compound algorithm may well be more efficient than any
of its components considered separately. Finally, I will also have nothing to say
about point counting algorithms designed to run on quantum computers [33].

This course is also not about applications of point counting. There are plenty
of applications in cryptography, coding theory and number theory — see for
example [10], [51], and [18] respectively.

The literature on the above topics is vast and I cannot even begin to offer a
survey here.

1.3. Outline of the course. Section 2 is a “cheat sheet” that summarises the tools
we need from computer algebra, such as fast algorithms for integer and matrix
multiplication. You may wish to skip this section on a first reading, and refer
back occasionally when needed.

Section 3 introduces the main objects of study in this course — hyperelliptic
curves and zeta functions — and works out some of their basic properties.

Section 4 develops a “trace formula” that is central to all algorithms discussed
subsequently. This formula yields a congruence modulo p for the number of
Fpr-rational points on a given hyperelliptic curve y2 = f(x) over Fp, in terms of
certain selected coefficients of f(p−1)/2. Already in this section we will be able
to construct point counting algorithms that significantly outperform the naive
“enumeration” method.

In Section 5 we establish a recurrence for the coefficients of f(p−1)/2. This recur-
rence feeds into the following two sections to obtain even faster point counting
algorithms: in Section 6 we see how to obtain a “square-root time” point counting

COUNTING POINTS ON HYPERELLIPTIC CURVES OVER FINITE FIELDS 3

algorithm, whose complexity is roughly linear in p1/2, and in Section 7 we obtain
an “average polynomial time” algorithm, which reduces the complexity further
to O(log4 p), when averaged over many primes.

All of the algorithms discussed up to this point in this course have only com-
puted the point counts modulo p. In Section 8 we develop a more powerful trace
formula that yields the point counts modulo powers of p. Combined with the
methods of Sections 5 and 6, this leads to various algorithms for computing the
entire zeta function, including algorithms that run in “square-root time” and “av-
erage polynomial time”. These algorithms are not worked out in detail, but are
instead left as challenging exercises for the reader.

1.4. Problems. These course notes include many problems of various sorts.
A large fraction of the problems ask you to supply proofs of the various The-

orems, Propositions and Lemmas. These are an integral part of the course and I
strongly recommend that you attempt as many as possible.

A problem marked with the game controller icon (�) is an implementation
problem, to be carried out in your favourite computer algebra system (FCAS). Ex-
amples include Sage, Magma, Maple, Mathematica and Minecraft. I try to use
Sage where possible because I like to support free software. Personally, I find
that one of the best ways to understand an algorithm deeply is to implement it
— the machine is unforgiving and will not let you cheat. If you don’t know how
to use these systems, or have never done any programming before, now is an
excellent time to begin learning! Some of the implementation problems are fairly
substantial projects, so you might consider working in a team.

The lightning bolt icon (�) indicates a problem that I don’t know how to solve.
This does not necessarily mean that the problem is difficult or unsolved — it
might only reveal some ignorance on my part, or that I haven’t spent much time
thinking about it yet. Two lightning bolts (��) mean that I do not know how to
solve the problem, despite having devoted considerable thought and attention to
it. Again, this may mean that it is difficult or even impossible, but not necessarily!

1.5. Prerequisites and notation. I assume that you are familiar with basic alge-
braic notions such as groups, rings, fields, polynomials, the Chinese remainder
theorem, and the rudiments of linear algebra over a field. We write #S for the
cardinality of a set S, and K for the algebraic closure of a field K. For a ring R,
we write RJxK for the ring of (formal) power series with coefficients in R, and
Matd(R) for the ring of d× d matrices with entries in R.

If F is a polynomial in one variable, we write Fi for the coefficient of xi in F. By
convention Fi = 0 if i < 0 or i > deg F.

The symbol p always denotes a prime. I assume that you know elementary
number-theoretic facts such as Fermat’s little theorem, the fact that (x+ y)p =
xp + yp in characteristic p, the structure of finite fields, and how to solve con-
gruences modulo powers of a prime. (We will not actually use p-adic numbers
anywhere, but it won’t hurt to know about them!)

We write Fq for the field with q elements. Assuming that q is a power of an
odd prime, we define

χq : Fq → {0, 1,−1} ⊂ Z

4 DAVID HARVEY

to be the quadratic character on Fq, i.e.,

χq(β) :=


0 β = 0,
1 β is a square in F∗

q,
−1 β is a non-square in F∗

q.

In particular, χp(β) is the same as the Legendre symbol (β/p). The identity

(1.5.1) β(q−1)/2 ≡ χq(β) (mod p) for any β ∈ Fq

plays a central role throughout the course.
The following result is equivalent to the Prime Number Theorem; see for in-

stance [42, Thm. 6.9].

Lemma 1.5.2. For N ⩾ 2 we have∑
p⩽N

logp = N+ o(N).

(Whenever we take sums or products over the symbol p, we always mean over
primes. The symbol o(N) means a function f(N) such that limN→∞ f(N)/N = 0.)

We will need only the most basic notions from algebraic geometry. We write
An

K and Pn
K for the affine and projective spaces of dimension n over a field K. If

X is a variety over K and L is an extension of K, we write X(L) for the set of
L-rational points on X.

I assume that you are comfortable with big-O notation. As a brief reminder,
we write f(n) = O(g(n)), or occasionally f(n) ≪ g(n), to mean that there exists
an absolute constant C > 0 such that f(n) ⩽ Cg(n) for all n in the relevant
domain. If g(n) is negative or undefined for small values of n, for example,
g(n) = n logn log logn, these values of n are tacitly excluded from the domain.
When we write f(n) = O(n1+ε), this means that the bound holds for all ε > 0,
where the implied constant may depend on ε.

1.6. Algorithms and computational complexity. I will use the terms “running
time” and “complexity” interchangeably. By the running time of an algorithm, I
mean the number of “bit operations” that it performs. I assume that you have
some intuitive understanding of what this means, but in order to prove theorems
about the complexity of algorithms, we need to settle on a precise computational
model. In this course, the model I will always have in the back of my mind is
the deterministic multitape Turing model. Briefly, this means a Turing machine with
a fixed, finite number of tapes, and the complexity refers to the number of steps
executed by the machine over the course of a computation. I do not want to get
sidetracked by the technical details of this; for a formal presentation, see [44].

I will however mention one “gotcha” for those experienced programmers who
may not have studied formal computational models before. In the multitape Tur-
ing model, one does not have available constant-time random access to elements
of an array. In fact, accessing the n-th element of an array of b-bit elements
requires time O(nb), as the tape head has to travel all the way to the target slot.

In this course we will mainly focus on time complexity, and I will not give
formal estimates for space complexity, i.e., the amount of memory used by a
computation, due to lack of space. However, for certain algorithms the space
complexity becomes the main bottleneck in practice, and I will point this out

COUNTING POINTS ON HYPERELLIPTIC CURVES OVER FINITE FIELDS 5

when relevant. We will also completely ignore the issue of parallelisation, which
again is very important in practical computations.

1.7. Some thoughts about the big picture. Before going on, I would like to offer
some personal reflections concerning the status of the paper [24] on which this
course is based.

My own point counting education began in the p-adic cohomology world,
mainly in the vicinity of Kedlaya’s algorithm [32]. The development of the al-
gorithms in [24] was heavily influenced by this background. Over the years, I
have formed the definite impression that the approach to point counting in [24]
is in some deep way the same as the p-adic cohomological approach. This is a
very vague gut feeling and I do not know how to make it precise. I certainly
do not know how to take an algorithm expressed in terms of p-adic cohomology
and “translate” it into the setting of [24], or vice versa. And I do not know any
cohomological interpretation of the “trace formula” [24, Theorem 3.1] that lies at
the heart of the method. (In these notes, the closest analogue of this formula is
Theorem 8.4.1.) Yet the feeling persists that the two approaches are somehow the
same thing in disguise.

What is most frustrating is that each approach seems capable of doing things
that the other cannot. I will give a few examples.

In one direction, the methods of [24] seem to lead to much more general results
than the p-adic cohomology approach. For example, [24] presents “square root
time” and “average polynomial time” point counting algorithms for completely
arbitrary varieties. (For the special case of hyperelliptic curves, these results are
worked out in detail in §6 and §7 of these notes.) We do not know any other way
of proving these extremely general results; in the p-adic cohomology context, we
can achieve results of a similar strength for only a rather limited class of varieties.
Another example is the recent work of my student Madeleine Kyng, who has
designed an algorithm that uses the setup in [24], together with some integral
closure calculations, to count points on completely arbitrary curves [36, 37]. Her
experiments confirm that this algorithm can confidently handle curves that are
apparently intractable by other known methods, including Tuitman’s algorithm
[57], which is currently the most general variant of Kedlaya’s algorithm known.

In the other direction, the p-adic cohomology approach seems capable of pro-
ducing better complexity bounds than [24] in many cases. For example, for a
curve of large genus g over a small field Fp, algorithms based on [24] tend to
get bogged down when computing powers of the unreasonably large matrices
appearing in the “trace formula”. (For the corresponding phenomenon in these
notes, consider the terms with large values of ℓ in (8.4.2).) Both approaches yield
complexity bounds polynomial in g, but the exponent of g is usually somewhat
smaller for the p-adic cohomology approach.

The complexity advantage for the p-adic cohomology algorithms is even more
dramatic in higher dimensions, at least in the cases that these algorithms are ap-
plicable at all. For example, when using [24] to handle a quartic surface in P3 (a
K3 surface), one needs to run the algorithm with a very high “target precision”
(in these notes, the parameter λ in §8), making it essentially infeasible in practice.
On the other hand, the algorithm in [1] needs only one or two p-adic digits, and
is eminently feasible. The difference here seems to be that the p-adic cohomol-
ogy algorithms have more direct access to arithmetic properties of the Frobenius

6 DAVID HARVEY

action on cohomology. Another example is Lauder’s deformation algorithm [38],
which for fixed p can handle a smooth projective hypersurface of degree d in
n variables in time polynomial in dn. Using [24], one achieves complexity only
polynomial in the rather larger quantity dn

2
. Again, Lauder is using properties

of Frobenius that are invisible from the perspective of [24].
I am hopeful that one day the two approaches will be unified, and that we

will have available a conceptual framework that allows us to design algorithms
achieving the best of both worlds: the generality and flexibility of [24], and the
better complexity bounds coming from p-adic cohomology.

Acknowledgments. Many thanks to Alex Best for his comments on a draft of
these notes.

2. A crash course on fast arithmetic

Many of the algorithms presented in this course rely on fast algorithms for
arithmetic on objects such as integers, polynomials and matrices. Your computer
can add, subtract and multiply integers up to about 64 bits long in constant time;
these operations are hard-wired into the silicon. But if you ask your FCAS to
perform arithmetic on integers larger than this, it has to be done in software, and
it becomes crucial to have available algorithms whose complexity scales well for
large inputs. The study of such algorithms belongs to a field known as symbolic
computation or computer algebra.

This section summarises the complexity results that we need, without going
into the details of the underlying algorithms. The details can be found in many
sources, such as [5, 8, 35, 58].

2.1. Integer arithmetic. We assume that integers are represented in the usual
binary notation, with perhaps an extra bit to indicate the sign. (These sorts of
implementation details do not affect the complexity results, but it is good to get
into the habit of thinking about how to represent various mathematical objects
explicitly on a Turing machine tape.)

Addition and subtraction. We can add and subtract n-bit integers in time O(n),
by working from the least significant bit to the most significant, propagating
carries (or borrows) as we go.

Multiplication. We write Mint(n) for the cost of multiplying n-bit integers.
Sometimes we will write expressions like Mint(logp), where logp might not be
an integer. For convenience, we interpret this to mean Mint(⌈logp⌉).

The classical long multiplication algorithm runs in time O(n2). Currently, the
best known asymptotic bound for Mint(n) is

Mint(n) = O(n logn).

This bound is achieved via a much more complicated algorithm involving the fast
Fourier transform [29], and is widely believed to be optimal.

Problem 2.1.1. (�) Investigate how long it takes your FCAS to multiply random
n-bit integers, for n = 103, 104, . . . , 109. How does the performance scale as a
function of n?

COUNTING POINTS ON HYPERELLIPTIC CURVES OVER FINITE FIELDS 7

Remark 2.1.2. All of the computer algebra systems mentioned earlier (except possi-
bly Minecraft) use the GMP library [21] under the bonnet1 for their integer arith-
metic needs. The n logn algorithm of [29] is probably not practical, but GMP
does implement an algorithm whose theoretical complexity comes very close to
O(n logn). For small n, maybe up to a few hundred bits, the running time of
GMP’s multiplication routine behaves like O(n2), but as n increases, the software
works very hard to push the exponent down towards 1.

Division and remainder. Let u and v > 0 be integers with at most n bits. Suppose
that we want to compute the quotient q := ⌊u/v⌋ and corresponding remainder
r := u− qv. The classical long division algorithm performs these tasks in time
O(n2). Using a division algorithm that combines fast multiplication with New-
ton’s method, this may be improved to

O(Mint(n)) = O(n logn).

GCD and extended GCD. Let u, v > 0 be integers with at most n bits. Let g be
their greatest common divisor, and let a and b be the Bezout cofactors, i.e., so
that g = au+ bv. The classical version of Euclid’s algorithm computes g, a and
b in time O(n2). This may be improved to

O(Mint(n) logn) = O(n log2 n),

using any of several variants of the recursive “half-GCD” algorithm. In particular,
we may test whether u is invertible modulo v, if and so, compute the modular
inverse, in time O(n log2 n).

Problem 2.1.3. (�) For the same values of n as in Problem 2.1.1, investigate
how long it takes your FCAS to compute the quotient (and/or the corresponding
remainder) of a random 2n-bit integer by a random n-bit integer, and how long
it takes to compute the GCD (and corresponding cofactors) of two random n-bit
integers. How do these running times compare to the time required to multiply
a pair of n-bit integers?

Modular arithmetic. Let m ⩾ 2. Elements of the ring Z/mZ may be represented
by residues in the interval 0 ⩽ x < m, and so occupy O(logm) bits of space.

We can add elements of Z/mZ by simply adding the residues and then sub-
tracting m if necessary. The complexity is O(logm). Similar comments apply for
subtraction in Z/mZ.

To multiply two elements of Z/mZ, we simply multiply the residues, divide
by m, and keep the remainder. Using the results for integer multiplication and
division mentioned above, the cost of this is

O(Mint(logm)) = O(logm log logm).

To compute a quotient in Z/mZ, we can use the extended GCD algorithm to
invert the divisor (if possible) and then multiply by the dividend. The cost is

O(Mint(logm) log logm) = O(logm (log logm)2).

In some algorithms we will simply count the number of “arithmetic operations”
in Z/mZ, not bothering to distinguish between additions, multiplications, and

1bonnet (noun): metal sheet covering the engine. U.S. English: hood.

8 DAVID HARVEY

divisions. In this situation we will usually simplify matters by estimating the cost
of each operation to be O(log1+εm).

Remark 2.1.4. Again, the bound O(log1+εm) is not very realistic when logm is
small; the quasi-linear behaviour only really kicks in when logm is quite large.
Nevertheless, for the purpose of writing down mathematical theorems, it is con-
venient and traditional to express things this way. With some experience, one
learns how to interpret these sorts of complexity bounds.

2.2. Polynomial arithmetic. We will mainly be interested in the case of polynomi-
als over Z/mZ, for an integer m ⩾ 2. A polynomial of degree < n in (Z/mZ)[x] is
represented by a sequence of n coefficients, and thus occupies space O(n logm).

Multiplication. Let Mm(n) denote the cost of multiplying two polynomials f,g ∈
(Z/mZ)[x] of degree < n. One may reduce this problem to integer multiplication
via the technique of Kronecker substitution, i.e., lift the polynomials to F,G ∈ Z[x],
pack the coefficients of F and G into large integers (by evaluating at 2c for a
suitable integer c ⩾ 1), multiply the large integers, unpack the coefficients of
FG ∈ Z[x] from the resulting integer product, and finally reduce modulo m to
obtain the coefficients of fg ∈ (Z/mZ)[x]. This leads to the estimate

Mm(n) = O(Mint(n log(nm))),

where the log(nm) term arises from estimating the size of the coefficients of FG.
If n is not too large compared to m, say n≪ mO(1), then this simplifies to

Mm(n) = O(Mint(n logm)) = O(n logm log(n logm)).

In other words, the cost is O(b logb) where b is the total bit size of the inputs.

Remark 2.2.1. Kronecker substitution is inefficient when m is fixed and n is large:
the cost becomes O(Mint(n logn)) = O(n log2 n). Joris van der Hoeven and I
recently presented an algorithm that achieves Mm(n) = O(n logn) (for fixed m)
under some plausible but unproved number-theoretic hypotheses [30].

Problem 2.2.2. (��) Can you design an algorithm that provably multiplies polyno-
mials of degree < n in (Z/mZ)[x] (for fixed m) in time O(n logn)?

Division. Let f,g ∈ (Z/mZ)[x] have degree < n, with g monic. Using Newton’s
method combined with fast multiplication, we may compute polynomials q, r ∈
(Z/mZ)[x] such that f = qg+ r and deg r < degg (the quotient and remainder)
in time

O(Mm(n)).

2.3. Computing large powers. Let R be a commutative ring, let u ∈ R and let
k ⩾ 1 be an integer. To compute uk, we will generally use the “repeated squaring”
method: first recursively compute u⌊k/2⌋, and then recover uk as either (u⌊k/2⌋)2

or (u⌊k/2⌋)2 · u, depending on whether k is even or odd.
The total number of multiplications in R is O(logk), but the complexity analy-

sis depends on the ring. We will need the following two cases.

Proposition 2.3.1. Let k ⩾ 1 and let u ∈ Z/mZ. Then we may compute uk in time

O(Mint(logm) logk).

COUNTING POINTS ON HYPERELLIPTIC CURVES OVER FINITE FIELDS 9

486000

540

12

3

3 1

4

4

45

5

1 5

9

9

900

60

12

2 6

5

5

15

3

3

5

5

Figure 1. A product tree on the first 11 digits of π.

Proposition 2.3.2. Let k ⩾ 1 and let f ∈ (Z/mZ)[x] have degree n ⩾ 1. Then we may
compute fk in time

O(Mm(nk)).

Notice that in the polynomial case, the cost of computing fk is the same (up to a
constant) as the cost of a single polynomial multiplication of degree deg(fk) = nk.
This occurs because the cost of the polynomial multiplications increases according
to a geometric progression as the algorithm proceeds.

2.4. Product trees. A product tree on a sequence of positive integers u1, . . . ,uN is
a binary tree with N leaves, whose leaves are assigned the values u1, . . . ,uN, and
whose non-leaf nodes are recursively assigned the product of the values of their
children. There are various ways to handle the case that N is not a power of two,
and any of these are reasonable as long as the height of the tree is O(logN). An
example with N = 11 is illustrated in Figure 1.

Starting with u1, . . . ,uN, we may compute all nodes in the product tree by
repeatedly multiplying together values in adjacent nodes.

Proposition 2.4.1. The cost of computing all nodes in the product tree is

O(Mint(logB) logN), where B :=

N∏
j=1

uj.

This follows from the fact that the total bit size of all integers in each level
of the tree is O(logB), and that Mint(n) may be assumed to be super-linear, i.e.,∑

jMint(nj) ⩽ Mint(
∑

j nj).

Remark 2.4.2. Strictly speaking, one has to be careful with the complexity bounds
if many of the leaf nodes have the value 1. We will ignore this minor technicality.

The same construction may also be carried out for polynomials. The following
application plays an important role in §6.

Proposition 2.4.3 (Fast multipoint evaluation). Let m,n ⩾ 2 be integers. Suppose
that we are given as input a polynomial Q ∈ (Z/mZ)[x] of degree at most n, and a
sequence of evaluation points α1, . . . ,αn ∈ Z/mZ. Then we may compute the values

Q(α1), . . . ,Q(αn) ∈ Z/mZ

10 DAVID HARVEY

in time
O(Mm(n) logn).

Briefly, the algorithm implementing Proposition 2.4.3 runs as follows. We first
use a polynomial analogue of Proposition 2.4.1 to compute a product tree on the
linear polynomials

x−α1, . . . , x−αn ∈ (Z/mZ)[x].

We then compute the reduction of Q(x) modulo each node in the product tree, by
working recursively from the top of the tree down to the leaves, i.e., given Q(x)
(mod g1(x)g2(x)), we may compute Q(x) (mod g1(x)) and Q(x) (mod g2(x)) by
simply dividing by each of g1 and g2. At the end we have Q(x) (mod x−αj), or
equvialently Q(αj), for all j = 1, . . . ,n.

2.5. Linear algebra. Let R be a commutative ring and let d ⩾ 1. Consider the
problem of multiplying two d×d matrices over R. The obvious algorithm for this
task requires O(d3) ring operations (multiplications and additions) in R.

One of the biggest surprises in computer algebra was Strassen’s discovery [52]
that this bound can be improved to O(dlog 7/ log 2), where log 7/ log 2 ≈ 2.81.

I will denote byω any feasible exponent of matrix multiplication, i.e., so that d×d
matrices over R may be multiplied using O(dω) ring operations in R. Strassen’s
result implies that we may take ω = log 7/ log 2.

Remark 2.5.1. The best known exponent is currently ω = 2.3728596 [3]. However,
the result in [3] is stated for the case that R is a field, and counting field opera-
tions instead of ring operations. I suspect that this value of ω also works for an
arbitrary commutative ring, but I am not an expert on these matters.

The actual running time of matrix multiplication depends on the cost of arith-
metic in R. This is easy if R is a finite ring; for example, the cost of multiplication
in Matd(Fp) is O(dωMint(logp)). But if the matrix entries are allowed to grow,
such as in the case R = Z, then the running time also depends on the size of the
entries. We will defer this issue for now and revisit it in §7.

The other result we need is an estimate for the cost of computing the inverse
characteristic polynomial of a matrix over a field.

Proposition 2.5.2. Given as input A ∈ Matd(K), we may compute the polynomial
det(I− TA) ∈ K[T] using O(dω) field operations in K.

This is actually quite a recent result; see [43].

2.6. Enumerating primes. The usual sieve of Eratosthenes is tricky to imple-
ment on a multitape Turing machine due to the lack of fast random array access.
Schönhage, Grotefeld and Vetter [47] showed how to list the primes p ⩽ N in time
O(N log2N log logN) by implementing the Eratosthenes sieve using fast sorting
algorithms instead. This algorithm was optimised by Sergeev (see [50], or [49] for
an English translation) to obtain the following result.

Proposition 2.6.1. The primes p ⩽ N may be enumerated in time

O(N logN).

COUNTING POINTS ON HYPERELLIPTIC CURVES OVER FINITE FIELDS 11

3. Hyperelliptic curves and zeta functions

3.1. Hyperelliptic curves.

Definition 3.1.1. Let K be a field of characteristic ̸= 2 and let g ⩾ 1 be an inte-
ger. A hyperelliptic curve of genus g over K is the smooth algebraic curve C/K

associated to an affine equation

y2 = f(x),

where f ∈ K[x] is a squarefree polynomial of degree 2g+ 1 or 2g+ 2.

From now on, whenever we give an equation y2 = f(x) for a hyperelliptic
curve of genus g, it is tacitly assumed that f(x) satisfies the requirements above,
i.e., it is squarefree and has degree 2g+ 1 or 2g+ 2.

Remark 3.1.2. Definition 3.1.1 is slightly nonstandard when g = 1. A curve of
genus 1 is usually not called hyperelliptic, but rather elliptic (assuming that it has
a distinguished K-rational point). The algorithms discussed in this course work
perfectly well when g = 1, so it will be convenient to abuse terminology and call
such a curve a “hyperelliptic curve of genus 1”.

Remark 3.1.3. When char K = 2, the general equation for a hyperelliptic curve
has the form y2 + yh(x) = f(x) with degh ⩽ g+ 1. We will never need to worry
about fields of characteristic two in this course.

What is the best way to think about C? A rookie mistake is to homogenise the
equation y2 = f(x) in the usual way to obtain a projective curve in P2. The prob-
lem is that this curve is usually not smooth. (To get a smooth projective model, in
general one needs to embed the curve in a higher-dimensional projective space.)

A much more useful way to think about C is as a two-to-one cover of P1. Let us
describe more explicitly what this means.

Suppose that

f(x) = f0 + f1x+ · · ·+ f2g+2x
2g+2, fi ∈ K.

Note that f2g+2 = 0 is allowed; this happens exactly when deg f = 2g+ 1.
The rational function x may be thought of as a map from C to P1 = A1 ∪ {∞}.

The original equation

(3.1.4) y2 = f0 + f1x+ · · ·+ f2g+2x
2g+2

is really an equation for the affine patch of C consisting of those points whose
x-coordinate lies in A1. But this patch misses all “points at infinity”, i.e., the
points on C whose x-coordinate is ∞. To see these points, we need to switch to a
different model. Put x = 1/u and y = v/ug+1; then the equation becomes

(3.1.5) v2 = f0u
2g+2 + f1u

2g+1 + · · ·+ f2g+2.

This is an equation for a different affine patch of C, consisting of those points
whose u-coordinate is not infinity, i.e., whose x-coordinate is not zero. In partic-
ular, the points where x = ∞ correspond exactly to the points on (3.1.5) where
u = 0.

In summary, C may be written as a union of the two affine pieces given by
(3.1.4) and (3.1.5), glued together by the relations x = 1/u, y = v/ug+1.

12 DAVID HARVEY

Armed with this description, we can now say concretely what the points of
C(L) look like, for any field extension L of K. Each point in P ∈ C(L) has a
well-defined x-coordinate x(P) ∈ P1(L) = L∪ {∞}. The number of points in C(L)
with a specified x-coordinate is given by the following lemma. For this statement
it is convenient to define

f(∞) := f2g+2.

Lemma 3.1.6. For any α ∈ P1(L) = L ∪ {∞}, the number of points P ∈ C(L) with
x(P) = α is either one, two, or zero, according to whether f(α) is zero, a square in L∗, or
a non-square in L∗.

In particular:
• The points P ∈ C(L) with x(P) = 0 correspond to solutions in L of

y2 = f0.

• The points P ∈ C(L) with x(P) = ∞ correspond to solutions in L of

v2 = f2g+2.

• For any α ∈ L∗, the points P ∈ C(L) with x(P) = α correspond to solu-
tions in L of

y2 = f(α).

(Equivalently, these points correspond to solutions in L of v2 = f̄(1/α),
where f̄(u) := u2g+2f(1/u) is the “reversal” of f(x).)

Problem 3.1.7. Let C be the curve from Problem 1.1.1, now including the point(s)
at infinity. Calculate #C(F3) and #C(F32) (again by hand).

The covering map x : C→ P1 is ramified at exactly 2g+ 2 points, the Weierstrass
points of C. These are exactly the points in C(K) whose x-coordinates satisfy
f(α) = 0. In particular, there is a Weierstrass point at x = ∞ if and only if
deg f = 2g+ 1.

Finally, we make some brief comments about the squarefreeness condition in
Definition 3.1.1. This condition is equivalent to requiring that f(x) has no repeated
roots, or alternatively that the discriminant of f(x) is nonzero. (The condition
“deg f = 2g+ 1 or 2g+ 2” may be interpreted as saying that f(x) does not have
repeated roots at ∞.) The purpose of the squarefreeness condition is to ensure
that the curve is nonsingular. If it is not satisfied, then the curve defined by
y2 = f(x) will have lower genus than expected. Nevertheless, many of the results
in this course work perfectly well without this condition.

3.2. The number of points on the curve. Now suppose that K is a finite field, say
K = Fq where q = pa, for p an odd prime and a ⩾ 1. Let C/Fq be a hyperelliptic
curve of genus g ⩾ 1. In this case C(Fq) is obviously a finite set. In fact, Lemma
3.1.6 implies that #C(Fq) ⩽ 2(q+ 1), since there are at most two points in C(Fq)

for each of the q+ 1 possible values of x in P1(Fq). But we can do much better:

Theorem 3.2.1 (Hasse–Weil bound). Let C/Fq be a hyperelliptic curve of genus g ⩾ 1.
Then ∣∣#C(Fq) − (q+ 1)

∣∣ ⩽ 2g · q1/2.

COUNTING POINTS ON HYPERELLIPTIC CURVES OVER FINITE FIELDS 13

A heuristic argument for Theorem 3.2.1 might go like this: for each α ∈ P1(Fq),
the value of f(α) is “equally likely” to be a square or a non-square in Fq, so the
total number of points should behave like a random variable with mean q + 1
and variance proportional to q. This is probably the wrong way to think about it,
but it does give roughly the right answer!

Theorem 3.2.1 also implies that

(3.2.2)
∣∣#C(Fqr) − (qr + 1)

∣∣ ⩽ 2g · qr/2

for any r ⩾ 1. This follows by interpreting the equation y2 = f(x) defining C as
an equation over Fqr instead of over Fq.

We will not give a proof of Theorem 3.2.1 in this course. The result actually
holds for any curve of genus g, not just for hyperelliptic curves. The theorem fol-
lows from a more general statement about the zeta function of the curve, discussed
in the next section; see in particular Problem 3.3.8.

The main thrust of this course is to develop efficient algorithms for calculating
the numbers #C(Fqr) for r = 1, 2, . . ., given as input the polynomial f ∈ Fq[x].
The simplest possible algorithm for computing #C(Fqr) is straightforward enu-
meration: loop through all α ∈ P1(Fqr) = Fqr ∪ {∞}, and for each α compute f(α)
and test whether it is a square in Fqr (see Lemma 3.1.6). We will not analyse
the complexity of this algorithm in detail. The main point is that the complexity
grows at least as rapidly as qr, since this is the number of x-values that must be
inspected. In particular, the running time is exponential in r.

The enumeration algorithm can actually be a reasonable choice when the pa-
rameters are small. Various implementation tricks are available, such as using
difference tables to speed up the computation of the values of f(α). For details
see [34, §3] and Sutherland’s smalljac library [54].

Problem 3.2.3. (�) Let p = 101 and let C/Fp be the genus 3 curve given by

y2 = x7 − x6 + 6x5 − 7x4 + 5x3 + x2 − x+ 1.

Implement the enumeration algorithm in your FCAS and use it to show that

#C(Fp) = 153, #C(Fp2) = 9935, #C(Fp3) = 1029891.

Check that (3.2.2) holds for these values.

Problem 3.2.4. (�) Investigate whether your FCAS has built-in functionality for
computing #C(Fpr). Do you know what algorithm it is using under the bonnet?
Experimentally, how does its running time vary as a function of p, g and r?

3.3. The zeta function. Let C/Fq be a hyperelliptic curve of genus g ⩾ 1. The se-
quence of point counts #C(Fqr), for r = 1, 2, . . ., may be encoded into a generating
function (formal power series) called the the zeta function of C. This is defined by
the formula

(3.3.1) ZC(T) := exp

(∞∑
r=1

#C(Fqr)

r
Tr

)
∈ QJTK.

Here exp denotes the usual exponential of power series, i.e.,

expU(T) := 1 +U(T) +
U(T)2

2!
+ · · · .

14 DAVID HARVEY

Theorem 3.3.2 (Weil Conjectures). Let C/Fq be a hyperelliptic curve of genus g ⩾ 1.
Then the zeta function of C is a rational function of the form

ZC(T) =
LC(T)

(1 − T)(1 − qT)
,

where LC(T) ∈ 1 + TZ[T] is a polynomial of degree 2g with the following properties:
• (Functional equation) We have

LC

(
1
qT

)
= (qT2)−g LC(T).

• (Riemann Hypothesis) The roots of LC(T) (in the field of complex numbers) have
absolute value q−1/2.

Despite traditionally being known as the “Weil Conjectures”, the statements in
Theorem 3.3.2 are most definitely theorems! In fact, the theorem holds verbatim
for an arbitrary nonsingular curve of genus g over Fq. For a proof, see for in-
stance [39] or [51]. (The Weil Conjectures may also be generalised far beyond the
case of curves; this provided the motivating force for much of the development
of 20th century algebraic geometry.)

One important implication of Theorem 3.3.2 is that knowledge of the finite
object LC(T) is equivalent to knowledge of the entire infinite sequence #C(Fqr)
for r ⩾ 1. So another way to express the goal of this course is that we want to
develop efficient algorithms for computing LC(T), given the equation y2 = f(x)
as input.

Remark 3.3.3. There is no known algorithm for computing LC(T) in polynomial
time, i.e., polynomial in the amount of data needed to represent the input poly-
nomial f ∈ Fq[x], which is O(g logq) = O(ag logp) bits. When g is fixed, there
are ℓ-adic algorithms that can compute LC(T) in time polynomial in logq, but the
exponent grows with g. On the other hand, when p is fixed, there are p-adic algo-
rithms that can compute LC(T) in time polynomial in g and a. (The algorithms
suggested in §8.5 also have this property.)

The following problem works out more explicitly the relationship between the
point counts and the coefficients of LC(T) and ZC(T).

Problem 3.3.4. Let Nr := #C(Fqr), and put

ZC(T) = 1 +
∑
i⩾1

ciT
i, LC(T) = 1 +

∑
i⩾1

aiT
i,

where we tacitly write ai = 0 for i > 2g.
a) Find formulas for c1 and c2 in terms of N1 and N2. Conversely, find

formulas for N1 and N2 in terms of c1 and c2.
b) Same as (a) for (a1,a2) and (c1, c2).
c) More generally, show that for any t ⩾ 1, there exist formulas expressing

the vectors (N1, . . . ,Nt), (a1, . . . ,at) and (c1, . . . , ct) in terms of each other.

Problem 3.3.4(c) implies that LC(T) is determined by the values (N1, . . . ,N2g).
The next problem shows that we can do a little better by taking advantage of the
functional equation.

COUNTING POINTS ON HYPERELLIPTIC CURVES OVER FINITE FIELDS 15

Problem 3.3.5. Let
LC(T) = a0 + a1T + · · ·+ a2gT

2g,

where a0 = 1. Show that the functional equation in Theorem 3.3.2 is equivalent
to the statement that

(3.3.6) a2g−i = q
g−iai, 0 ⩽ i ⩽ 2g.

Conclude that knowledge of N1, . . . ,Ng (where Nr := #C(Fqr)) is enough to de-
duce LC(T).

Problem 3.3.5 implies that if we want to use the enumeration algorithm to
compute LC(T), then we should expect the complexity to grow at least as rapidly
as qg, since this is how much work we need to do to compute #C(Fqg). In
particular, the complexity is exponential in g.

Problem 3.3.7. (�) Consider again the genus 3 curve from Problem 3.2.3.

a) Using the point counts found in Problem 3.2.3, compute the coefficients
of T , T2 and T3 in LC(T).

b) Use (3.3.6) to recover the full polynomial LC(T).
c) Use LC(T) to deduce the value of #C(Fp4).
d) Compute #C(Fp4) directly using the enumeration algorithm, i.e., the same

method as in Problem 3.2.3, and compare the results. (There are about 100
million points to count here. You will need a fairly tight implementation
to finish in a reasonable amount of time.)

Problem 3.3.8. Prove Theorem 3.2.1 (the Hasse–Weil bound) from Theorem 3.3.2
(the Weil Conjectures) as follows.

a) Use the Riemann Hypothesis in Theorem 3.3.2 to show that LC(T) admits
a factorisation

LC(T) =

2g∏
i=1

(1 −ωiT)

where ω1, . . . ,ω2g are complex numbers with |ωi| = q
1/2.

b) By taking the formal logarithm of ZC(T), show that

#C(Fqr) = qr + 1 −

2g∑
i=1

ωr
i

for all r ⩾ 1. Hence deduce Theorem 3.2.1.

4. A modulo p trace formula

To keep things simple, for the rest of the course we will assume that q = p, i.e.,
we will only consider curves defined over the prime field Fp. Recall also that p is
always assumed to be odd.

The main result of this section is Theorem 4.2.6, which gives a congruence
modulo p for the number of points on a hyperelliptic curve C/Fp with coordinates
in Fpr , for any r ⩾ 1. This “trace formula” will play a central role in the point
counting algorithms discussed later in the course.

16 DAVID HARVEY

4.1. Counting points with coordinates in Fp. We begin with a baby version that
only counts points defined over the prime field.

Proposition 4.1.1. Let C/Fp be a hyperelliptic curve of genus g ⩾ 1 defined by y2 =
f(x) for some f ∈ Fp[x]. Then

(4.1.2) #C(Fp) ≡ 1 −

g∑
j=1

hj(p−1) (mod p),

where
h := f(p−1)/2 ∈ Fp[x].

Recall that hj(p−1) means the coefficient of xj(p−1) in h(x). For the proof of
Proposition 4.1.1, it is helpful to introduce a certain subvariety of C.

Definition 4.1.3. Let C/Fp be a hyperelliptic curve given by y2 = f(x). We denote
by C̃ the subvariety of C consisting of those points for which x ̸= 0,∞.

Problem 4.1.4. Prove Proposition 4.1.1 as follows.
a) Using (1.5.1) and Lemma 3.1.6, show that

#C̃(Fp) ≡
∑
α∈F∗

p

(
f(α)(p−1)/2 + 1

)
(mod p).

b) For any integer i ⩾ 0, show that∑
α∈F∗

p

αi =

{
−1 if i is divisible by p− 1,
0 otherwise.

c) Combining (a) and (b), show that

#C̃(Fp) ≡ −1 −

g+1∑
j=0

hj(p−1) (mod p).

d) Show that

#
{
P ∈ C(Fp) : x(P) = 0

}
≡ h0 + 1 (mod p),

#
{
P ∈ C(Fp) : x(P) = ∞}

≡ h(g+1)(p−1) + 1 (mod p).

e) Deduce (4.1.2) by adding together the results of (c) and (d).

Problem 4.1.5. (�) Compute #C(Fp) (mod p) for the curve in Problem 3.2.3, by
using your FCAS to explicitly compute h = f(p−1)/2, and then applying Proposi-
tion 4.1.1. Notice that h is a polynomial of degree 350 over Fp, but only three of
its coefficients contribute in (4.1.2). Check that your result is consistent with the
value for #C(Fp) found in Problem 3.2.3.

Problem 4.1.6.
a) Use the Hasse–Weil bound (Theorem 3.2.1) to show that if p > 16g2, then

knowledge of #C(Fp) (mod p) determines #C(Fp) ∈ Z unambiguously.
b) For the curve in Problem 3.2.3, show that #C(Fp) (mod p) does not pro-

vide enough information to pin down #C(Fp). What possible values for
#C(Fp) are compatible with the Hasse–Weil bound for this curve?

COUNTING POINTS ON HYPERELLIPTIC CURVES OVER FINITE FIELDS 17

Figure 2. Illustration of the coefficients of h = f(p−1)/2 for
p = 11, g = 3, deg f = 2g+ 2 = 8. The circles indicate the coeffi-
cients of 1, x, . . . , x40. Coefficients contributing to Af are marked
in black.

4.2. Counting points with coordinates in Fpr . We now investigate how to gen-
eralise Proposition 4.1.1 to obtain a formula for #C(Fpr) (mod p) for any r ⩾ 1.
The following problem carries out the most obvious line of attack, which is to
replace the sum over F∗

p by a sum over F∗
pr .

Problem 4.2.1. Let C/Fp be a hyperelliptic curve of genus g ⩾ 1 defined by
y2 = f(x) for some f ∈ Fp[x]. By mimicking the proof of Proposition 4.1.1 (see
Problem 4.1.4), show that for any r ⩾ 1,

(4.2.2) #C(Fpr) ≡ 1 −

g∑
j=1

h
(r)
j(pr−1) (mod p),

where
h(r) := f(p

r−1)/2 ∈ Fp[x].

Unfortunately, (4.2.2) is not much use on its own because the degree of the
polynomial h(r) = f(p

r−1)/2 grows exponentially in r. Except for perhaps the
smallest values of r, we cannot expect to be able to explicitly compute such a
large power of f. Fortunately, there is a trick that enables us to extract all the
information we need from the original polynomial h = f(p−1)/2.

Definition 4.2.3. Let C/Fp be a hyperelliptic curve of genus g ⩾ 1 defined by
y2 = f(x) for some f ∈ Fp[x]. Define the matrix

Af ∈ Matg(Fp)

by the formula

(4.2.4) (Af)v,u := hvp−u, 1 ⩽ u, v ⩽ g,

where
h := f(p−1)/2.

The notation Af emphasises that the matrix depends not only on the curve C,
but also on the choice of equation y2 = f(x).

Remark 4.2.5. The matrix Af is usually known as a Cartier–Manin matrix associated
to C; this is the matrix of the Cartier operator on the space of regular differentials
on C with respect to a particular basis. It is also closely related to the Hasse–Witt
matrix, which is the matrix of the Frobenius operator on a certain cohomology
group with respect to a particular basis. The precise definitions of these objects
are beyond the scope of this course. You are warned that there are some inconsis-
tencies in the literature regarding the definition of these matrices; for a detailed
discussion of this issue see [2].

18 DAVID HARVEY

Theorem 4.2.6 (Modulo p trace formula). Let C/Fp be a hyperelliptic curve of genus
g ⩾ 1 defined by y2 = f(x) for some f ∈ Fp[x], and let Af be the associated matrix as in
Definition 4.2.3. Then for any r ⩾ 1,

#C(Fpr) ≡ 1 − tr(Ar
f) (mod p).

Theorem 4.2.6 shows that to compute #C(Fpr) (mod p), it is enough to com-
pute g2 selected coefficients of h = f(p−1)/2. (Proposition 4.1.1 only used a subset
of g of these coefficients.) Notice that although the formula counts points in Fpr ,
all quantities involved in the formula, i.e., the entries of Af, lie in Fp.

Problem 4.2.7. Check that Theorem 4.2.6 specialises to Proposition 4.1.1 in the
case r = 1.

Problem 4.2.8. Prove Theorem 4.2.6 as follows.
a) Show that for any r ⩾ 1,

f(x)(p
r−1)/2 = h(x)h(xp) · · ·h(xp

r−1
),

where h = f(p−1)/2 as in Definition 4.2.3.
b) Let Ãf be the (g+ 2)× (g+ 2) matrix over Fp defined by

(Ãf)v,u := hvp−u, 0 ⩽ u, v ⩽ g+ 1.

Show by induction on r ⩾ 1 that

(Ãr
f)v,u = (h(x)h(xp) · · ·h(xp

r−1
))vpr−u, 0 ⩽ u, v ⩽ g+ 1.

(Hint: find an expression for the coefficient of xvp
r−u in h(x) · · ·h(xpr−1

)

in terms of the coefficients of h(x) · · ·h(xpr−2
) and h(x).)

c) Show that all entries in the first and last rows of Ãf are zero, except
possibly for (Ãf)0,0 and (Ãf)g+1,g+1. Deduce that for all r ⩾ 1,

(Ar
f)v,u = (Ãr

f)v,u, 1 ⩽ u, v ⩽ g.

d) By combining (a), (b), (c) and Problem 4.2.1, complete the proof of Theo-
rem 4.2.6.

Problem 4.2.9. (�) For the curve in Problem 3.2.3, use your FCAS to compute
#C(Fpr) (mod p) for r = 1, 2, 3, by computing h = f(p−1)/2 (the same degree
350 polynomial that appeared in Problem 4.1.5), constructing Af, and applying
Theorem 4.2.6. Check that your answer is consistent with the point counts given
in Problem 3.2.3. What happens if you try to explicitly compute the polynomials
h(r) from Problem 4.2.1 for r = 1, 2, 3?

4.3. Recovering the L-polynomial modulo p. What does the trace formula (The-
orem 4.2.6) tell us about the L-polynomial

LC(T) = a0 + a1T + · · ·+ a2gT
2g?

We saw in Problem 3.3.4(c) that for any t ⩾ 1 there exist formulas allowing us to
move back and forth between (a1, . . . ,at) and (N1, . . . ,Nt), where Nr := #C(Fpr).
Moreover, it follows from the functional equation that ag+1, . . . ,a2g are all zero
modulo p (see Problem 3.3.5). Since the trace formula tells us how to compute
N1, . . . ,Ng (mod p), it is natural to wonder whether the latter quantities deter-
mine a1, . . . ,ag (mod p), and hence LC(T) (mod p). The answer in general is no,
as illustrated by the following counterexample.

COUNTING POINTS ON HYPERELLIPTIC CURVES OVER FINITE FIELDS 19

Problem 4.3.1. (�) Let p = 3 and consider the genus 3 curves over Fp given by

C : y2 = x7 + 1, C ′ : y2 = x7 − x5 + 1.

Use your FCAS to show that #C(Fpr) ≡ #C ′(Fpr) (mod p) for r = 1, 2, 3, but that
LC(T) ̸≡ LC ′(T) (mod p).

The underlying issue is that the formulas relating (a1, . . . ,ag) and (N1, . . . ,Ng)
involve denominators that may be divisible by p. Some of these denominators are
already clearly visible in the defining formula (3.3.1) for the zeta function.

Despite this, it turns out that there is a very elegant identity expressing LC(T)
(mod p) directly in terms of Af:

Theorem 4.3.2. We have

LC(T) ≡ det(I− TAf) (mod p).

Theorem 4.3.2 follows quite easily from the trace formula when p > g, es-
sentially because none of the relevant denominators are divisible by p. In this
case knowledge of a1, . . . ,ag (mod p) is equivalent to knowledge of N1, . . . ,Ng

(mod p), and Theorem 4.3.2 is really just a restatement of the trace formula. The
proof of Theorem 4.3.2 for this case is outlined in Problem 4.3.3 below.

However, when p ⩽ g, Theorem 4.3.2 is genuinely stronger than the trace
formula; the counterexample in Problem 4.3.1 shows that Af and LC(T) (mod p)
contain potentially more information than the point counts N1, . . . ,Ng (mod p).
To the best of my knowledge, the proof of Theorem 4.3.2 for p ⩽ g requires
cohomological methods (see [40]), and we will not discuss it in this course.

Problem 4.3.3. This problem gives a proof of Theorem 4.3.2 in the p > g case.
a) Assume temporarily that we are working over a field K of characteristic

zero. Let A ∈ Matg(K). Show that

(4.3.4) det(I− TA) = exp(tr(log(I− TA))).

In this formula, log(I−TA) should be interpreted as a formal power series
with matrix coefficients, i.e.,

log(I− TA) = −AT −
1
2
A2T2 − · · · ,

and the trace is taken term by term.
b) Now suppose that char K = p. In this case the right hand side of (4.3.4)

is not even defined, since we cannot divide by p. Nevertheless, show
that (4.3.4) is still correct when regarded modulo Tp, i.e., show that the
coefficients of 1, T , . . . , Tp−1 on the right hand side are well-defined, and
that they agree with those on the left hand side.

c) By combining (3.3.1), Theorem 4.2.6 and part (b), show that the coeffi-
cients of 1, T , . . . , Tp−1 in (1 − T)ZC(T) and det(I− TAf) agree modulo p.

d) Use (c) and Theorem 3.3.2 to prove Theorem 4.3.2 in the case that p > g.

Problem 4.3.5. (�) Is it possible to prove Theorem 4.3.2 by “elementary” (non-
cohomological) means, using methods similar to the proof of Theorem 4.2.6?

Problem 4.3.6. (�) Use your FCAS to verify Theorem 4.3.2 numerically for the
curve in Problem 3.2.3, i.e., compute det(I − TAf) and check that the result is
consistent with the L-polynomial computed in Problem 3.3.7(b).

20 DAVID HARVEY

4.4. Complexity bounds. How quickly can we compute Af from f? The most
obvious approach is to expand out the power h = f(p−1)/2 using fast polyno-
mial arithmetic, and then extract the relevant coefficients. The following theorem
indicates the complexity of this procedure.

Theorem 4.4.1 (Computing Af via naive expansion). Let C/Fp be a hyperelliptic
curve of genus g ⩾ 1 defined by y2 = f(x) for some f ∈ Fp[x]. Then we may compute
Af in time

O
(
gp log2(gp) + g2 logp

)
.

Problem 4.4.2. Prove Theorem 4.4.1, by showing that the cost of computing h =

f(p−1)/2 is O(gp log2(gp)) (see Proposition 2.3.2).
(Where does the O(g2 logp) term come from? Hint: when g > p, some coeffi-

cients of h appear multiple times in Af.)

Having computed Af, we may use Theorem 4.3.2 to deduce LC(T) (mod p).
Thanks to Proposition 2.5.2, the complexity of this step is given as follows.

Corollary 4.4.3. Given Af, we may compute LC(T) (mod p) in time

O(gω log1+ε p).

Combining this corollary with Theorem 4.4.1, we obtain our first point count-
ing algorithm that is genuinely more powerful than the enumeration method:
namely, given f ∈ Fp[x] as input, we may compute LC(T) (mod p) in time

(4.4.4) O
(
gp log2(gp) + gω log1+ε p

)
.

We stress that this complexity bound is polynomial in g. This should be con-
trasted with the exponential dependence on g in the case of the enumeration algo-
rithm, which must inspect at least pg values of x.

On the other hand, whereas the enumeration algorithm computes the whole
polynomial LC(T), the new algorithm only recovers LC(T) (mod p). This short-
coming will be addressed later in §8. In the meantime, in §§5–7 we will focus on
improving the complexity with respect to p, which is slightly worse than linear
in (4.4.4).

5. Recurrences for polynomial powers

Fix some f ∈ Fp[x] defining a hyperelliptic curve C/Fp of genus g ⩾ 1. In
this section we establish a recurrence for the coefficients of h(x) = f(x)(p−1)/2. We
then attempt to use this recurrence to compute the coefficients hvp−u appearing
in the Af matrix (see Definition 4.2.3). Unfortunately, this fails due to occasional
divisions by p. In §5.2 we show how to resolve this difficulty by lifting the whole
computation to Z/pµZ for a suitable “precision” parameter µ ⩾ 1.

Throughout this section we write

m :=
p− 1

2
, d := 2g+ 2.

To simplify the discussion, we assume throughout that

f0 ̸= 0.

See Remark 5.1.7 for some hints on what to do if f0 = 0.

COUNTING POINTS ON HYPERELLIPTIC CURVES OVER FINITE FIELDS 21

5.1. A recurrence over Fp.

Proposition 5.1.1. Let f ∈ Fp[x] and h = fm be as above. Then for any integer k ⩾ 1
not divisible by p, we have

(5.1.2) hk =
1
kf0

d∑
j=1

(1
2 j− k)fjhk−j.

In other words, (5.1.2) expresses each hk as a linear combination of the pre-
vious d coefficients hk−1, . . . ,hk−d, provided that we can divide by kf0 in Fp.
(Recall that by convention hi = 0 for i < 0.)

Problem 5.1.3. Prove Proposition 5.1.1 as follows. Let ∂ denote the differential
operator s 7→ xds

dx , i.e.,

∂
(
snx

n + · · ·+ s2x
2 + s1x+ s0

)
:= nsnx

n + · · ·+ 2s2x
2 + s1x.

Show that h = fm satisfies the differential equation

(5.1.4) f · ∂h = m · ∂f · h.

By equating coefficients of xk in this identity, deduce (5.1.2).

What happens if we try to use (5.1.2) to compute the coefficients hvp−u ap-
pearing in Af? To get started, we need to know the constant term h0. It is easy to
compute h0 = (f0)

m ∈ Fp using a fast powering algorithm (see Proposition 2.3.1);
this only requires time O(logm · log1+ε p) = O(log2+ε p).

We now apply the recurrence to compute successively h1,h2, . . . ,hp−1. The
last g such coefficients yield the first row of Af. But after this point we hit a
wall: we cannot compute hp because that would involve dividing by zero in Fp.
Another way of saying this is that the differential equation (5.1.4) simply does
not contain enough information to recover hp from knowledge of h0, . . . ,hp−1.
Unfortunately, this is not good enough for our purposes; for the second row of
Af we need to get to h2p−1, and for the remaining rows we need to get all the
way up to hgp−1.

Problem 5.1.5. (�) Verify (5.1.2) numerically in your FCAS, i.e., take a small g,
moderate p, and random f ∈ Fp[x], and use the recurrence to compute succes-
sively h0, . . . ,hp−1 ∈ Fp. Check that the coefficients produced in this way agree
with a direct computation of h = fm.

Problem 5.1.6. Derive a recurrence for h = fm going in the opposite direction,
i.e., expressing hk in terms of hk+1, . . . ,hk+d. What conditions on k and the
coefficients of f(x) must be satisfied for your formula to be valid?

Remark 5.1.7. At the outset we imposed the hypothesis f0 ̸= 0. To handle an input
polynomial with f0 = 0, there are a few possible ways to proceed.

One reasonable solution is to replace f(x) by f(x)/x. Notice that the constant
term of f(x)/x is nonzero because we assumed f to be squarefree. We can easily
write down a similar recurrence for (f(x)/x)m, and the problem of computing
selected coefficients of f(x)m is really the same as computing selected coefficients
of (f(x)/x)m. If anything, the latter problem is slightly easier because the degree
is smaller.

Another option is to choose some c ∈ Fp such that f(c) ̸= 0 (such c exists
provided that p > 2g + 2), and replace f(x) by f(x + c). Since the equations

22 DAVID HARVEY

y2 = f(x) and y2 = f(x+ c) define isomorphic curves, the modified equation will
lead to the same zeta function.

5.2. Lifting the coefficient ring. Following a suggestion of Bostan, Gaudry and
Schost [7], our strategy for circumventing the “division by p” problem will be to
lift the entire computation from Fp = Z/pZ to the ring Z/pµZ for some parameter
µ ⩾ 1 (to be chosen later).

We begin by choosing a modulo pµ lift of f, i.e., a polynomial

F = Fdx
d + · · ·+ F1x+ F0 ∈ (Z/pµZ)[x]

such that F ≡ f (mod p). For example, if the coefficients of f are represented by
integers from the set {0, 1, . . . ,p− 1}, we can take F to be the polynomial whose co-
efficients are literally the same integers, but now regarded as elements of Z/pµZ.

Now define
H := Fm ∈ (Z/pµZ)[x].

The reduction of H modulo p is simply h, so to compute the desired coefficients
of h, it suffices to compute the corresponding coefficients of H modulo p.

The coefficients of H satisfy a recurrence analogous to the one satisfied by the
coefficients of h:

Proposition 5.2.1. Let F ∈ (Z/pµZ)[x] and H = Fm be as above. Then for any integer
k ⩾ 1, we have

(5.2.2) kHk =
1
F0

d∑
j=1

(
(m+ 1)j− k

)
FjHk−j.

Keep in mind that (5.2.2) is really a congruence modulo pµ. Also, note that
our running assumption f0 ̸= 0 implies that F0 ̸≡ 0 (mod p), so F0 is a unit in
Z/pµZ.

Problem 5.2.3. Prove Proposition 5.2.1, by first showing that H = Fm satisfies the
differential equation

(5.2.4) F · ∂H = m · ∂F ·H.

What happens if we try to use (5.2.2) to compute the coefficients of H? As
before, we can compute the first term H0 = (F0)

m ∈ Z/pµZ efficiently using
a fast powering algorithm. Then we try to solve (5.2.2) for H1,H2, . . . in turn.
Whenever we encounter an index k divisible by p, the division by k introduces
some error into our computed value for Hk. For example, our computed value for
Hp will be correct modulo pµ−1, but not necessarily modulo pµ. Moreover, these
errors might propagate into subsequent values of Hk. It is even conceivable that
the errors might become so large that (5.2.2) fails to be solvable for some large k.

The following problem asks you to carry out a “naive” analysis of the error
propagation. We write vp(k) for the p-adic valuation of k, i.e., the largest integer
t ⩾ 0 such that pt | k.

Problem 5.2.5. Let n ⩾ 1. Show that after solving forH1, . . . ,Hn, the total number
of powers of p that we have divided by is vp(n!). Deduce that if we choose

µ := vp(n!) + 1,

then our computed values of H0, . . . ,Hn ∈ Z/pµZ will agree modulo p with the
target values h0, . . . ,hn ∈ Fp.

COUNTING POINTS ON HYPERELLIPTIC CURVES OVER FINITE FIELDS 23

Problem 5.2.5 suggests that the “precision loss” in our proposed algorithm is
at least linear in n. For example, to compute Af we need to get up to hgp−1, so
we need to take

µ = vp((gp− 1)!) + 1 ⩾ g.
Rather surprisingly, it turns out that the errors that occur in reality are much

smaller than those predicted by the above discussion. Indeed, we will next show
that the precision loss is only logarithmic in n. (I am indebted to Jan Tuitman for
explaining the following argument to me. The underlying principle is similar to
[32, Lemma 2].)

First we prove that the congruence (5.2.2) is always solvable for Hk, no matter
how much error has accumulated, as long as all the previously computed values
satisfy the recurrence.

Proposition 5.2.6. Let n ⩾ 1, and suppose that we are given H̃0, . . . , H̃n−1 ∈ Z/pµZ
such that H̃0 = H0 and such that

(5.2.7) kH̃k =
1
F0

d∑
j=1

(
(m+ 1)j− k

)
FjH̃k−j

for all k = 1, . . . ,n − 1. Then for k = n, the congruence (5.2.7) admits at least one
solution H̃n ∈ Z/pµZ.

Problem 5.2.8. Prove Proposition 5.2.6 as follows.
a) Let

H̃ := H̃0 + H̃1x+ · · ·+ H̃n−1x
n−1 ∈ (Z/pµZ)[x].

Show that
F · ∂H̃ ≡ m · ∂F · H̃ (mod xn),

i.e., H̃ satisfies the same differential equation as H, modulo xn.
b) Let

E = 1 + E1x+ · · ·+ En−1x
n−1 ∈ (Z/pµZ)[x]

be such that
E ≡ H̃/H (mod xn).

(In other words, E consists of the first n coefficients of the power series
expansion of H̃/H. Division by H is permissible, since our running as-
sumption f0 ̸= 0 implies that H0 = (F0)

m is a unit in Z/pµZ.)
Show that

∂E = 0.
c) Let

H̃ ′ := E ·H (mod xn+1).

Show that H̃ ′ satisfies the differential equation modulo xn+1. Deduce that
H̃ ′

n is a solution to (5.2.7) for k = n.

Proposition 5.2.6 implies that our “algorithm” never terminates: we may com-
pute a sequence of approximations H̃0, H̃1, . . . ∈ Z/pµZ that all satisfy (5.2.7),
continuing happily into the sunset. (This sequence is not uniquely determined,
as the congruence (5.2.7) will have more than one solution for H̃k whenever p | k.)

The next result establishes the promised logarithmic error bound for these
approximations.

24 DAVID HARVEY

Proposition 5.2.9. Let n ⩾ 1, and suppose that we are given H̃0, . . . , H̃n ∈ Z/pµZ
such that H̃0 = H0 and such that (5.2.7) holds for k = 1, . . . ,n. Then

(5.2.10) H̃k ≡ Hk (mod pµ−⌊logp k⌋)

for all k = 1, . . . ,n such that ⌊logp k⌋ ⩽ µ.

Problem 5.2.11. Prove Proposition 5.2.9 as follows.
a) Let

H̃ := H̃0 + H̃1x+ · · ·+ H̃nx
n ∈ (Z/pµZ)[x],

and set E := H̃/H (mod xn+1). The same argument as in parts (a) and (b)
of Problem 5.2.8 shows that ∂E = 0. Deduce that

Ek ≡ 0 (mod pµ−vp(k))

for k = 1, . . . ,n, whenever vp(k) ⩽ µ.
b) Conclude that (5.2.10) holds whenever ⌊logp k⌋ ⩽ µ.

Problem 5.2.12. (�) Verify Proposition 5.2.6 and Proposition 5.2.9 numerically
in your FCAS. That is, for some small parameters g, p and µ, take some random
F ∈ (Z/pµZ)[x] and compute a sequence H̃0, H̃1, . . . ∈ (Z/pµZ) satisfying (5.2.7).
Check that these values agree with the coefficients of H = Fm, up to the accuracy
indicated in Proposition 5.2.9.

5.3. Back to point counting. Let us now see what Proposition 5.2.9 tells us about
computing Af. Recall that we need to compute hvp−u for 1 ⩽ u, v ⩽ g, which
means that we must use the recurrence to compute the coefficients of h(x) up to
and including hgp−1. This leads to the following result.

Corollary 5.3.1. If we take

µ := ⌊logp(gp− 1)⌋+ 1,

then the approximations H̃k are correct modulo p for k = 0, . . . ,gp− 1. In particular,

hvp−u ≡ H̃vp−u (mod p), 1 ⩽ u, v ⩽ g.

Problem 5.3.2. (�) Use your FCAS to verify Corollary 5.3.1 for the genus 3 curve
from Problem 3.2.3. That is, taking µ := ⌊logp(3p − 1)⌋ + 1 = 2, choose a lift

F ∈ (Z/p2Z)[x] of f, and solve (5.2.7) for H̃1, . . . , H̃3p−1 ∈ Z/p2Z. Check that you
do correctly recover those hvp−u ∈ Fp appearing in (4.2.4).

(Note that the “naive” analysis would require you to take µ = 3, since you
have to divide by p twice.)

After computing all of the hvp−u, we may construct the matrix Af as in (4.2.4),
and then compute LC(T) (mod p) via Corollary 4.4.3. This leads to the following
result.

Theorem 5.3.3 (Computing Af via recurrences). Let C/Fp be a hyperelliptic curve of
genus g ⩾ 1 defined by y2 = f(x) for some f ∈ Fp[x]. Assume that p ⩾ g. Then we may
compute Af in time

O(g2p log1+ε p).

Problem 5.3.4. Prove Theorem 5.3.3 as follows.

COUNTING POINTS ON HYPERELLIPTIC CURVES OVER FINITE FIELDS 25

a) Show that for each k = 1, . . . ,gp− 1, we may compute H̃k ∈ Z/pµZ from
H̃k−1, . . . , H̃k−d, i.e., solve (5.2.7), in time

O(d (µ logp)1+ε).

(You may need various results from §2.1.)
b) Show that the assumption p ⩾ g implies that we may take µ = 2.
c) Complete the proof of Theorem 5.3.3.

Remark 5.3.5. Recall that in Theorem 4.4.1 we established the complexity bound

O(gp log2 p)

for computing Af (assuming that p ≫ g), by simply expanding out the polyno-
mial h = f(p−1)/2. It is interesting to compare this to the bound

O(g2p log1+ε p)

obtained in this section via recurrences (Theorem 5.3.3). On one hand, we have
lost a factor of g. On the other hand, we have gained a factor of almost logp. In
practice, we have probably gained much more than this: the real problem with
the algorithm in Theorem 4.4.1 is that polynomial multiplication is extremely
memory-intensive. By contrast, the recurrence algorithm uses almost no memory:
one only has to keep track of the last d = O(g) coefficients. Experience shows
that this makes an enormous difference to the overall performance in practice.

Problem 5.3.6. Recall that the cost of multiplication in Fp is O(logp log logp),
whereas the cost of division is O(logp (log logp)2) (see §2.1). When solving
(5.2.7), we need to divide by k. Show how to modify the algorithm to remove
almost all of these divisions. (Hint: what happens when you multiply both sides
by (k− 1)!?) Conclude that the complexity bound in Theorem 5.3.3 may be im-
proved to O(g2p logp log logp).

(This sort of optimisation is very important in practice. Divisions in Fp are
typically much more expensive than multiplications, by a factor much worse than
the theoretical log logp.)

Problem 5.3.7. (�) Recall from §5.1 that we may compute the first row of Af with-
out any divisions by p. Sutherland and I showed that it is possible to recover
the entire matrix Af from knowledge of just the first rows of the matrices corre-
sponding to g translates of the original curve [27, §5]. Specifically, one may take
the curves y2 = fi(x) with fi(x) := f(x + ci) for i = 1, . . . ,g, where c1, . . . , cg
are distinct elements of Fp. Doing things this way, one needs to solve (5.2.7) the
same number of times as before, but working modulo p everywhere instead of
modulo p2. The proof in [27] relies on the interpretation of Af as the matrix of
a Frobenius operator on differentials. Can you give an “elementary” argument,
more in the style of the proof of Theorem 4.2.6 suggested in Problem 4.2.8?

Remark 5.3.8. I am unsure of the history of the main idea of this section, i.e., using
a linear recurrence to compute selected coefficients of high index in a large power
of a univariate polynomial of small degree. I learned this idea from [7], and the
earliest reference of which I am aware is [19].

26 DAVID HARVEY

6. A square-root time algorithm

In the previous sections we have seen two algorithms for computing Af whose
complexity is roughly linear in p (Theorem 4.4.1 and Theorem 5.3.3). In this
section we will see how to improve this to roughly linear in the square root of p.

6.1. A warm-up: Wilson primes. To explain the basic idea, let us first consider
a simpler problem. Recall that Wilson’s theorem in elementary number theory
states that for any prime p,

(p− 1)! ≡ −1 (mod p).

We say that p is a Wilson prime if the above congruence holds modulo p2. For
example, 5 is a Wilson prime because 4! = 24 ≡ −1 (mod 52). Only three Wilson
primes are known: 5, 13 and 563. The search for Wilson primes has an interesting
history; see [11] for more information.

Suppose we want to test whether a given prime p is a Wilson prime. How
quickly can we compute (p− 1)! (mod p2)?

We could simply compute (p− 1)! ∈ Z and then find its remainder modulo p2,
but this is grossly inefficient because (p− 1)! grows very rapidly with p.

A better method is to start with 1, and then multiply successively by 2, 3,
and so on up to p− 1, taking the remainder modulo p2 after each multiplication.
Using this method we never need to consider integers larger than about p3, and
the running time is essentially linear in p.

The following theorem shows that we can do much better than this.

Theorem 6.1.1. We may compute (p− 1)! (mod p2) in time

O(p1/2 log3 p).

To prove the theorem, let s := p− 1 and consider the product

1 × 2 × · · · × s (mod p2).

The idea is to split up this product into roughly s1/2 groups of s1/2 terms. Define

t := ⌊s1/2⌋,

so that
s = t2 + t ′, 0 ⩽ t ′ ⩽ 2s1/2.

Now break up the product into t groups of t terms, plus t ′ leftover terms, i.e.,(
1 × · · · × t

)(
(t+ 1)× · · · × 2t

)
· · ·
(
((t− 1)t+ 1)× · · · × t2

)(
(t2 + 1)× · · · × s

)
.

Introducing the polynomial

Q(k) := (k+ 1)(k+ 2) · · · (k+ t) ∈ (Z/p2Z)[k],

the product may be rewritten as

Q(0) ·Q(t) ·Q(2t) · · ·Q((t− 1)t) ·
(
(t2 + 1)× · · · × s

)
.

Problem 6.1.2. Prove Theorem 6.1.1 as follows.
a) Show that we may use a product tree (see §2.4) to computeQ ∈ (Z/p2Z)[k]

in time
O(p1/2 log3 p).

(By “compute Q”, we mean compute its coefficients.)

COUNTING POINTS ON HYPERELLIPTIC CURVES OVER FINITE FIELDS 27

b) Show that we may evaluate Q(k) at the t points k = 0, t, . . . , (t− 1)t via
fast multipoint evaluation (Proposition 2.4.3) in time

O(p1/2 log3 p).

c) Show that we may multiply together the values found in (b), and the t ′

leftover terms, in time

O(p1/2 logp log logp).

Problem 6.1.3. (�) Implement the above method for computing (p−1)! (mod p2)

in your FCAS. Can you observe the running time growing roughly like p1/2?
How big does p need to get before your implementation beats the straightfor-
ward linear-time method, i.e., multiplying successively by 2, . . . ,p− 1 (mod p2)?

Problem 6.1.4. The above strategy for computing factorials was first proposed
by Strassen [53]. As an application, he described the following deterministic
algorithm for integer factorisation. Consider the simplest case where we want
to factor a number of the form N = pq, where p and q are distinct (unknown)
primes. Show that we may compute ⌊N1/2⌋! (mod N), and hence recover the
factors p and q, in time O(N1/4 log3N). (A similar scheme was suggested by
Pollard [46] at around the same time.)

Problem 6.1.5. Wolstenholme’s theorem states that(
2p− 1
p− 1

)
≡ 1 (mod p3)

for all primes p ⩾ 5. A Wolstenholme prime is a prime that satisfies the congruence
modulo p4. Describe an algorithm that can test whether p is a Wolstenholme
prime in time O(p1/2 log3 p).

(Several other characterisations of Wolstenholme primes are known; see for
example [41]. There are only two Wolstenholme primes less than 1011, namely
16843 and 2124679 [6]. I am not aware of any explicit mention in the literature of
an O(p1/2+ε)-time algorithm for this problem, but it is hinted at in [41].)

Remark 6.1.6. Bostan, Gaudry and Schost [7] gave an improvement to Strassen’s
method that reduces the complexity in Theorem 6.1.1 to

O(p1/2 log2 p).

They never actually compute the coefficients of Q(k). Instead, they give a subrou-
tine that takes as input the values of the polynomial Qn(k) := (k+ 1) · · · (k+ n)
at n points in an arithmetic progression, and outputs the values of Q2n(k) :=
(k+ 1) · · · (k+ 2n) at 2n points in a related arithmetic progression, at the cost of
O(1) polynomial multiplications of degree n. They apply this doubling process
repeatedly to “grow” the polynomial and the set of evaluation points in paral-
lel to reach the desired size. As far as I am aware, this is the best published
complexity bound for computing (p− 1)! (mod p2) for a single prime p.

Remark 6.1.7. A downside of all variants of the square-root time algorithm is that
they use a lot of memory, and this is usually the bottleneck that limits the size
of the problems that can be tackled in practice. The basic version worked out
in Problem 6.1.2 uses O(p1/2 log2 p) space; with some effort this can be reduced
to O(p1/2 logp) [59, Lemma 2.1]. The Bostan–Gaudry–Schost variant also uses

28 DAVID HARVEY

O(p1/2 logp) space. In all of these algorithms, it is possible to make a time-space
tradeoff by adjusting the degree and the number of evaluation points. Roughly
speaking, one can save a factor of α > 1 in space by giving up a factor of α in
time.

Problem 6.1.8. (�) Can the complexity of Theorem 6.1.1 be further improved via
the “factorial sieving” scheme described in [16, §2]? (This is also closely related
to the integer factorisation algorithm in [12].) For example, to compute N!, we
may split into odd and even terms, and remove a factor of 2 from each even term.
Iterating this process, we arrive at a factorisation of the form

N! = 2n(1 × 3 × · · · ×N0)(1 × 3 × · · · ×N1) · · ·

where Ni ≈ N/2i for each i ⩾ 0. Notice that the first product has length roughly
N/2 and the remaining products are subproducts of the first one. I would there-
fore expect that the entire expression could be computed using a modified square-
root scheme in roughly the same time as the first product. This should save a
factor of 21/2 compared to handling N! directly. Now suppose that we use the
same trick to pull out factors of a few other small primes, not just the prime 2.
Does this lead to an asymptotic improvement in the complexity of Theorem 6.1.1?
My guess would be perhaps

O

(
p1/2 log2 p

(log logp)1/2

)
?

6.2. Solving recurrences in square-root time. Let us now return to the situation
from §5. Recall that we have a polynomial

F = F0 + F1x+ · · ·+ Fdxd ∈ (Z/pµZ)[x]

where d := 2g + 2, and we assume that F0 ̸≡ 0 (mod p). We are interested in
computing certain coefficients of H := Fm where m := (p− 1)/2.

It will be helpful to re-express the recurrence (5.2.2) in matrix-vector form. For
k ⩾ 0, define a row vector Uk consisting of d consecutive coefficients of H, namely

Uk := (Hk−d+1, . . . ,Hk−1,Hk) ∈ (Z/pµZ)d.

Then (5.2.2) may be rewritten as

(6.2.1) kUk =
1
F0
Uk−1Tk

where Tk ∈ Matd(Z/pµZ) is the transition matrix given by

(6.2.2) Tk :=



0 · · · 0 0 (d(m+ 1) − k)Fd

kF0
...

. . .
...

kF0 (2(m+ 1) − k)F2
kF0 (m+ 1 − k)F1

 .

The last column of Tk implements (5.2.2) to compute kF0Hk, and the remaining
off-diagonal entries simply slide the window over from index k − 1 to k. The
“initial condition” is given by

U0 = (0, . . . , 0,H0).

COUNTING POINTS ON HYPERELLIPTIC CURVES OVER FINITE FIELDS 29

To compute a single coefficient Hn for a large index n, we want to chain several
steps together. Using (6.2.1) repeatedly, we obtain

(k+ 1) · · · (k+ s) ·Uk+s =
1

(F0)s
UkTk+1 · · · Tk+s

for any k ⩾ 0, s ⩾ 1. This shows that the s-fold matrix product

Tk+1 · · · Tk+s ∈ Matd(Z/pµZ)

may be viewed as a transition matrix going from index k to index k+ s.
The most obvious algorithm for computing such an s-fold product is to sim-

ply multiply the matrices together one at a time. This has complexity growing
linearly in s, and is obviously no better than executing the recurrence separately
for each k. The next result shows that the complexity can be improved to roughly
linear in s1/2, by using a matrix generalisation of the square-root trick from §6.1.

Proposition 6.2.3. Given k0 ∈ Z/pµZ and an integer s ⩾ 2 with s ≪ pO(1), we may
compute the matrix product

Tk0+1 · · · Tk0+s

in time
O
(
dωMint(s

1/2µ logp) log s
)
.

Proposition 6.2.3 may be be proved by the same strategy as Theorem 6.1.1, i.e.,
splitting up the product into roughly s1/2 groups of s1/2 terms. The following
problem asks you to fill in the details.

Problem 6.2.4.
a) Let t := ⌊s1/2⌋ and t ′ := s− t2 as in §6.1, and define

Q(k) := Tk+1 · · · Tk+t ∈ Matd((Z/pµZ)[k]).

Show that the entries of Q(k) are polynomials in k of degree at most t.
b) Show that we may use a product tree to compute Q(k), i.e., compute the

coefficients of the polynomial in each entry of the matrix, in time

O
(
dωMint(s

1/2µ logp) log s
)
.

c) Using fast multipoint evaluation, show that we may compute the values

Q(k0),Q(k0 + t), . . . ,Q(k0 + (t− 1)t) ∈ Matd(Z/pµZ)

in time
O
(
d2 Mint(s

1/2µ logp) log s
)
.

d) Finish the proof of Proposition 6.2.3 by estimating the cost of multiplying
together the values computed in (c) and the t ′ leftover matrices.

Problem 6.2.5. Kurepa’s conjecture states that there exists no odd prime p such that
p divides the “left factorial” of p, which is defined to be

!p := 0! + 1! + · · ·+ (p− 1)!.

By setting up an appropriate recurrence involving 2 × 2 matrices, design an algo-
rithm that can test Kurepa’s conjecture for a single prime p in time O(p1/2 log3 p).
(An algorithm along these lines is mentioned briefly in [4].)

30 DAVID HARVEY

Remark 6.2.6. A matrix version of the square-root trick first appeared in [9, §6],
and several improvements were given in [7]. The latter improves the complexity
of Proposition 6.2.3 to

O
(
dωs1/2 Mint(µ logp) + d2 Mint(s

1/2µ logp)
)
.

6.3. Back to point counting. We now discuss how to apply Proposition 6.2.3 to
the problem of computing Af, i.e., computing Hvp−u (mod p) for 1 ⩽ u, v ⩽ g.

For each v = 1, . . . ,g, the coefficients Hvp−u for u = 1, . . . ,g (corresponding to
the entries of the v-th row of Af) are exactly the last g entries of the vector Uvp−1.
Therefore, we may rephrase our goal as wanting to compute the vectors

Up−1,U2p−1, . . . ,Ugp−1 (mod p).

Of course, we must still deal with the complications arising from the divisions
by p that were discussed in §5. Let H̃0, H̃1, . . . ∈ Z/pµZ be the sequence of ap-
proximations for Hk defined in §5, and let

Ũk := (H̃k−d+1, . . . , H̃k−1, H̃k) ∈ (Z/pµZ)d

be the corresponding vectors.
Notice that for any k ⩾ 1 we can compute Ũk from Ũk−1 by exactly the same

method explained in §5, i.e., after sliding all the entries over by one slot, we can
compute the last entry of Ũk, namely H̃k, by solving (5.2.7) (see Problem 5.3.4(a)).
Recall that when k ≡ 0 (mod p), the resulting value of H̃k, and hence Ũk, is not
uniquely determined.

On the other hand, when k ̸≡ 0 (mod p), the vector Ũk is uniquely determined
by Ũk−1. In fact, from (6.2.1) we have

Ũk =
1
kF0

Ũk−1Tk.

Chaining p− 1 of these identities together, for any i ⩾ 0 we obtain

(6.3.1) Ũip+p−1 =
1

(ip+ 1) · · · (ip+ p− 1)(F0)p−1 ŨipTip+1 · · · Tip+p−1.

The above discussion suggests the following strategy. Starting with Ũ0, we
use the matrix T1 · · · Tp−1 to sprint to Ũp−1 in square-root time with the help
of Proposition 6.2.3; then take a single step to Ũp; then sprint again to Ũ2p−1
with the matrix Tp+1 · · · T2p−1, and so on. This strategy may be formalised more
precisely as follows.

Proposition 6.3.2. Suppose that the quantities

(6.3.3) Tip+1 · · · Tip+p−1 ∈ Matd(Z/pµZ)

and

(6.3.4) (ip+ 1) · · · (ip+ p− 1) ∈ Z/pµZ

are known for i = 0, . . . ,g− 1. Then we may compute Af in time

O
(
(g3 + logp)(µ logp)1+ε

)
.

Problem 6.3.5. Prove Proposition 6.3.2 as follows.

COUNTING POINTS ON HYPERELLIPTIC CURVES OVER FINITE FIELDS 31

a) Show that H0, and hence Ũ0 = U0, may be computed using O(logp)
arithmetic operations in Z/pµZ.

b) Using (6.3.1), show that for each i, we may compute Ũip+p−1 from Ũip

using O(d2) operations in Z/pµZ.
c) Show that for each i, we may compute Ũ(i+1)p from Ũip+p−1 using O(d)

operations in Z/pµZ.
d) Finish the proof of Proposition 6.3.2.

The last remaining piece of the puzzle is to actually compute the quantities
(6.3.3) and (6.3.4) for i = 0, . . . ,g− 1. The obvious thing to do is to apply Proposi-
tion 6.2.3 to handle each value of i in square-root time. But we have one more trick
up our sleeves, which enables us to save a factor of O(g). Recall from Problem
5.3.4(b) that if we impose the mild assumption p ⩾ g, then we can get away with
a working precision of µ = 2. This leads to the following “p-adic interpolation”
optimisation.

Proposition 6.3.6. Assume that µ = 2, and suppose that (6.3.3) and (6.3.4) are known
for i = 0 and i = 1. Then we may compute (6.3.3) and (6.3.4) for the remaining values
i = 2, . . . ,g− 1 in time

O(g3 log1+ε p).

Problem 6.3.7. Prove Proposition 6.3.6 as follows. We only deal with (6.3.3); han-
dling (6.3.4) is even easier. Consider the matrix

R(k) := Tk+1 · · · Tk+p−1 ∈ Matd((Z/p2Z)[k]).

Let us write this as

R(k) = R0 + R1k+ · · ·+ Rp−1k
p−1,

for matrices R0, . . . ,Rp−1 ∈ Matd(Z/p2Z).

a) Show that given R(0) and R(p), we may compute R0 (mod p2) and R1
(mod p) using O(d2) operations in Z/p2Z.

b) Then show that for any i, we may deduce R(ip) using O(d2) operations
in Z/p2Z.

c) Finish the proof of Proposition 6.3.6.

Putting everything together, we finally obtain a square-root bound for the cost
of computing Af:

Theorem 6.3.8 (Computing Af in square-root time). Let C/Fp be a hyperelliptic
curve of genus g ⩾ 1 defined by y2 = f(x) for some f ∈ Fp[x]. Assume that p ⩾ g2.
Then we may compute Af in time

O(gωp1/2 log3 p).

Problem 6.3.9. Prove Theorem 6.3.8, by first using Proposition 6.2.3 to evaluate
(6.3.3) for i = 0, 1 (and a similar method to handle (6.3.4)), and then applying
Proposition 6.3.6 and Proposition 6.3.2.

Remark 6.3.10. In the special case g = 1, we of course only need (6.3.3) and (6.3.4)
for i = 0, not for i = 1. When g = 2, we need both values of i, but we need not
bother with Proposition 6.3.6.

32 DAVID HARVEY

Problem 6.3.11. (�) Implement the algorithm from Theorem 6.3.8 in your FCAS.
Can you observe the running time behaving like p1/2, and growing polynomially
in g? How big does p have to get to beat the linear-time algorithms from Theorem
4.4.1 and Theorem 5.3.3?

Problem 6.3.12. The products (6.3.3) for i = 0 and i = 1 are actually subproducts
of the longer product T1 · · · T2p−1. Show that by tweaking the proof of Proposition
6.2.3, it is possible to compute both products in about the same time as it takes
to compute the longer product. Show that for large p, this trick speeds up the
computation of Af by a factor of about 21/2.

(For a generalisation, see [7, §7].)

Remark 6.3.13. Using the Bostan–Gaudry–Schost improvements mentioned in Re-
mark 6.2.6, the complexity in Theorem 6.3.8 may be improved to

O
(
gωp1/2 logp log logp+ g2p1/2 log2 p

)
.

When p is large compared to g, this is the best complexity bound that I know
for the problem of computing Af. Note that this bound improves on [7, Theo-
rem 17 (part 2)] by a factor of about g3/2, due to the use of better p-adic error
bounds (Proposition 5.2.9) and subsequent use of the interpolation trick (Proposi-
tion 6.3.6). Note also that for p sufficiently large relative to g, the second term is
dominant, and this is optimal with respect to g since the output (the matrix Af)
has size O(g2). I suspect, but have not checked in detail, that the same complexity
bound (up to a constant factor) could be obtained by the methods of [22], which
works in the framework of p-adic cohomology (i.e., Kedlaya’s algorithm). If this
is the case, it would be interesting to compare (theoretically) the constant factors
between the two algorithms. It would also be interesting to write an efficient im-
plementation and compare its performance against the code accompanying [22].

7. An average polynomial time algorithm

Suppose that someone hands us a hyperelliptic curve C defined not over a
finite field, but over Q, say y2 = F̄(x) for F̄ ∈ Z[x]. Then for each prime p ⩾ 3, we
may reduce F̄ modulo p to obtain a polynomial fp ∈ Fp[x], and hence an equation
y2 = fp(x). For all but finitely many p, this equation defines a hyperelliptic curve
Cp over Fp (see §7.2), and for these “good” primes it makes sense to consider the
zeta function of Cp,

ZCp
(T) =

LCp
(T)

(1 − T)(1 − pT)
.

One might guess that the L-polynomials Lp(T) := LCp
(T) for different primes

should be completely unrelated: knowing the number of solutions to an equation
modulo one prime p1 should tell us nothing at all about the number of solutions
modulo a different prime p2. Nevertheless, when one averages over many primes,
intriguing statistical regularities begin to appear. Examples include the Birch and
Swinnerton-Dyer conjecture and the Sato–Tate conjecture, both of which were
originally formulated for elliptic curves, and later generalised to curves of higher
genus, including hyperelliptic curves.

Further discussion of these phenomena is beyond the scope of this course, but
they motivate the following computational question: given a large integerN, how
quickly can we compute Lp(T) for all (good) primes p ⩽ N?

COUNTING POINTS ON HYPERELLIPTIC CURVES OVER FINITE FIELDS 33

In Theorem 6.3.8 we saw that for a single prime p we can compute Afp , and
hence Lp(T) (mod p), in time O(gωp1/2 log3 p). If we do this separately for each
prime p ⩽ N, the overall complexity is

O(gωN3/2+ε).

In this section we will see that it is possible to do much better! In fact, we will
show that we can compute Afp for all p ⩽ N (except finitely many) in time

O(gωN log3N).

This is incredibly fast — for fixed g, it is almost linear in the size of the output!
Indeed, each Afp needs O(g2 logp) bits to write down, so according to Lemma
1.5.2 the total output size is∑

p⩽N

O(g2 logp) = O(g2N).

Another point of view is that the average complexity per prime p ⩽ N is

O(gωN log3N)

N/ logN
= O(gω log4N).

Loosely speaking, the time spent on each prime p is only O(gω log4 p), which is
polynomial in the bit size of fp. For this reason, the algorithm is said to run in
“average polynomial time”. In §8 we will see how to extend this result to compute
not just Lp(T) (mod p), but the entire L-polynomial Lp(T) ∈ Z[T], for all p ⩽ N,
in average polynomial time. (Compare with Remark 3.3.3.)

All of these average polynomial time point counting algorithms depend on a
marvellous device called the accumulating remainder tree. The accumulating re-
mainder tree was invented by Robert Gerbicz, an applied mathematics student,
in the context of a large-scale search for Wilson primes. (See §6.1 for the defi-
nition of Wilson primes.) He outlined the algorithm in a 2011 post on mersen-
neforum.org [20], and it appeared in published form a few years later [11]. In
retrospect, it is surprising that the algorithm was not discovered decades earlier.
The basic ingredients were already known by the 1980s, but somehow all the
experts missed it.

7.1. A warm-up: Wilson primes. The Wilson prime example provides an excel-
lent introduction to the main ideas behind the accumulating remainder tree. In
this section we will look at this example in detail, and prove the following theo-
rem.

Theorem 7.1.1. Given an integer N ⩾ 2, we may compute (p− 1)! (mod p2) for all
primes p ⩽ N in time

O(N log3N).

To be very explicit, the quantities that we want to compute are

(7.1.2)

1 × 2 (mod 32),

1 × 2 × 3 × 4 (mod 52),

1 × 2 × 3 × 4 × 5 × 6 (mod 72),

1 × 2 × 3 × 4 × 5 × 6 × 7 × 8 × 9 × 10 (mod 112),

34 DAVID HARVEY

901800900

44100

36

4

1 4

9

9 1

1225

25

25 1

49

49 1

20449

121

1

1 1

121

121 1

169

169

169 1

1

1 1

Figure 3. The modulus tree for N = 16.

and so on, for all p ⩽ N.
For simplicity, we assume throughout that N is a power of two, say N = 2b.
We start by defining a certain binary tree called the modulus tree. For j =

1, . . . ,N, define

mj :=

{
j2 if j is prime,
1 otherwise.

Then the modulus tree is the product tree associated to m1, . . . ,mN (see §2.4). An
example for N = 16 is shown in Figure 3.

We index the levels of the tree by ℓ = 0, . . . ,b, where ℓ = 0 corresponds to the
root and ℓ = b to the leaves. The nodes at level ℓ are labelled by the pairs (ℓ, j)
for j = 1, . . . , 2ℓ. We write mℓ,j for the value in the modulus tree at the node (ℓ, j);
thus for example mb,j = mj for j = 1, . . . ,N, and m0,1 =

∏
p⩽N p

2.

Lemma 7.1.3. We may compute the modulus tree, i.e., all values mℓ,j, in time

O(N log2N).

Problem 7.1.4. Use Lemma 1.5.2 to show that the product
∏

p⩽N p
2 has O(N)

bits. Then prove Lemma 7.1.3 via Proposition 2.6.1 and Proposition 2.4.1.

We now define a second binary tree, unimaginatively named the value tree, to
be the product tree on the values Vj := j for j = 1, . . . ,N. We write Vℓ,j for the
value at the node (ℓ, j). For instance, the value at the root node is V0,1 = N!. An
example for N = 16 is shown in Figure 4.

Lemma 7.1.5. We may compute the value tree, i.e., all values Vℓ,i, in time

O(N log3N).

Problem 7.1.6. Prove Lemma 7.1.5 along the same lines as the proof of Lemma
7.1.3, by first showing that the bit size of N! is O(N logN).

Finally we arrive at our third and most interesting binary tree, the accumulating
remainder tree. The value assigned to the node (ℓ, j) is defined to be

Rℓ,j := Vℓ,1 · · ·Vℓ,j−1 (mod mℓ,j),

thought of as an element of Z/mℓ,jZ. In other words, Rℓ,j is the product of all
values strictly to the left of the node (ℓ, j) in the value tree, taken modulo the

COUNTING POINTS ON HYPERELLIPTIC CURVES OVER FINITE FIELDS 35

20922789888000

40320

24

2

1 2

12

3 4

1680

30

5 6

56

7 8

518918400

11880

90

9 10

132

11 12

43680

182

13 14

240

15 16

Figure 4. The value tree for N = 16.

1

1

1

1

0 1

2

2 0

24

24

24 0

34

34 0

19871

27

0

0 0

10

10 0

168

168

168 0

0

0 0

Figure 5. The accumulating remainder tree for N = 16.

corresponding value mℓ,j in the modulus tree. Note that if j = 1, the product is
empty so by definition Rℓ,j = 1 (mod mℓ,j). See Figure 5.

Problem 7.1.7. Show that for any prime p ⩽ N,

Rb,p = (p− 1)! (mod p2).

In other words, the values in the leaf nodes of the accumulating remainder tree
are exactly the Wilson remainders. For example, in Figure 5 we can immediately
see that p = 5 and p = 13 are the only Wilson primes less than 16.

The following result is the engine that drives the whole accumulating remain-
der tree algorithm.

Lemma 7.1.8. Let (ℓ, j) be a non-leaf node, i.e., with ℓ < b. Then

Rℓ+1,2j−1 ≡ Rℓ,j (mod mℓ+1,2j−1),

Rℓ+1,2j ≡ Rℓ,jVℓ+1,2j−1 (mod mℓ+1,2j).

Lemma 7.1.8 says that if we start with any non-leaf node, then its left child is
obtained by simply reducing its value modulo the corresponding modulus tree
node, and that its right child is obtained by first multiplying by an appropriate
node from the value tree, and then reducing modulo the corresponding modulus
tree node. For example, in Figure 5, starting with the value 19871 at the node

36 DAVID HARVEY

(ℓ, j) = (1, 2), the value of its left child is R2,3 = 19871 mod 121 = 27, and its right
child is R2,4 = 19871 · 11880 mod 169 = 168.

Corollary 7.1.9. Assume that the modulus tree and value tree are known. We may
compute the remainder tree, i.e., all values Rℓ,j, in time

O(N log3N).

Problem 7.1.10. Prove Lemma 7.1.8, and then deduce Corollary 7.1.9 by using
Lemma 7.1.8 to show that if we know the values of the accumulating remainder
tree at level ℓ for some ℓ < b, then we may compute the values at level ℓ+ 1 in
time

O(N log2N).

The main theorem of this section, Theorem 7.1.1, now follows immediately by
stringing together Lemma 7.1.3, Lemma 7.1.5, Corollary 7.1.9, and Problem 7.1.7.

Problem 7.1.11. (�) Implement the algorithm described in Theorem 7.1.1 to com-
pute (p− 1)! (mod p2) for all p ⩽ N in your FCAS. For what N is it faster than
running the O(p1/2+ε) implementation from Problem 6.1.3 separately for each
p ⩽ N?

An algorithm similar to the one described above was used in [11] to carry
out a large-scale search for Wilson primes. The computation expended about
1.1 million hours of CPU time (in the early 2010s), and found that there are no
Wilson primes less than 2 × 1013, apart from the three already known. The main
difficulty in this project was memory usage: for N = 2 × 1013, just writing down
the value tree, as defined above, would require about 5000 terabytes of storage!
For this and other reasons, the algorithm actually used in [11] was considerably
more complicated than the one presented in this section.

Problem 7.1.12. Describe an algorithm that can find all Wolstenholme primes
p ⩽ N in time O(N log3N).

(See Problem 6.1.5 for the definition of Wolstenholme primes. The observation
that this problem yields to an average polynomial time algorithm is not new — I
learned of this from Robert Gerbicz many years ago. But it does not yet seem to
have appeared in print.)

Problem 7.1.13. Describe an algorithm that can find all counterexamples p ⩽ N

to Kurepa’s conjecture in time O(N log3N). Note that some of the trees will now
consist of matrices instead of scalars.

(See Problem 6.2.5 for the statement of Kurepa’s conjecture. An average poly-
nomial time algorithm for this problem was described in [4], and the authors used
it to show that there are no counterexamples less than 240 ≈ 1.1× 1012. They also
expressed the opinion, which I share, that Kurepa’s conjecture is almost certainly
false.)

Problem 7.1.14. (�) Can the “factorial sieving” scheme in [16, §2] (see Problem
6.1.8) be used to improve the complexity of Theorem 7.1.1, perhaps to

O

(
N log3N

log logN

)
?

COUNTING POINTS ON HYPERELLIPTIC CURVES OVER FINITE FIELDS 37

Problem 7.1.15. (��) Is it possible to improve the O(N log3N) complexity bound
for the accumulating remainder tree algorithm? I have wondered about this for
many years. The bottleneck seems to be the value tree, which occupies altogether
O(N log2N) bits of space, and really does seem to require O(N log3N) time to
build. On the other hand, in some sense only O(N logN) bits of information
from the value tree are fed into the the accumulating remainder tree, namely the
remainders Vℓ+1,2j−1 (mod mℓ+1,2j) (see Lemma 7.1.8). This suggests that when
we compute the value tree, we are somehow computing too much data by a factor
of logN. Can we somehow use this observation to improve the overall complexity
to O(N log2N)? Or even something less ambitious like O(N log3N/ log logN)?

Note that for the specific case of Wilson primes, there is a lot of additional
structure that might lead to a provable asymptotic speedup; see for example
Problem 7.1.14, or the factorial identities described in [11, §3]. That would be
interesting in its own right, but in this problem what I am really asking for is a
generic speedup that applies to all instances of the accumulating remainder tree,
including the point counting algorithms presented in the next section.

7.2. Back to point counting. Let us now return from our Wilson prime detour to
the problem of point counting on hyperelliptic curves.

The setup is that C/Q is a hyperelliptic curve of genus g ⩾ 1 given by y2 = F̄(x)
where F̄ ∈ Z[x] is squarefree of degree 2g+ 1 or 2g+ 2. To avoid problems with
recurrences later on, let us also assume that

F̄0 ̸= 0.

(The F̄0 = 0 case may be handled along similar lines to Remark 5.1.7.) For each
prime p ⩾ 3, we write fp ∈ Fp[x] for the reduction of F̄ modulo p.

Definition 7.2.1. We say that a prime p ⩾ 3 is admissible for F̄ if p ⩾ g, and if the
polynomial fp ∈ Fp[x] is squarefree, has the same degree as F̄, and has nonzero
constant term.

Equivalently, p ⩾ g is admissible if it does not divide the leading coefficient,
constant term, or discriminant of F̄. This implies that there are only finitely many
inadmissible primes for F̄.

Remark 7.2.2. The above definition of admissibility is nonstandard, and is cus-
tomised for the requirements of the algorithms later in this section. It is closely
related to the concept of good reduction (for a definition see [31, §A.9.1]), but is
not the same. If p is admissible for F̄, then C has good reduction at p, but the
converse is false in general.

If p is admissible for F̄, then the curve Cp defined by y2 = fp(x) is a hyperellip-
tic curve over Fp of the same genus g, so it makes sense to define Lp(T) := LCp

(T).
Now suppose that we are given some bound N ⩾ 3, and we wish to compute

Lp(T) (mod p) for all admissible p ⩽ N. By Theorem 4.3.2, it suffices to compute
the matrices

Afp ∈ Matg(Fp)

for all admissible p ⩽ N. In other words, we want to compute the quantities

(F̄(p−1)/2)vp−u (mod p), 1 ⩽ u, v ⩽ g

38 DAVID HARVEY

for each p. At first glance this looks hopeless. Not only is the modulus different
for each p, but we want to compute different coefficients for each p, and we are
even dealing with a different polynomial F̄(p−1)/2 for each p! It is not at all
obvious that there is any redundancy between the various primes that can be
exploited.

To make progress, we will leverage the framework of §§5–6. Since we are only
considering p ⩾ g, we may fix µ := 2 (see Problem 5.3.4(b)). For each admissible p,
let F(p) ∈ (Z/p2Z)[x] be the polynomial defined by

F(p) := F̄ (mod p2).

By construction, F(p) is a lift of fp ∈ Fp[x]. Moreover, since p is admissible we
have (fp)0 ̸= 0, so everything in §§5–6 may be carried out for F := F(p).

Remark 7.2.3. Notice what just happened: the single “global” polynomial F̄ ∈ Z[x]
serves as a lift of fp for all p at the same time. This is one of the key ideas of the
average polynomial time approach.

Recall the transition matrix Tk ∈ Matd(Z/p2Z) defined in (6.2.2); to indicate
the dependence on p, we will denote it here by T (p)k . According to Proposition
6.3.2 and Proposition 6.3.6, to compute Afp it suffices to compute the products

(7.2.4)
T
(p)
1 · · · T (p)p−1 ∈ Matd(Z/p2Z), 1 · 2 · · · (p− 1) ∈ Z/p2Z,

T
(p)
p+1 · · · T

(p)
2p−1 ∈ Matd(Z/p2Z), (p+ 1) · · · (2p− 1) ∈ Z/p2Z.

In the present context, we need to compute these products for all admissible
p ⩽ N simultaneously. For example, we want to compute

T
(3)
1 T

(3)
2 (mod 32), T

(3)
4 T

(3)
5 (mod 32),

T
(5)
1 T

(5)
2 T

(5)
3 T

(5)
4 (mod 52), T

(5)
6 T

(5)
7 T

(5)
8 T

(5)
9 (mod 52),

T
(7)
1 T

(7)
2 T

(7)
3 T

(7)
4 T

(7)
5 T

(7)
6 (mod 72), T

(7)
8 T

(7)
9 T

(7)
10 T

(7)
11 T

(7)
12 T

(7)
13 (mod 72),

and so on. Formally, these products look extremely similar to the products ap-
pearing in (7.1.2). However, when we attempt to throw the accumulating remain-
der tree at this problem, we encounter two new difficulties that did not arise in
the Wilson prime context.

First, notice that the indices do not line up properly in the i = 1 case. For
example, the product T6T7T8T9 for p = 5 is not a subproduct of the corresponding
product T8 · · · T13 for p = 7.

The second and more serious problem is that the entries of the transition matrices
depend on p! Specifically, the last column of Tk involves the quantitym = (p−1)/2,
which is different for each p. So we cannot directly build a “value tree” in the
same way that we did for the Wilson prime problem.

7.3. Introducing a generic prime. We may solve both of the problems mentioned
above by employing a technique suggested in [24, §4.4].

Consider the ring

Z[P]/P2Z[P],

COUNTING POINTS ON HYPERELLIPTIC CURVES OVER FINITE FIELDS 39

which for brevity we will write as Z[P]/P2. This may be regarded as a ring of
truncated power series in P; a typical element of Z[P]/P2 has the form γ(P) =
γ0 + γ1P for integers γ0 and γ1. Multiplication in this ring is given by

(γ0 + γ1P)(δ0 + δ1P) = γ0δ0 + (γ0δ1 + γ1δ0)P.

We will think of P as a “generic prime” that has not yet been specialised to an
actual prime number.

For any γ = γ0 +γ1P ∈ Z[P]/P2, it makes sense to substitute a prime number p
for P to obtain an element

γ(p) := γ0 + γ1p ∈ Z/p2Z.

For each p, this operation is clearly a ring homomorphism

Z[P]/P2 −→ Z/p2Z,

i.e., for any γ, δ ∈ Z[P]/P2 we have (γ + δ)(p) = γ(p) + δ(p) and (γ · δ)(p) =

γ(p) · δ(p) in Z/p2Z.
These observations extend to matrices as well. If γ ∈ Matd(Z[P]/P2), say γ =

γ0 + γ1P for γ0,γ1 ∈ Matd(Z), then we may substitute an actual prime p for P to
obtain γ(p) := γ0 +γ1p ∈ Matd(Z/p2Z). Again, for each p this operation is a ring
homomorphism Matd(Z[P]/P2) → Matd(Z/p2Z).

The idea is now to define a matrix over Z[P]/P2, that is completely independent
of p, but that nevertheless specialises for each p to the desired transition matrix
over Z/p2Z. For each i = 0, 1 and j ⩾ 1, define

T̄ ij ∈ Matd(Z[P]/P2)

to be the matrix obtained from 2 · Tk (see (6.2.2)) by making the substitutions

m 7→ P− 1
2

, k 7→ iP+ j,

and replacing the coefficients of F by the corresponding coefficients of F̄. Explic-
itly,

T̄ ij (P) =



0 · · · 0 0 (d(P+ 1) − 2(iP+ j))F̄d

2(iP+ j)F̄0
...

. . .
...

2(iP+ j)F̄0 (2(P+ 1) − 2(iP+ j))F̄2
2(iP+ j)F̄0 (P+ 1 − 2(iP+ j))F̄1

 .

(The purpose of the extra factor of 2 is to make the entries of T̄ ij (P) integral.)

Problem 7.3.1. Let i = 0, 1. Show that for any prime p ⩾ 3,

T̄ ij (p) ≡ 2 · T (p)ip+j (mod p2).

Deduce that

(7.3.2) (T̄ i1 · · · T̄ ip−1)(p) ≡ 2p−1 · T (p)ip+1 · · · T
(p)
ip+p−1 (mod p2).

We are now in business! Briefly, the algorithm runs as follows. First we build
a modulus tree on the squares of the primes, exactly as in §7.1. Next, for each
i = 0, 1 we build a value tree from the matrices

T̄ i1 , . . . , T̄ iN ∈ Matd(Z[P]/P2).

40 DAVID HARVEY

We then compute an accumulating remainder tree whose leaf nodes contain the
matrices

T̄ i1 T̄
i
2 (mod 32),

T̄ i1 T̄
i
2 T̄

i
3 T̄

i
4 (mod 52),

T̄ i1 T̄
i
2 T̄

i
3 T̄

i
4 T̄

i
5 T̄

i
6 (mod 72),

and so on, for all p ⩽ N. Note that the leaf node corresponding to a given p lies
in the ring

Matd((Z/p2Z)[P]/P2).
At this stage we are finally allowed to “remember” which prime p the generic P
is supposed to stand for. Substituting p for P in each leaf node, we obtain the
matrices

(T̄ i1 · · · T̄ ip−1)(p) (mod p2)

as elements of Matd(Z/p2Z). Thanks to (7.3.2), after removing the factors of 2p−1

we have found all of the desired matrices in (7.2.4). The scalar quantities in (7.2.4)
may be computed by an analogous (much simpler) procedure. Finally, we recover
the desired Afp by applying Proposition 6.3.2 and Proposition 6.3.6 separately for
each p.

7.4. Complexity analysis. In this section we investigate the complexity of the
algorithm sketched above. We will prove the following theorem.

Theorem 7.4.1 (Computing Afp in average polynomial time). Let C/Q be a hyper-
elliptic curve of genus g ⩾ 1 defined by y2 = F̄(x) for some F̄ ∈ Z[x]. Let N ⩾ 2 and
assume that

(7.4.2) logN≫ log max
i

|F̄i| and logN≫ g.

Then we may compute Afp for all admissible p ⩽ N in time

O(gωN log3N).

It is possible to drop the hypothesis on log F̄i and give a more detailed com-
plexity bound that takes into account the size of the coefficients of F̄, but this just
complicates the analysis.

As in §7.1, for simplicity we assume that N = 2b.
Compared to the Wilson prime case, the main difficulty in the complexity

analysis is keeping track of the sizes of the objects (polynomials, matrices) being
manipulated. The following definitions assist in managing this issue.

Definition 7.4.3.
• For γ = γ0 + γ1P ∈ Z[P]/P2, define

∥γ∥ := |γ0|+ |γ1|.

• For γ ∈ Matd(Z[P]/P2), define

∥γ∥ := max
1⩽i⩽d

d∑
j=1

∥γi,j∥.

In other words, the norm of a matrix is defined to be the maximum of the
L1 norms of its rows.

COUNTING POINTS ON HYPERELLIPTIC CURVES OVER FINITE FIELDS 41

The next problem asks you to show that these norms are both submultiplicative.

Problem 7.4.4.

a) Let γ, δ ∈ Z[P]/P2. Show that ∥γδ∥ ⩽ ∥γ∥∥δ∥.
b) Let γ, δ ∈ Matd(Z[P]/P2). Show that ∥γδ∥ ⩽ ∥γ∥∥δ∥.

Problem 7.4.5. Show that the amount of space (i.e., number of bits) required to
represent a matrix γ ∈ Matd(Z[P]/P2) is

O(d2 log ∥γ∥),

and that matrices γ, δ ∈ Matd(Z[P]/P2) may be multiplied in time

O
(
dωMint(log ∥γ∥+ log ∥δ∥)

)
.

We now define two value trees, one for each i = 0, 1, to be the product trees on
the values

T̄ i1 , . . . , T̄ iN ∈ Matd(Z[P]/P2).

We write Vi
ℓ,j ∈ Matd(Z[P]/P2) for the matrix in the node (ℓ, j) of the i-th value

tree, for 0 ⩽ ℓ ⩽ b and 1 ⩽ j ⩽ 2ℓ.

Lemma 7.4.6. We may compute the value trees for i = 0, 1 in time

O(dωN log3N).

Problem 7.4.7. Prove Lemma 7.4.6 as follows.

a) Using the hypotheses (7.4.2), show that

∥T̄ ij ∥ = O(logN), 1 ⩽ j ⩽ N.

b) Show that the total bit size of the nodes at each level of each value tree is

O(d2N logN).

c) Finish the proof of Lemma 7.4.6, along the same lines as the proof of
Lemma 7.1.5.

Next, we define an accumulating remainder tree for each i = 0, 1. In the i-th
tree, the value assigned to the node (ℓ, j) is

Riℓ,j := V
i
ℓ,1 · · ·V

i
ℓ,j−1 (mod mℓ,j) ∈ Matd((Z/mℓ,jZ)[P]/P2).

Lemma 7.4.8. Assume that the modulus tree and value trees are known. We may com-
pute the accumulating remainder trees for i = 0, 1 in time

O(dωN log3N).

Problem 7.4.9. Prove Lemma 7.4.8 along the same lines as the proof of Corollary
7.1.9.

Problem 7.4.10. Prove Theorem 7.4.1 as follows.

a) State and prove analogues of Lemma 7.4.6 and Lemma 7.4.8 to handle the
scalar quantities in (7.2.4).

42 DAVID HARVEY

b) Assume that all four accumulating remainder trees are known, i.e., the
matrix and scalar trees, for both i = 0 and i = 1. Use (7.3.2) to prove that
for each admissible prime p we may deduce all quantities in (7.2.4) from
the leaf nodes of these trees in time

O
(
(g2 + logp) log1+ε p

)
.

Show that we may then use Proposition 6.3.2 and Proposition 6.3.6 to
recover Afp in time

O
(
(g3 + logp) log1+ε p

)
.

c) Show that total cost of (b) over all p ⩽ N is

O
(
(g3 + logN)N logεN

)
,

and use the hypotheses (7.4.2) to show that this is dominated by

O(gωN log3N).

d) Finish the proof of Theorem 7.4.1.

Problem 7.4.11. (�) Implement the algorithm described above to compute Afp

for all admissible p ⩽ N in your FCAS. For what N is it faster than running the
O(p1/2+ε) implementation from Problem 6.3.11 separately for each p ⩽ N?

Problem 7.4.12. Here is a sketch of another approach that yields an average poly-
nomial time algorithm for computing LC(T) (mod p) without using the “generic
prime” trick. Fix some v = 1, . . . ,g, and consider the vectors

Wv
k := (F̄kv(2k+1)−1, . . . , F̄kv(2k+1)−d) ∈ Zd, k ⩾ 1.

For k = (p− 1)/2, this vector (reduced modulo p) contains the v-th row of Afp .
Show how to construct a “transition matrix” over Z that takesWv

k−1 toWv
k, whose

entries do not depend on p.
(This “diagonal recurrence” is much closer in spirit to the first published aver-

age polynomial time point counting algorithm [23], and the same idea was used
in the first reported implementation of such an algorithm [26]. The recurrences ob-
tained in this way are horribly complicated, and were abandoned in subsequent
implementations such as [13, 25, 27, 56].)

Remark 7.4.13. As mentioned previously in the context of Wilson primes, these
algorithms use a huge amount of memory. One systematic method for reducing
the memory usage is to replace the accumulating remainder tree by a remainder
forest, as explained in [26, §4.1].

Remark 7.4.14. The obvious algorithm for multiplying two matrices in Matd(Z)
with n-bit entries runs in time O(dωMint(n)). This may be improved to

O(d2 Mint(n))

if n is large enough compared to d, by reusing the Fourier transforms of the
matrix entries [28]. This idea can be used to improve the main complexity bound
in Theorem 7.4.1 to

(7.4.15) O(g2N log3N).

This is the best complexity bound I know of for the problem of computing Afp for
all p ⩽ N. The dependence on g is optimal, as the output (the list of AFp

matrices)

COUNTING POINTS ON HYPERELLIPTIC CURVES OVER FINITE FIELDS 43

has total bit size O(g2N). The bound (7.4.15) improves on the main theorem of
[27] by a factor of O(g); the source of the improvement is that we have in effect
replaced the “translated curves” trick (see Problem 5.3.7) by p-adic interpolation
(Proposition 6.3.6). I am not aware of any serious attempts at implementing this
algorithm, and I do not know how it would perform in practice compared to [27].

8. A modulo pλ trace formula

So far, all of the point counting algorithms developed in this course have relied
on Theorem 4.2.6, which yields information about point counts modulo p. The
main result of this section is Theorem 8.4.1, which gives a congruence for these
point counts modulo a power of p. Since we know a priori upper bounds for the
point counts, this will enable us to obtain the point counts exactly in Z.

Remark 8.0.1. Theorem 8.4.1 may be viewed as a specialisation of the trace formula
[24, Theorem 3.1] to the case of hyperelliptic curves over a prime field. The proofs
in both cases are entirely elementary, in the sense that no cohomology is involved.

Remark 8.0.2. The approach taken in this section is not the only way to gain in-
formation above and beyond Theorem 4.2.6. One could also use ℓ-adic methods
and/or generic group methods to supplement the modulo p data; see for example
the last paragraph of [7, §8]. We will not discuss this further in this course.

8.1. A motivating example. Recall from (1.5.1) that if β ∈ Fp, then β(p−1)/2 ≡
χp(β) (mod p). What happens if we step back and look at things modulo p2?

Let β ∈ Z/p2Z, and let β ∈ Fp be its reduction modulo p. Then

(8.1.1) β(p−1)/2 ≡ χp(β) + cp (mod p2)

for some integer c. For the purposes of a modulo p trace formula such as Theorem
4.2.6, the cp term is irrelevant. But if we want to construct a “modulo p2 trace
formula”, the cp term is major nuisance. What we want is an analogue of the
expression β(p−1)/2 that yields χp(β) (mod p2), without the garbage cp term.

We can achieve this by playing some algebraic games with (8.1.1). Let β ∈
Z/p2Z and consider the expression β3(p−1)/2. From (8.1.1) we have

β3(p−1)/2 ≡ (χp(β) + cp)
3 ≡ χp(β)3 + 3χp(β)2cp (mod p2).

We now distinguish two cases. First, if χp(β) = ±1, then χp(β)2 = 1 and we get

(8.1.2) β3(p−1)/2 ≡ χp(β) + 3cp (mod p2).

We can now eliminate the unwanted cp term by taking a suitable linear combina-
tion of (8.1.1) and (8.1.2):

(8.1.3)
1
2
(
3β(p−1)/2 −β3(p−1)/2) ≡ χp(β) (mod p2).

What about the case χp(β) = 0? In this case β = 0, so p | β. This implies that
β(p−1)/2 ≡ 0 (mod p2), provided that p ⩾ 5. Therefore, the formula (8.1.3) holds
for all β, except possibly when p = 3.

Equation (8.1.3) suggests that (for p ⩾ 5) the expression

(8.1.4) φ(β(p−1)/2), where φ(t) :=
1
2
(3t− t3),

44 DAVID HARVEY

plays the role of a “quadratic residue indicator function modulo p2”. In the
next subsection we will explore how to generalise this construction to obtain an
analogous indicator function modulo pλ, and subsequently a “modulo pλ trace
formula”, for any desired λ ⩾ 1.

Problem 8.1.5. As mentioned above, (8.1.3) only works for p ⩾ 5. Find a polyno-
mial φ ∈ Q[t] such that φ(β(p−1)/2) ≡ χp(β) (mod p2) for all β ∈ Z/p2Z and all
primes p ⩾ 3.

8.2. The indicator function.

Lemma 8.2.1. Let λ ⩾ 1 be an integer. There exists a unique polynomial φλ ∈ Q[t] of
degree at most 2λ− 1 such that

(8.2.2) φλ(t) ≡

{
1 (mod (1 − t)λ),
−1 (mod (1 + t)λ).

The polynomial φλ is odd and its coefficients lie in Z[1
2].

For example, when λ = 2 we have φλ(t) = 1
2 (3t − t

3), which is exactly the
polynomial that showed up in (8.1.4).

Note that the notation Z[1
2] means the ring generated by Z and 1

2 , i.e., the set of
all rational numbers whose denominators are powers of two. “Odd” means that
the polynomial has only terms of odd degree.

The existence (and uniqueness) of φλ ∈ Q[t] of degree at most 2λ− 1 satisfying
(8.2.2) follows immediately from the Chinese Remainder Theorem for Q[t]. The
oddness (oddity?) of φλ is also easy to deduce from (8.2.2). Proving that the
coefficients of φλ lie in Z[1

2] requires slightly more work, and is discussed in the
following problem.

Problem 8.2.3. Prove Lemma 8.2.1 as follows.
a) Show that 1− 2−λ(1− t)λ is divisible by 1+ t in Z[1

2][t]. Let η ∈ Z[1
2][t] be

the quotient.
b) Let ψ ∈ Q[t] be the unique polynomial of degree at most λ− 1 such that
ψ ≡ ηλ (mod (1 − t)λ). Show that ψ ∈ Z[1

2][t] and that (1 + t)λψ ≡ 1
(mod (1 − t)λ).

c) Show that φλ(t) = ψ(t)(1+ t)λ −ψ(−t)(1− t)λ, and hence prove Lemma
8.2.1.

Problem 8.2.4. Establish the following explicit formula for φλ(t):

φλ(t) =

λ−1∑
j=0

1
2λ+j

(
λ+ j− 1

j

)(
(1 − t)j(1 + t)λ − (1 + t)j(1 − t)λ

)
.

Now we can use φλ(t) to construct the desired quadratic residue indicator
function modulo pλ:

Corollary 8.2.5. Let p ⩾ 2λ+ 1 be a prime. Let β ∈ Z/pλZ and let β be its reduction
modulo p. Then

φλ(β
(p−1)/2) ≡ χp(β) (mod pλ).

For example, for λ = 2, Corollary 8.2.5 says exactly that the expression given
in (8.1.4) is an indicator function modulo p2, provided that p ⩾ 5.

COUNTING POINTS ON HYPERELLIPTIC CURVES OVER FINITE FIELDS 45

Problem 8.2.6. Prove Corollary 8.2.5 as follows.
a) Suppose that χp(β) = 1. From (8.2.2) we may write

φλ(t) = 1 +ψ(t)(1 − t)λ.

for some ψ ∈ Z[1
2][t]. Use this to show that

φλ(β
(p−1)/2) ≡ 1 (mod pλ).

b) Deal with the case χp(β) = −1 along similar lines to (a).
c) Finish the proof by handling the remaining case χp(β) = 0. Where do

you use the hypothesis that p ⩾ 2λ+ 1?

Problem 8.2.7. Write out explicitly the modulo p3 analogue of (8.1.3) (which holds
for p ⩾ 7).

Problem 8.2.8. (�) Use your FCAS to compute the polynomial φλ(t) for a few
small values of λ, and check numerically that Corollary 8.2.5 holds for a few
randomly chosen primes p and β ∈ Z/pλZ.

Problem 8.2.9. Let λ ⩾ 1. Find a polynomial φ ∈ Q[t] for which an analogue of
Corollary 8.2.5 holds for all p ⩾ 3. You will need to allow the degree of φ to be
bigger than 2λ− 1. What is the smallest degree you can get away with?

(The case λ = 2 was discussed in Problem 8.1.5. This problem is related to the
“fudge factor” denoted by τ in [24, Theorem 3.1].)

8.3. Counting points with coordinates in Fp. We now explore how to use the
indicator function to write down a modulo pλ trace formula. As a warm-up, we
give a formula for counting points defined over Fp. Recall that C̃ is the variety
obtained from C by removing the points with x = 0,∞ (see Definition 4.1.3).

Proposition 8.3.1. Let λ ⩾ 1 and let p ⩾ 2λ+ 1 be a prime. Let C/Fp be a hyperelliptic
curve of genus g ⩾ 1 defined by y2 = f(x) for some f ∈ Fp[x]. Let

F = F0 + F1x+ · · ·+ F2g+2x
2g+2 ∈ (Z/pλZ)[x]

be any lift of f, i.e., so that F ≡ f (mod pλ). Let

H := F(p−1)/2 ∈ (Z/pλZ)[x].

Then

(8.3.2) #C̃(Fp) ≡ (p− 1)

1 +

λ−1∑
ℓ=0

φλ,2ℓ+1

(2ℓ+1)(g+1)∑
j=0

H2ℓ+1
j(p−1)

 (mod pλ),

where φλ,i denotes the coefficient of ti in φλ(t).

There are three key differences between (8.3.2) and the modulo p version (4.1.2)
that deserve to be highlighted.

First, whereas (4.1.2) is expressed entirely in terms of the defining polynomial
f ∈ Fp[x], the modulo pλ version (8.3.2) involves an arbitrary lift of that polyno-
mial to F ∈ (Z/pλZ)[x].

Second, whereas (4.1.2) involves only coefficients from a single polynomial
h = f(p−1)/2, the formula (8.3.2) involves coefficients from several powers of
H = F(p−1)/2, namely H, H3, . . ., H2λ−1. For example, in the case g = 3, deg F = 8,
λ = 3, the right hand side of (8.3.2) involves:

46 DAVID HARVEY

• the coefficients of 1, xp−1, . . . , x4(p−1) in H = F(p−1)/2,
• the coefficients of 1, xp−1, . . . , x12(p−1) in H3 = F3(p−1)/2,
• the coefficients of 1, xp−1, . . . , x20(p−1) in H5 = F5(p−1)/2.

Third, whereas (4.1.2) gives a congruence for #C(Fp), the new formula (8.3.2)
gives a congruence for #C̃(Fp). This is not unrelated to the presence of the “extra
terms” j = 0 and j = (2ℓ+ 1)(g+ 1) that have no analogue in (4.1.2). Actually, it
is possible to write down an explicit formula for #C(Fp) (mod pλ), but unfortu-
nately it is not as neat as (4.1.2). For further discussion, see Problem 8.4.9.

Let us turn now to the proof of Proposition 8.3.1. We will require a few facts
about the (p− 1)-th roots of unity in Z/pλZ. Define

Σλ(F∗
p) :=

{
α ∈ Z/pλZ : αp−1 = 1

}
.

Proposition 8.3.3. The reduction map Z/pλZ → Fp induces a bijection between Σλ(F∗
p)

and F∗
p.

The element α ∈ Σλ(F∗
p) corresponding to β ∈ F∗

p is called the Teichmüller
representative (modulo pλ) for β. For example, when p = 5, the Teichmüller repre-
sentatives modulo p3 for the elements 1, 2, 3, 4 ∈ F∗

5 are respectively 1, 57, 68, 124 ∈
Z/53Z. These are exactly the fourth roots of unity in Z/53Z.

Problem 8.3.4.
a) Prove Proposition 8.3.3. (Hint: if β ∈ F∗

p, lift β to some γ ∈ Z/pλZ and

consider α = γp
λ−1

.)
b) For any integer i ⩾ 0, show that∑

α∈Σλ(F∗
p)

αi =

{
p− 1 if i is divisible by p− 1,
0 otherwise.

c) Prove Proposition 8.3.1, by using part (b) and Corollary 8.2.5 to evaluate
the sum ∑

α∈Σλ(F∗
p)

(
φλ

(
F(α)(p−1)/2)+ 1

)
(mod pλ)

in two different ways.

Problem 8.3.5. (�) Check Proposition 8.3.1 numerically in your FCAS, i.e., for
some small p, g, λ and randomly chosen f ∈ Fp[x], choose a suitable lift F ∈
(Z/pλZ)[x] and check that (8.3.2) correctly counts the number of points in C̃(Fp)

modulo pλ.

8.4. Counting points with coordinates in Fpr . Proposition 8.3.1 is not very inter-
esting by itself, because we already know how to compute #C(Fp) by computing
it modulo p, at least if p is not too small (see Problem 4.1.6). What we really
want is a modulo pλ trace formula for counting points with coordinates in Fpr ,
i.e., a simultaneous generalisation of Theorem 4.2.6 and Proposition 8.3.1. The
following result does the job.

Theorem 8.4.1 (Modulo pλ trace formula). Let λ ⩾ 1 and let p ⩾ 2λ+ 1 be a prime.
Let C/Fp be a hyperelliptic curve of genus g ⩾ 1 defined by y2 = f(x) for some f ∈ Fp[x].
Let

F = F0 + F1x+ · · ·+ F2g+2x
2g+2 ∈ (Z/pλZ)[x]

COUNTING POINTS ON HYPERELLIPTIC CURVES OVER FINITE FIELDS 47

be any lift of f, i.e., so that F ≡ f (mod p), and let

H := F(p−1)/2 ∈ (Z/pλZ)[x].

For ℓ = 0, . . . , λ− 1, let

ÃF,ℓ ∈ Mat(2ℓ+1)(g+1)+1(Z/p
λZ)

be the matrix defined by

(ÃF,ℓ)v,u := (H2ℓ+1)vp−u, 0 ⩽ u, v ⩽ (2ℓ+ 1)(g+ 1).

Then for any r ⩾ 1,

(8.4.2) #C̃(Fpr) ≡ (pr − 1)

(
1 +

λ−1∑
ℓ=0

φλ,2ℓ+1 tr(Ãr
F,ℓ)

)
(mod pλ).

The main new feature in Theorem 8.4.1 is that instead of one matrix Ãf, we
have to deal with λ matrices ÃF,ℓ for ℓ = 0, . . . , λ− 1, whose size increases with ℓ.

Problem 8.4.3. Check that Theorem 8.4.1 specialises to Proposition 8.3.1 in the
case r = 1.

To prove Proposition 8.4.1, we need to be able to sum over the “(pr−1)-th roots
of unity modulo pλ”. To make sense of this, recall that Fpr may be represented
as

Fpr = Fp[θ]/z(θ)

for some irreducible monic polynomial z ∈ Fp[θ] of degree r. Let Z ∈ (Z/pλZ)[θ]
be any monic degree-r lift of z, i.e., so that Z ≡ z (mod p), and define

Wλ(Fpr) := (Z/pλZ)[θ]/Z(θ).

Elements of Wλ(Fpr) may be represented by polynomials of degree at most r− 1
in (Z/pλZ)[θ]. The ring Wλ(Fpr) plays the analogous role for Fpr as Z/pλZ does
for Fp. (Readers familiar with Witt vectors will recognise this construction.) Now
define

Σλ(F∗
pr) :=

{
α ∈Wλ(Fpr) : αp

r−1 = 1
}

.

Proposition 8.4.4. For each r ⩾ 1, the reduction map Wλ(Fpr) → Fpr induces a
bijection between Σλ(F∗

pr) and F∗
pr .

The element of Σλ(F∗
pr) corresponding to a given β ∈ F∗

pr is called the Te-
ichmüller representative (modulo pλ) for β.

Problem 8.4.5. Suppose that we represent F32 as F3[θ]/(θ
2 + 1), and W2(F32) as

(Z/32Z)[θ]/(θ2 + 1). Find the Teichmüller representatives for all elements of F∗
32 .

Problem 8.4.6.
a) Prove Proposition 8.4.4.
b) For any integer i ⩾ 0, show that∑

α∈Σλ(F∗
pr

)

αi =

{
pr − 1 if i is divisible by pr − 1,
0 otherwise.

Problem 8.4.7. Prove Theorem 8.4.1 as follows.

48 DAVID HARVEY

a) Let
H(r)(x) := H(x)H(xp) · · ·H(xp

r−1
) ∈ (Z/pλZ)[x].

By evaluating the sum∑
α∈Σλ(F∗

pr
)

(
φλ

(
H(r)(α)

)
+ 1
)

(mod pλ)

in two different ways, show that

#C̃(Fpr) ≡

(pr − 1)

1 +

λ−1∑
ℓ=0

φλ,2ℓ+1

(2ℓ+1)(g+1)∑
j=0

(H(r))2ℓ+1
j(pr−1)

 (mod pλ).

b) Using a similar argument to Problem 4.2.8(b), show that for each ℓ =
0, . . . , λ− 1 we have

(2ℓ+1)(g+1)∑
j=0

(H(r))2ℓ+1
j(pr−1) = tr(Ãr

F,ℓ).

Problem 8.4.8. (�) Check Theorem 8.4.1 numerically in your FCAS, i.e., for
some small p, g, λ, r, and randomly chosen f ∈ Fp[x], take an arbitrary lift
F ∈ (Z/pλZ)[x], evaluate (8.4.2), and check that the result agrees modulo pλ with
the actual number of points (obtained for example by the enumeration method).

Problem 8.4.9. Notation and hypotheses as in Theorem 8.4.1. In this problem
we investigate the possibility of an elegant modulo pλ trace formula for C(Fpr)

rather than C̃(Fpr).
a) For ℓ = 0, . . . , λ− 1 define matrices

AF,ℓ ∈ Mat(2ℓ+1)(g+1)−1(Z/p
λZ)

by the formula

(AF,ℓ)v,u := (H2ℓ+1)vp−u, 1 ⩽ u, v ⩽ (2ℓ+ 1)(g+ 1) − 1.

State and prove a formula of the type

#C(Fpr) ≡ (pr − 1)

(
1 +

λ−1∑
ℓ=0

φλ,2ℓ+1 tr(Ar
F,ℓ)

)
+ (correction terms) (mod pλ),

where the “correction terms” involve suitable linear combinations of pow-
ers of F0 and F2g+2.

b) Show that that the correction terms vanish when r ⩾ λ. In other words,
when r ⩾ λ, we get a stylish trace formula for C(Fpr), just like (4.2.6).

Problem 8.4.10. (�) In point counting algorithms based on p-adic cohomology,
the strategy is usually to construct a certain matrix over Qp (the matrix of a
Frobenius operator on some p-adic vector space) whose characteristic polynomial
yields the L-polynomial Lp(T) modulo arbitrarily large powers of p. Is there a
similar formula that yields Lp(T) (mod pλ) in terms of the matrices ÃF,ℓ appear-
ing in Theorem 8.4.1? (Or in terms of the matrices AF,ℓ in Problem 8.4.9?) More

COUNTING POINTS ON HYPERELLIPTIC CURVES OVER FINITE FIELDS 49

generally, is there a “p-adic cohomological” interpretation of the modulo pλ trace
formulas given in this course?

8.5. Algorithms and complexity bounds. In this final section of the course, we
discuss how to design algorithms that use Theorem 8.4.1 to compute not just
LC(T) (mod p), but the entire L-polynomial LC(T) ∈ Z[T]. We will not give
many details, but rather leave these to you as challenging exercises.

Our first task is to determine a suitable value of λ.

Lemma 8.5.1. Let λ be the smallest integer such that

λ >
g

2
+ logp(4g).

Then LC(T) ∈ Z[T] may be recovered from the values

(8.5.2) #C(Fp), . . . , #C(Fpg) (mod pλ).

Problem 8.5.3. Prove Lemma 8.5.1, via (3.2.2) and Problem 3.3.5.

In principle, it is now straightforward to compute LC(T) ∈ Z[T]. Given as input
f ∈ Fp[x], we lift to some F ∈ (Z/pλZ)[x] where λ is chosen as in Lemma 8.5.1.
Notice in particular that λ = O(g). According to Theorem 8.4.1, we can recover
the quantities in (8.5.2) from the matrices

(8.5.4) ÃF,0, . . . , ÃF,λ−1.

(We tacitly assume here that p ⩾ 2λ+ 1. To handle smaller p, see Problem 8.2.9.)

Problem 8.5.5. Estimate the complexity of computing LC(T) ∈ Z[T] from knowl-
edge of the matrices in (8.5.4). In other words, state and prove a suitable analogue
of Corollary 4.4.3. You should get a complexity bound of the form

O(gc log1+ε p)

for some constant c > 0.

Computing the matrices in (8.5.4) amounts to computing certain selected coef-
ficients of H,H3, . . . ,H2λ−1 modulo pλ, where H = F(p−1)/2, or in other words,
the polynomials

(8.5.6) F(p−1)/2, F3(p−1)/2, . . . , F(2λ−1)(p−1)/2.

This task may be carried out by adapting any of the various strategies given earlier
in the course for computing the coefficients of h = f(p−1)/2. Let us examine each
of these strategies in turn.

Problem 8.5.7 (Computing AF,ℓ via naive expansion). State and prove an ana-
logue of Theorem 4.4.1 for computing the matrices in (8.5.4), i.e., by simply ex-
panding out the polynomials in (8.5.6). You should get a complexity bound of the
form

O(gcp log2(gp))

for some constant c > 0.

Next we consider the recurrence strategy from §5. For each power H2ℓ+1, we
may set up a suitable recurrence, and define a sequence of approximations for
the coefficients of H2ℓ+1, analogous to the sequence H̃k from §5.2. In order to
deal with the “division-by-p” problem, we need to lift F further to (Z/pµZ)[x] for
some µ > λ.

50 DAVID HARVEY

Problem 8.5.8.
a) State and prove an analogue of Corollary 5.3.1, i.e., determine how big µ

must be to ensure that our approximations for the coefficients of H2ℓ+1

are correct modulo pλ.
b) State and prove an analogue of Problem 5.3.4(b), i.e., show that for p large

enough relative to g, to correctly compute the matrices in (8.5.4) it suffices
to take µ := λ+ 1. (In particular, we may take µ = O(g).)

Problem 8.5.9 (Computing AF,ℓ via recurrences). State and prove an analogue of
Theorem 5.3.3 for computing the matrices in (8.5.4). You should get a complexity
bound of the form

O(gcp log1+ε p)

for some constant c > 0.

Next in line is the square-root algorithm.

Problem 8.5.10. Generalise Proposition 6.3.6 (the interpolation trick) from the
µ = 2 case to arbitrary values of µ. More precisely, show that once we have
computed (6.3.3) and (6.3.4) for i = 0, . . . ,µ − 1, then we may quickly deduce
(6.3.3) and (6.3.4) for any desired value of i. (Careful: you may need to impose a
lower bound on p to avoid running into difficulties during the interpolation.)

Problem 8.5.11 (Computing AF,ℓ in square-root time). State and prove an ana-
logue of Theorem 6.3.8 for computing the matrices in (8.5.4). Taking into account
Remark 6.2.6, you should get a complexity bound of the form

O(gcp1/2 log2 p)

for some constant c > 0. (It should be possible to generalise Problem 6.3.12 from
two subproducts to µ subproducts, in order to squeeze out another factor of g1/2.)

Remark 8.5.12. The complexity bound attained in the previous problem is of a
similar nature to the main result of [22], which is based on p-adic cohomology.
As mentioned in Remark 6.3.13, it would be interesting to compare the two ap-
proaches, both from a theoretical and a practical point of view.

Finally, we consider the average polynomial time algorithm. After replacing
the ring Z[P]/P2 with Z[P]/Pµ, everything should run much the same way as
before.

Problem 8.5.13 (Computing AF,ℓ in average polynomial time). State and prove an
analogue of Theorem 7.4.1 for computing the matrices in (8.5.4), for all admissible
p ⩽ N, for some suitably adjusted notion of “admissible”. You should get a
complexity bound of the form

O(gcN log3N)

for some constant c > 0.

Problem 8.5.14. (�) In all of the algorithms suggested above, the powers H, H3, . . .,
H2λ−1 are handled separately. Can the exponents of g in the complexity bounds
be further improved by taking advantage of some redundancy between these
powers?

COUNTING POINTS ON HYPERELLIPTIC CURVES OVER FINITE FIELDS 51

To the best of my knowledge, no-one has yet made a serious effort to imple-
ment any average polynomial point counting algorithm that obtains point counts
modulo pλ for any λ > 1.

Problem 8.5.15. (�) Implement all the algorithms discussed in this section!

Appendix A. AWS project descriptions

The following projects all involve developing fast algorithms for solving vari-
ous problems. All of these projects require some familiarity with the material in
§2.

For each project, there are several levels of detail you might consider:
i) Work out the algorithm theoretically. This means describing the algorithm

explicitly, proving its correctness and analysing its running time.
ii) Implement a proof-of-concept prototype in your FCAS (favourite com-

puter algebra system), mainly as a sanity check, and mostly ignoring per-
formance issues.

iii) Write an efficient implementation in a lower-level language, for example
C/C++. In some cases it may be possible to achieve comparable perfor-
mance in a higher level system (I am thinking mainly Magma).

Each item above probably requires exponentially more work than the previous
one, especially (iii). I expect that during the week of AWS it will only be feasible
to attack (i) and to some extent (ii).

A.1. Factorial sieving. The goal is to investigate the algorithms suggested in
Problem 6.1.8 and Problem 7.1.14. The idea is to use the “factorial sieving” strat-
egy from [16, §2] to speed up the computation of (p− 1)! (mod p2). Note that
this project is completely unrelated to hyperelliptic curves or any point counting
problems, i.e., §§3–5 are not that relevant.

a) In Problem 6.1.8 we consider a single prime. The current state-of-the-art
complexity is O(p1/2 log2 p). The aim is to achieve a theoretical speedup
by a factor of (log logp)c for some constant c > 0 (I suspect c = 1

2). This
problem requires some familiarity with Strassen’s method (see Theorem
6.1.1). To get the right power of logp one also needs to know about the
Bostan–Gaudry–Schost optimisation (see Remark 6.1.6).

b) In Problem 7.1.14 we consider all primes p < N. The current state-of-the-
art complexity is O(N log3N). The aim is to achieve a theoretical speedup
by a factor of (log logN)c for some constant c > 0 (I suspect c = 1). This
problem requires some familiarity with accumulating remainder trees (see
Theorem 7.1.1).

The level (iii) version of this problem involves competing with the code
written as part of [11]. This is a very complicated issue due to the effects
of “Stage 1”, “Stage 2” and “Stage 3”, but talk to me if you are interested
in pursuing this.

A.2. Faster computation of Hasse–Witt matrices. This project requires familiar-
ity with everything up to and including §7. The goal is to investigate the algo-
rithm suggested in §§7.2–7.4 for computing the Hasse–Witt matrices of a hyperel-
liptic curve C/Q for all good primes p < N (see Theorem 7.4.1). As mentioned in
Remark 7.4.14, when combined with suitable methods for multiplying matrices

52 DAVID HARVEY

with huge integer entries, this leads to the complexity bound O(g2N log3N) for
this problem. The best published complexity bound is O(g3N log3N) [27].

To the best of my knowledge, this algorithm has not been worked out any-
where in the literature, and a serious implementation has not been attempted. I
may have written a level (ii) implementation at some point, but to be honest I
don’t quite remember.

It would be very interesting to compare a level (iii) implementation with the
code from [27]. In theory it should beat that code for some value of g, but I’m
not sure what the threshold would be. It could be as small as g = 2 or g = 3. It
may be possible to work out the threshold theoretically by a careful analysis of
constants.

It may also be meaningful to look at the p1/2 version of this algorithm; see
Remark 6.3.13. Again to the best of my knowledge this has not been implemented
anywhere.

A.3. Counting points using the mod pλ trace formula. This project requires
familiarity with everything up to and including §8, i.e., the entire set of lecture
notes. It may be regarded as a more intense version of the project in §A.2. Note
that I will almost certainly not get to §8 during the lectures.

The goal of this project is to use the mod pλ trace formula (Theorem 8.4.1) to
generalise all of the point-counting algorithms from §§4–7: instead of just comput-
ing Lp(T) (mod p), we want to compute Lp(T) (mod pλ) and hence Lp(T) ∈ Z[x].

I would suggest attacking both (i) and (ii) together in the following stages,
which gradually increase in level of technical complexity:

(1) Naive expansion version (see Problem 8.5.7).
Working out this version would just be for practice; I doubt that a level
(iii) implementation could be useful in any application.

(2) Recurrences version (see Problem 8.5.9).
A level (iii) version of this algorithm, if coded tightly, could conceivably
be interesting in certain parameter ranges, but I am not sure about this.

(3) Square-root version (see Problem 8.5.11).
A level (iii) version of this algorithm would be in direct competition with
the code described in [22]. It would be very interesting to compare the
performance, and also the power of g in the resulting complexity bound.
My guess is that the dependence on g is better in [22], but I am not sure
about this.

(4) Average polynomial time version (see Problem 8.5.13).
In theory this algorithm competes with [23]. However, neither this algo-
rithm, nor the algorithm in [23], have ever been implemented. In fact, I am
not aware of any instance in the literature of the accumulating remainder
tree being used in an actual computation of point counts modulo pλ for
any λ ⩾ 2. (See however [14, 15] for some applications involving hyper-
geometric motives.) A level (iii) implementation of this algorithm would
open up the possibility of carrying out Sato–Tate investigations for curves
of genus 4 and above (and might even help to some extent in genus 3).

COUNTING POINTS ON HYPERELLIPTIC CURVES OVER FINITE FIELDS 53

References

[1] T. G. Abbott, K. S. Kedlaya, and D. Roe, Bounding Picard numbers of surfaces using p-adic cohomology,
Arithmetics, geometry, and coding theory (AGCT 2005), 2010, pp. 125–159, Sémin. Congr., vol. 21.
MR2856564 ↑5

[2] J. D. Achter and E. W. Howe, Hasse-Witt and Cartier-Manin matrices: a warning and a request, Arith-
metic geometry: computation and applications, [2019] ©2019, pp. 1–18, Contemp. Math., vol. 722.
MR3896846 ↑17

[3] J. Alman and V. Vassilevska Williams, A refined laser method and faster matrix multiplication, Pro-
ceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), 2021, pp. 522–539.
MR4262465 ↑10

[4] V. Andrejić, A. Bostan, and M. Tatarevic, Improved algorithms for left factorial residues, Inform. Pro-
cess. Lett. 167 (2021), Paper No. 106078, 3. MR4195830 ↑29, 36

[5] D. J. Bernstein, Fast multiplication and its applications, Algorithmic number theory: lattices, number
fields, curves and cryptography, 2008, pp. 325–384, Math. Sci. Res. Inst. Publ., vol. 44. MR2467550
(2010a:68186) ↑6

[6] A. R. Booker, S. Hathi, M. J. Mossinghoff, and T. S. Trudgian, Wolstenholme and Vandiver primes,
Ramanujan J. 58 (2022), no. 3, 913–941. MR4437433 ↑27

[7] A. Bostan, P. Gaudry, and É. Schost, Linear recurrences with polynomial coefficients and application
to integer factorization and Cartier-Manin operator, SIAM J. Comput. 36 (2007), no. 6, 1777–1806.
MR2299425 (2008a:11156) ↑22, 25, 27, 30, 32, 43

[8] R. P. Brent and P. Zimmermann, Modern Computer Arithmetic, Cambridge Monographs on Ap-
plied and Computational Mathematics, vol. 18, Cambridge University Press, Cambridge, 2011.
MR2760886 ↑6

[9] D. V. Chudnovsky and G. V. Chudnovsky, Approximations and complex multiplication according to
Ramanujan, Ramanujan revisited (Urbana-Champaign, Ill., 1987), 1988, pp. 375–472. MR938975
(89f:11099) ↑30

[10] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren (eds.), Handbook
of Elliptic and Hyperelliptic Curve Cryptography, Discrete Mathematics and its Applications (Boca
Raton), Chapman & Hall/CRC, Boca Raton, FL, 2006. MR2162716 (2007f:14020) ↑2

[11] E. Costa, R. Gerbicz, and D. Harvey, A search for Wilson primes, Math. Comp. 83 (2014), no. 290,
3071–3091. MR3246824 ↑26, 33, 36, 37, 51

[12] E. Costa and D. Harvey, Faster deterministic integer factorization, Math. Comp. 83 (2014), no. 285,
339–345. MR3120593 ↑28

[13] E. Costa, D. Harvey, and A. V. Sutherland, Counting points on smooth plane quartics, 2022. To appear
in proceedings of ANTS XV. ↑42

[14] E. Costa, K. S. Kedlaya, and D. Roe, Hypergeometric L-functions in average polynomial time, ANTS
XIV—Proceedings of the Fourteenth Algorithmic Number Theory Symposium, 2020, pp. 143–159,
Open Book Ser., vol. 4. MR4235111 ↑52

[15] E. Costa, K. S. Kedlaya, and D. Roe, Hypergeometric L-functions in average polynomial time, II, Res.
Number Theory 11 (2025), no. 1, Paper No. 32, 19. MR4858169 ↑52

[16] R. Crandall, K. Dilcher, and C. Pomerance, A search for Wieferich and Wilson primes, Math. Comp.
66 (1997), no. 217, 433–449. MR1372002 (97c:11004) ↑28, 36, 51

[17] N. D. Elkies, Elliptic and modular curves over finite fields and related computational issues, Computa-
tional perspectives on number theory (Chicago, IL, 1995), 1998, pp. 21–76, AMS/IP Stud. Adv.
Math., vol. 7. MR1486831 (99a:11078) ↑2

[18] F. Fité, K. S. Kedlaya, V. Rotger, and A. V. Sutherland, Sato-Tate distributions and Galois endomor-
phism modules in genus 2, Compos. Math. 148 (2012), no. 5, 1390–1442. MR2982436 ↑2

[19] P. Flajolet and B. Salvy, The SIGSAM challenges: Symbolic asymptotics in practice, SIGSAM Bull. 31
(1997dec), no. 4, 36–47. ↑25

[20] R. Gerbicz, 2011. https://www.mersenneforum.org/showthread.php?p=270602. ↑33
[21] T. Granlund, The GNU Multiple Precision Arithmetic Library. http://gmplib.org/. ↑7
[22] D. Harvey, Kedlaya’s algorithm in larger characteristic, Int. Math. Res. Not. IMRN 22 (2007), Art. ID

rnm095, 29. MR2376210 (2009d:11096) ↑32, 50, 52
[23] D. Harvey, Counting points on hyperelliptic curves in average polynomial time, Ann. of Math. (2) 179

(2014), no. 2, 783–803. MR3152945 ↑42, 52
[24] D. Harvey, Computing zeta functions of arithmetic schemes, Proc. Lond. Math. Soc. (3) 111 (2015),

no. 6, 1379–1401. MR3447797 ↑1, 2, 5, 6, 38, 43, 45

http://www.ams.org/mathscinet-getitem?mr=2856564
http://www.ams.org/mathscinet-getitem?mr=3896846
http://www.ams.org/mathscinet-getitem?mr=4262465
http://www.ams.org/mathscinet-getitem?mr=4195830
http://www.ams.org/mathscinet-getitem?mr=2467550
http://www.ams.org/mathscinet-getitem?mr=2467550
http://www.ams.org/mathscinet-getitem?mr=4437433
http://www.ams.org/mathscinet-getitem?mr=2299425
http://www.ams.org/mathscinet-getitem?mr=2299425
http://www.ams.org/mathscinet-getitem?mr=2760886
http://www.ams.org/mathscinet-getitem?mr=938975
http://www.ams.org/mathscinet-getitem?mr=938975
http://www.ams.org/mathscinet-getitem?mr=2162716
http://www.ams.org/mathscinet-getitem?mr=2162716
http://www.ams.org/mathscinet-getitem?mr=3246824
http://www.ams.org/mathscinet-getitem?mr=3120593
http://www.ams.org/mathscinet-getitem?mr=4235111
http://www.ams.org/mathscinet-getitem?mr=4858169
http://www.ams.org/mathscinet-getitem?mr=1372002
http://www.ams.org/mathscinet-getitem?mr=1372002
http://www.ams.org/mathscinet-getitem?mr=1486831
http://www.ams.org/mathscinet-getitem?mr=1486831
http://www.ams.org/mathscinet-getitem?mr=2982436
https://www.mersenneforum.org/showthread.php?p=270602
http://gmplib.org/
http://www.ams.org/mathscinet-getitem?mr=2376210
http://www.ams.org/mathscinet-getitem?mr=2376210
http://www.ams.org/mathscinet-getitem?mr=3152945
http://www.ams.org/mathscinet-getitem?mr=3447797

54 DAVID HARVEY

[25] D. Harvey, M. Massierer, and A. V. Sutherland, Computing L-series of geometrically hyperelliptic
curves of genus three, LMS J. Comput. Math. 19 (2016), no. suppl. A, 220–234. MR3540957 ↑42

[26] D. Harvey and A. V. Sutherland, Computing Hasse-Witt matrices of hyperelliptic curves in average
polynomial time, LMS J. Comput. Math. 17 (2014), no. suppl. A, 257–273. MR3240808 ↑42

[27] D. Harvey and A. V. Sutherland, Computing Hasse-Witt matrices of hyperelliptic curves in average
polynomial time, II, Frobenius distributions: Lang-Trotter and Sato-Tate conjectures, 2016, pp. 127–
147, Contemp. Math., vol. 663. MR3502941 ↑25, 42, 43, 52

[28] D. Harvey and J. van der Hoeven, On the complexity of integer matrix multiplication, J. Symbolic
Comput. 89 (2018), 1–8. MR3804803 ↑42

[29] D. Harvey and J. van der Hoeven, Integer multiplication in time O(n logn), Ann. of Math. (2) 193
(2021), no. 2, 563–617. MR4224716 ↑6, 7

[30] D. Harvey and J. van der Hoeven, Polynomial multiplication over finite fields in time O(n logn), J.
ACM 69 (2022mar), no. 2. ↑8

[31] M. Hindry and J. H. Silverman, Diophantine Geometry, Graduate Texts in Mathematics, vol. 201,
Springer-Verlag, New York, 2000. An introduction. MR1745599 ↑37

[32] K. S. Kedlaya, Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology, J. Ra-
manujan Math. Soc. 16 (2001), no. 4, 323–338. MR1877805 (2002m:14019) ↑2, 5, 23

[33] K. S. Kedlaya, Quantum computation of zeta functions of curves, Comput. Complexity 15 (2006),
no. 1, 1–19. MR2226067 ↑2

[34] K. S. Kedlaya and A. V. Sutherland, Computing L-series of hyperelliptic curves, Algorithmic number
theory, 2008, pp. 312–326, Lecture Notes in Comput. Sci., vol. 5011. MR2467855 (2010d:11070)
↑13

[35] D. E. Knuth, The Art of Computer Programming. Vol. 2, Addison-Wesley, Reading, MA, 1998.
Seminumerical algorithms, Third edition [of MR0286318]. MR3077153 ↑6

[36] M. Kyng, Computing zeta functions of algebraic curves using Harvey’s trace formula, Ph.D. thesis, 2025.
https://web.maths.unsw.edu.au/∼davidharvey/research/kyng-thesis.pdf. ↑5

[37] M. Kyng, Computing zeta functions of algebraic curves using Harvey’s trace formula, Res. Number
Theory 8 (2022), no. 4, Paper No. 100, 17. MR4508045 ↑5

[38] A. G. B. Lauder, Counting solutions to equations in many variables over finite fields, Found. Comput.
Math. 4 (2004), no. 3, 221–267. MR2078663 (2005f:14048) ↑6

[39] D. Lorenzini, An Invitation to Arithmetic Geometry, Graduate Studies in Mathematics, vol. 9, Amer-
ican Mathematical Society, Providence, RI, 1996. MR1376367 (97e:14035) ↑14

[40] J. I. Manin, The Hasse–Witt matrix of an algebraic curve, Fifteen papers on algebra, 1965, pp. 245–
264, American Mathematical Society Translations: Series 2, vol. 45. Translated by J.W.S. Cassels.
↑19

[41] R. J. McIntosh and E. L. Roettger, A search for Fibonacci-Wieferich and Wolstenholme primes, Math.
Comp. 76 (2007), no. 260, 2087–2094. MR2336284 (2008k:11008) ↑27

[42] H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory. I. Classical Theory, Cam-
bridge Studies in Advanced Mathematics, vol. 97, Cambridge University Press, Cambridge, 2007.
MR2378655 ↑4

[43] V. Neiger and C. Pernet, Deterministic computation of the characteristic polynomial in the time of matrix
multiplication, J. Complexity 67 (2021), Paper No. 101572, 35. MR4311525 ↑10

[44] C. H. Papadimitriou, Computational Complexity, Addison-Wesley Publishing Company, Reading,
MA, 1994. MR1251285 (95f:68082) ↑4

[45] J. Pila, Frobenius maps of abelian varieties and finding roots of unity in finite fields, Math. Comp. 55
(1990), no. 192, 745–763. MR1035941 (91a:11071) ↑2

[46] J. M. Pollard, Theorems on factorization and primality testing, Proc. Cambridge Philos. Soc. 76 (1974),
521–528. MR0354514 (50 #6992) ↑27

[47] A. Schönhage, A. F. W. Grotefeld, and E. Vetter, Fast algorithms, Bibliographisches Institut,
Mannheim, 1994. A multitape Turing machine implementation. MR1290996 ↑10

[48] R. Schoof, Elliptic curves over finite fields and the computation of square roots mod p, Math. Comp. 44
(1985), no. 170, 483–494. MR777280 (86e:11122) ↑2

[49] I. S. Sergeev, On the complexity of computing prime tables on a Turing machine, 2016. https://arxiv.
org/abs/1604.01154. ↑10

[50] I. S. Sergeev, On the complexity of computing prime tables on the Turing machine, Prikladnaya Diskret-
naya Matematika 1 (2016), 86–91 (Russian). ↑10

[51] H. Stichtenoth, Algebraic Function Fields and Codes, Second, Graduate Texts in Mathematics,
vol. 254, Springer-Verlag, Berlin, 2009. MR2464941 (2010d:14034) ↑2, 14

http://www.ams.org/mathscinet-getitem?mr=3540957
http://www.ams.org/mathscinet-getitem?mr=3240808
http://www.ams.org/mathscinet-getitem?mr=3502941
http://www.ams.org/mathscinet-getitem?mr=3804803
http://www.ams.org/mathscinet-getitem?mr=4224716
http://www.ams.org/mathscinet-getitem?mr=1745599
http://www.ams.org/mathscinet-getitem?mr=1877805
http://www.ams.org/mathscinet-getitem?mr=1877805
http://www.ams.org/mathscinet-getitem?mr=2226067
http://www.ams.org/mathscinet-getitem?mr=2467855
http://www.ams.org/mathscinet-getitem?mr=2467855
http://www.ams.org/mathscinet-getitem?mr=3077153
https://web.maths.unsw.edu.au/~davidharvey/research/kyng-thesis.pdf
http://www.ams.org/mathscinet-getitem?mr=4508045
http://www.ams.org/mathscinet-getitem?mr=2078663
http://www.ams.org/mathscinet-getitem?mr=2078663
http://www.ams.org/mathscinet-getitem?mr=1376367
http://www.ams.org/mathscinet-getitem?mr=1376367
http://www.ams.org/mathscinet-getitem?mr=2336284
http://www.ams.org/mathscinet-getitem?mr=2336284
http://www.ams.org/mathscinet-getitem?mr=2378655
http://www.ams.org/mathscinet-getitem?mr=4311525
http://www.ams.org/mathscinet-getitem?mr=1251285
http://www.ams.org/mathscinet-getitem?mr=1251285
http://www.ams.org/mathscinet-getitem?mr=1035941
http://www.ams.org/mathscinet-getitem?mr=1035941
http://www.ams.org/mathscinet-getitem?mr=0354514
http://www.ams.org/mathscinet-getitem?mr=0354514
http://www.ams.org/mathscinet-getitem?mr=1290996
http://www.ams.org/mathscinet-getitem?mr=777280
http://www.ams.org/mathscinet-getitem?mr=777280
https://arxiv.org/abs/1604.01154
https://arxiv.org/abs/1604.01154
http://www.ams.org/mathscinet-getitem?mr=2464941
http://www.ams.org/mathscinet-getitem?mr=2464941

COUNTING POINTS ON HYPERELLIPTIC CURVES OVER FINITE FIELDS 55

[52] V. Strassen, Gaussian elimination is not optimal, Numer. Math. 13 (1969), 354–356. MR0248973 (40
#2223) ↑10

[53] V. Strassen, Einige Resultate über Berechnungskomplexität, Jber. Deutsch. Math.-Verein. 78 (1976/77),
no. 1, 1–8. MR0438807 (55 #11713) ↑27

[54] A. V. Sutherland, Smalljac software library version 4.1.3. https://math.mit.edu/∼drew/smalljac v4.
1.3.tar. ↑13

[55] A. V. Sutherland, Order computations in generic groups, Ph.D. Thesis, 2007. ↑2
[56] A. V. Sutherland, Counting points on superelliptic curves in average polynomial time, ANTS XIV—

Proceedings of the Fourteenth Algorithmic Number Theory Symposium, 2020, pp. 403–422, Open
Book Ser., vol. 4. MR4235126 ↑42

[57] J. Tuitman, Counting points on curves using a map to P1, II, Finite Fields Appl. 45 (2017), 301–322.
MR3631366 ↑2, 5

[58] J. von zur Gathen and J. Gerhard, Modern Computer Algebra, 3rd ed., Cambridge University Press,
Cambridge, 2013. MR3087522 ↑6

[59] J. von zur Gathen and V. Shoup, Computing Frobenius maps and factoring polynomials, Comput.
Complexity 2 (1992), no. 3, 187–224. MR1220071 (94d:12011) ↑27

School of Mathematics and Statistics, UNSW Sydney, NSW 2052, Australia

Email address: d.harvey@unsw.edu.au

http://www.ams.org/mathscinet-getitem?mr=0248973
http://www.ams.org/mathscinet-getitem?mr=0248973
http://www.ams.org/mathscinet-getitem?mr=0248973
http://www.ams.org/mathscinet-getitem?mr=0438807
http://www.ams.org/mathscinet-getitem?mr=0438807
https://math.mit.edu/~drew/smalljac_v4.1.3.tar
https://math.mit.edu/~drew/smalljac_v4.1.3.tar
http://www.ams.org/mathscinet-getitem?mr=4235126
http://www.ams.org/mathscinet-getitem?mr=3631366
http://www.ams.org/mathscinet-getitem?mr=3087522
http://www.ams.org/mathscinet-getitem?mr=1220071
http://www.ams.org/mathscinet-getitem?mr=1220071

	0. Preface
	1. Introduction
	2. A crash course on fast arithmetic
	3. Hyperelliptic curves and zeta functions
	4. A modulo p trace formula
	5. Recurrences for polynomial powers
	6. A square-root time algorithm
	7. An average polynomial time algorithm
	8. A modulo p trace formula
	Appendix A. AWS project descriptions
	References

