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1. Preparation for the Winter School

For almost all of our proposed projects, it is essential to have some experience with Magma.
Magma has a free, limited use online calculator here

http://magma.maths.usyd.edu.au/calc/.

It is even better is to obtain a copy for your laptop. The Simons Foundation has made
Magma freely available to mathematicians working in the US

http://magma.maths.usyd.edu.au/magma/ordering/.

The IT staff in your department should be able to help you obtain a copy of Magma
through this agreement.

Several of the proposed projects deal with algorithms for computing endomorphism rings.
We recommend looking at [ES26, EHL+20, BCNE+19, HW25, Tu11].
It is also helpful to have some familiarity with quaternion algebras (see [Voi21], especially

Chapter 23 Section 5 on the Bruhat-Tits tree and Chapter 42 on supersingular elliptic
curves).

2. Projects

The first two projects deal with aspects of computing endomorphism rings of supersingular
elliptic curves. Beside being of intrinsic interest, computing the endomorphism ring of a
supersingular elliptic curve has become a central problem in isogeny-based cryptography.
There are several ways to compute endomorphism rings. Computing the endomorphism
ring of a supersingular elliptic curve E was first studied by Kohel [Koh96, Theorem 75],
who gave an approach for generating a subring of finite index of the endomorphism ring
End(E). The algorithm is based on finding cycles in the ℓ-isogeny graph of supersingular
elliptic curves in characteristic p and runs in time O(p1+ε). In [ES26] we completed Kohel’s
approach by showing how to compute End(E) from a suborder. This algorithm runs in time
polynomial in log p, the logarithm of the degrees of the generators of the suborder and the
largest prime and largest exponent in the factorization of the discriminant of the suborder.
It built on [EHL+20] which gave a subexponential algorithm, under certain heuristics, if
the input suborder was Bass. In [FIK+25], it is shown that under GRH, a Bass suborder
of End(E) can be computed in O(p1/2+ε) time. In a different direction, one can attempt
to compute End(E) by constructing a generating set. Endomorphisms of E correspond
to cycles through E in an isogeny graph. One example of a cycle-finding algorithm for
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computing powersmooth endomorphisms with complexity Õ(p1/2) and polynomial storage is
given by Delfs and Galbraith [DG16]. In [GPS17] it is argued that heuristically one expects
O(log p) calls to a cycle finding algorithm until the cycles generate End(E). In [FIK+25], a
basis for End(E) is found that involves inseparable endomorphisms. Page and Wesolowski
give an unconditional probabilistic algorithm for the computation of the full endomorphism
ring whose complexity is Õ(p1/2) [PW24].

2.1. Computing the endomorphism ring of a supersingular curve from a subring.
The first project is to implement an example of the main algorithm, Algorithm 8.1, from
[ES26]. This is a deterministic algorithm that computes the endomorphism ring of a super-
singular elliptic curve, given two non-commuting endomorphisms and a factorization of the
reduced discriminant of the order they generate.

In Section 8 of [ES26], an example is computed with the following setup: Let p = 103 and
let E be the elliptic curve with j-invariant 69, given by the model y2 = x3 + 37x + 38. For
this choice of p, Bp,∞ has a Q-basis of the form {1, i, j, ij} with i2 = −1 and j2 = −103.

The goal is to compute a maximal order Õ ⊂ Bp,∞ with Õ ∼= End(E), given a subring O0

of finite index. In the example in [ES26] we start with the order O0 ⊂ Bp,∞ which is given
by the basis{

1,−11095− 21

2
i− 11095j − 7

2
ij,−49− 49

2
i− 49j − 49

2
ij,

107653

2
+

107653

2
ij

}
.

This order can be shown to be contained in Õ. Here, we are implicitly using an isomorphism
of O0 into End(E)⊗Q for which j maps to the Frobenius πp and 7i to an endomorphism of
degree 7. This example was constructed completely on the quaternion side to have certain
properties (in particular: for q | discrd(O0), one can easily describe an embedding O0⊗Zq →
M2(Zq)).

The goal of the first project is to implement another example:

• The example in [ES26] is done almost entirely in terms of orders of Bp,∞ rather than
actual endomorphisms of the given curve E. It would be interesting to have an exam-
ple set up on the endomorphism side, e.g. by constructing the basis endomorphisms
as cycles in isogeny graphs. (See [BCNE+19, p. 57] for the supersingular isogeny
graph with p = 103.)

The starting point would be to generate an order O0 whose reduced discriminant
is non-maximal by taking two noncommuting endomorphisms which are given by a
composition of isogenies.

• Warm-Up: Let p = 103. Fix a supersingular elliptic curve E defined over Fp2 .
Construct an order O0 ⊂ Bp,∞ such that O0 ⊂ End(E) and discrd(O0) is divisible by
a few primes besides p. The example is most illustrative if O0 is Bass at some primes
and not at others. One way to do this is to start by using Magma to construct a list
of all maximal orders up to isomorphism in Bp,∞ and determining an order O which
is isomorphic to End(E). Then one can use Magma functions to construct suborders
of specified index. Then run the algorithm [ES26, Algorithm 8.1] to compute the
endomorphism ring. Here, checking that β/n is an endomorphism means checking
that β/n ∈ O.

• More Challenging: Rather than constructing the order on the quaternion side (which
involved knowing End(E) already), construct a suborder O0 ⊂ End(E) by finding

2



two noncommuting nonbacktracking cycles in an isogeny graph. Cycles should be
given as a composition of isogenies of prime or prime power degree. Again, the goal
is to construct an order which is Bass at some primes and not at others. Then use
the algorithm to compute the endomorphism ring. This will require embeddings
fq : O0 ⊗ Zq → M2(Qq) as described in [ES26, Appendix B].

2.2. Magma implementation of endomorphism ring algorithm. A second project
would be a general Magma implementation of any cycle finding algorithm in an isogeny graph
and of Algorithm 8.1 in [ES26]. Those two parts would give an algorithm for computing
supersingular endomorphism rings. The main obstacle for an efficient implementation of
Algorithm 8.1 is that computing higher-dimensional isogenies in the necessary generality
(dimension 8) to determine if an endomorphism is a scalar multiple of another endomorphism
is not yet implemented. Given an endomorphism β and an integer n we need to determine
when β/n is an endomorphism. When the parameters (deg(β) and n) are small enough,
one can determine if β/n is an endomorphism by evaluating β on E[n] instead, but for the
general case one would need higher-dimensional isogenies as in [ES26, Appendix A].

2.3. Statistics on when a suborder of Bp,∞ is Bass. The third project deals with how
often two noncommuting cycles in isogeny graphs generate a suborder of the endomorphism
ring that has extra properties. This is of interest because the problem of computing the
endomorphism ring of a supersingular elliptic curve from a finite index subring can be solved
more efficiently if the input order has special properties that force more structure.

Here are several definitions of orders in quaternion algebras in which we will be interested.
We say that O is an Eichler order if O ⊆ B is the intersection of two (not necessarily distinct)
maximal orders. The codifferent of an order is defined as codiff(O) = {α ∈ B : Trd(αO) ⊆
Z}. Following [Voi21, Definition 24.2.1], we say that O is Gorenstein if the lattice codiff(O)
is invertible as a lattice as in [Voi21, 24.1.1]. An order O is Bass if every superorder O′ ⊇ O
is Gorenstein.

We will be interested in the situtation when the input order Λ is locally a Bass order.
The main property of local Bass orders that is interesting for us is that there are at most
e + 1 maximal orders containing a local Bass order Λ ⊗ Zq, where e = vq(discrd(Λ)) is the
valuation of the reduced discriminant of Λ (see [Brz83]). Let Λ ⊗ Zq ⊆ M2(Qq) be a Bass
Zq-order, and e := vq(discrd(Λ)).

We can use the Bruhat-Tits tree T to compute the maximal superorders of Λ⊗ Zq. The
vertices of T are in bijection with maximal orders in M2(Qq).
If Λ⊗Zq ⊆ M2(Qq) is a Bass Zq-order, the subgraph of maximal orders containing Λ⊗Zq

forms a path which can be recovered efficiently [EHL+20]. There it is shown that when
Λ ⊗ Zq is Bass and Eichler, i.e. Λ ⊗ Zq = O ∩ O′ for local maximal orders O,O′, then the
e+ 1 maximal orders containing Λ⊗ Zq are exactly the vertices on the path from O to O′.
If Λ ⊗ Zq is Bass but not Eichler, then there are either 1 or 2 maximal orders containing
Λ ⊗ Zq by [Brz83, Proposition 3.1, Corollary 3.2, and Corollary 4.3], and they form a path
as well.

In [ES26, Algorithm 8.1], when the input order is Bass, one can find End(E)⊗ Zq with a
binary search on orders in the path. In this case, one can find End(E) ⊗ Zq in O(log2(e))
applications of the division algorithm, which is an improvement on O(eq) applications in the
non-Bass case.
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For some large primes p and orders generated by 100 pairs of noncommuting endomor-
phisms in a specific cycle-finding algorithm in 2-isogeny graph for characteristic p, [EHL+20,
Section 5.3] summarizes the number of those orders which are Bass. This project would be
to generate more data and try to prove that a certain proportion of orders generated will be
Bass. In [FIK+25], another case is considered where a Bass order is created using inseparable
endomorphisms, but we would like to focus on using separable endomorphisms.
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