
PAWS 2024: LOCAL FIELDS

PROBLEM SET 5

JACKSYN BAKEBERG, THOMAS BROWNING, ANNA DIETRICH, SIDNEY WASHBURN

The goal for the exercises in Problem Set 5 is to study ramification of extensions of local fields and discover
some cool applications of the things that we have learned throughout this course. Note that some of the
problems require prior knowledge of Galois theory — if you are looking for what to study next, that is a
great choice! The problems that use Galois theory are marked with a star.

Beginner

Problem 1. Let ζ be a p-th root of unity and let L = Qp(ζ). Use the identity

1− ζi = (1− ζ)(1 + ζ + · · ·+ ζi−1)

to show that
vL(1− ζi) ≤ vL(1− ζ)

for 1 ≤ i ≤ p− 1. By applying this inequality to different ζ and i, deduce the opposite inequality

vL(1− ζ) ≤ vL(1− ζi).

Problem 2. Find all of the quadratic extensions of Q2, up to isomorphism.

Problem 3.

(1) Show that 16 is not an 8-th power in Q2, but is an 8-th power in Qp for all odd primes p.
Hint : Factor the polynomial x8 − 16.

(2) Show that 16 is not an 8-th power in Q(
√
7) but is an 8-th power in Qp(

√
7) for all primes p.

Problem 4.

(1) Show that Q3(
√
−1) contains µ8.

Hint : Use Proposition 3.3.1 from the lecture notes.
(2) Show that the minimal polynomial of ζ8 over Q3 is (X − ζ8)(X − ζ38 ).

Hint : Show that the minimal polynomial must be of the form (X−ζ8)(X−ζℓ8) for some ℓ ∈ {3, 5, 7},
and use the fact that the coefficients of the minimal polynomial must lie in Q3.

Problem 5. Prove the multiplicativity of the ramification index and residue field degree. That is, prove
that for any extensions M/L/K, we have

e(M/K) = e(M/L)e(L/K) and f(M/K) = f(M/L)f(L/K).

Problem 6. (Serre Local Fields #4 p. 72)
Let K be a local field with residue characteristic p. Let π ∈ K be a uniformizer. Suppose that K contains

a primitive p-th root of unity. Let L = K(α) where α is a root of the polynomial Xp − π. What is the
ramification index of L/K?

Problem 7. Choose your favorite prime number p and use the LMFDB’s database of p-adic fields to find
a tower of fields

Qp ⊊ M ⊊ L ⊊ K

where M/Qp is unramified, L/M is totally ramified of degree prime to p, and K/L is totally ramified whose
degree is a power of p. Give the defining polynomial for K/Qp, and the Eisenstein polynomial defining the
extension K/M .
Access to LMFDB: https://www.lmfdb.org/padicField/
Remark: L is the maximal tamely ramified extension of K, which we will not define here.
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Intermediate

Problem 8. Recall that a polynomial f(x) = anx
n + . . .+ a1x+ a0 over a complete non-archimedean local

field K is called Eisenstein if vK(an) = 0, vK(ai) > 0, and vK(a0) = 1 (see Problem Set 4 Exercise 7 for a
problem about Eisenstein polynomials and Newton Polygons). Suppose that L/K is a finite extension.

(1) Suppose that L = K[r], where r is a root of an Eisenstein polynomial.
(a) Show that if vL is the extension of vK , then vL(r) = 1/n.
(b) Use part (a) to argue that L must be totally ramified over K.

Hint : What is an upper and lower bound for the ramification index of L/K?
(2) Now, suppose that L is a totally ramified extension of K, and [L : K] = n.

(a) Suppose that r is a generator of the maximal ideal in the ring of integers of L. Explain why
vL(r) = 1/n.

(b) Show that if

an−1r
n−1 + . . .+ a1r + a0 = 0

with ai ∈ K, then ai = 0 for all i. Conclude that L = K[r].
(c) Show that the set {1, r, r2, . . . rn} is linearly dependent over K. Prove that the resulting relation

b0 + b1r + . . .+ bnr
n = 0

is given by an Eisenstein polynomial.

Problem 9. Use problem 8 and Krasner’s lemma to prove that there are finitely many totally ramified
extensions of degree n of a p-adic field K. Prove that there are finitely many unramified extensions of degree
n. Conclude Qp has only finitely many extensions of degree n.

Problem 10*. Prove that if K/Qp is a finite unramified extension, then K is Galois over Qp.
Hint : The extension of residue fields is Galois. Apply Hensel’s lemma to lift roots of a minimal polynomial.

Problem 11*. Let L/K be a Galois extension of local fields. There is a natural map

Gal(L/K) → Gal(κL/κK),

since the elements of Gal(L/K) fix the maximal ideal of OK . The kernel of this map is called the inertia
group of L/K. Let Kur be the maximal unramified extension of K. Show that the inertia subgroup I(L/K)
is equal to Gal(L/Kur).

Problem 12. (Serre Local Fields #5 p. 72) Let K/Qp be a finite extension of ramification index e and
choose an element y ∈ K of valuation −1. Show that the Artin-Schreier polynomial

f(X) = Xp −X − y

is irreducible over K, and defines an extension L/K of degree p.
Hint : If L = K(x), use Hensel’s lemma to show that the other roots of f(X) lie in L and have the form
x+ zi, i = 0, . . . , p− 1 where zi ∈ OL and zi ≡ i mod pL.

Problem 13*. In this problem we will study the extension Q3(
8
√
−9)/Q3.

(1) Show that Q3(
8
√
−9) contains Q3(

√
−1). Use problem 4 to conclude that Q3(

8
√
−9) contains µ8.

(2) Show that the extension Q3(
8
√
−9)/Q3 is Galois.

(3) In this part, we will show that the extension Q3(
8
√
−9) has degree 8 by showing that the polynomial

f(X) = X8 + 9 is irreducible over Q3.
(a) For p ∈ Q3[X], let p∗(X) = (−1)deg pp(−X). Verify that (p∗)∗ = p, that (pq)∗ = p∗q∗, and that

p∗ is monic ⇐⇒ p is monic,

p∗ is irreducible ⇐⇒ p is irreducible.

(b) Suppose that p∗ = p. By considering the factorization of p into monic irreducible polynomials
over Q3, show that we can factor p = gg∗h1 · · ·hk where g, h1, . . . , hk ∈ Q3[X] are monic and
where each hi is irreducible and satisfies hi = h∗

i .
(c) Suppose that p(X) = q(X2) with q irreducible. Show that if p is not irreducible then we can

factor p = gg∗ where g ∈ Q3[X] is monic.
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(d) Show that X2 + 9 is irreducible over Q3.
(e) Use part (c) to show that X4 + 9 is irreducible over Q3.
(f) Use part (c) to show that X8 + 9 is irreducible over Q3.

(4) In this part, we will show that the Galois group G = Gal(Q3(
8
√
−9)/Q3) is isomorphic to the

quaternion group Q8 = {±1,±i,±j,±k}.
(a) Show that the elements of G are σk(

8
√
−9) = ζk8

8
√
−9 for k ∈ Z/8Z.

(b) By considering the action of σk on
√
−9 = 8

√
−9

4
, show that if k is even, then σk acts trivially

on Q3(µ8), and if k is odd, then σk acts nontrivially on Q3(µ8).
(c) Use problem 4 to deduce that

σk(ζ8) =

{
ζ8 if k is even,

ζ38 if k is odd.

(d) Show that G ∼= Q8.
(5) Determine the intermediate fields of the extension Q3(

8
√
−9)/Q3.

Hint : Use the Galois correspondence and our knowledge of quadratic extensions of Q3.
(6) Determine the ramification indices and inertia degrees in this lattice of intermediate fields.
(7) Determine the inertia subgroup of the extension Q3(

8
√
−9)/Q3.

Advanced

Problem 14*.

(1) Construct a tower of Galois extensions · · · /K2/K1/Q with Gal(Kn/Q) ∼= Z/pnZ.
Hint : Look at subfields of Q(ζpk).
In this case, we say that the compositum K =

⋃
n Kn is Galois over Q with Galois group Zp.

(2) If you know some infinite Galois theory, compute Gal(Q(ζp∞)/Q) and use infinite Galois theory to
construct an extension K/Q with Gal(K/Q) ∼= Zp.
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