
PAWS 2024: LOCAL FIELDS

PROBLEM SET 4

JACKSYN BAKEBERG, THOMAS BROWNING, ANNA DIETRICH, SIDNEY WASHBURN

The goal for the exercises in Problem Set 4 is to give you some time to practice with the tools and ideas
we used to classify non-archimedean fields. The exercises are organized into beginner, intermediate, and
advanced sections. We also included a bonus section that has some problems from commutative algebra that
are related to the proof of Proposition 4.3.7 in the course notes. As always, choose the problems that feel
the most interesting to you!

Beginner

Problem 1. Let L = K(α) be a finite extension of fields of degree n. Show that if α has minimal polynomial
xn + an−1x

n−1 + · · ·+ a1x+ a0, then NL/K(α) = (−1)na0.

Hint : Use the basis 1, α, α2, . . . , αn−1.

Problem 2. Let K be a field of characteristic 0.

(1) Show that if m is odd, then K(ζ2m) = K(ζm).
(2) Show that K(ζ3) = K(

√
−3) and K(ζ4) = K(

√
−1).

(3) What is the minimal polynomial of ζ5 over Q?
(4) What is the degree [Q(ζ5) : Q] of the extension Q(ζ5)/Q?

Problem 3. Consider the fields K = Qp and L = Qp( 3
√
p).

(1) Calculate vL( 3
√
p), where vL(α) =

1
nvK(NL/K(α)).

(2) Calculate the normalized valuation vpL
( 3
√
p).

Hint : See the conventions warning on page 25 of the course notes.
(3) Use this to show that the normalization of an extension of a valuation is not necessarily the extension

of the normalization of the valuation.

Problem 4. Let A be a ring, and B be a subring of A. An element a ∈ A is integral over B if a is a root of
a monic polynomial over B. The subring of A containing all elements integral over B is called the integral
closure of B in A. If A is equal to this integral closure, then A is called integral over B.

(1) Let R,S, and T be rings such that R ⊆ S ⊆ T . If T is integral over R, prove that S is integral over
R, and that T is integral over S.

(2) Suppose that R ⊆ S are integral domains, and S is integral over R. Show that R is a field if and
only if S is a field.

(3) Let R ⊆ S be rings such that S \R is closed under multiplication. Show that R is integrally closed
in S.

Problem 5.

(1) Show that
√
2,

√
3, and

√
2+

√
3 are integral over Z by writing explicit monic polynomials that they

satisfy.
(2) The trace map TrL/K : L → K is the trace of the matrix corresponding to the K-linear map on

L defined by multiplication by α ∈ L. Let L = Q[
√
d]. Suppose that α = a + b

√
d ∈ OL, where

a, b ∈ Q. Compute TrK/Q(α) and NK/Q(α).

(3) Show that Z[
√
−3] is integral over Z, but it is not the integral closure of Z in Q(

√
−3). What is the

integral closure of Z in Q(
√
−3)?
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Problem 6. Let K be a non-archimedean local field and let L/K be a degree n extension, endowed with

the absolute value |γ|L = |NL/K(γ)|1/nK . Show that |γ|L ≤ 1 if and only if NL/K(γ) is in the integral closure
A of OK in L.

Problem 7. For any natural number n, prove that
νp(n)

n− 1
≤ 1

p− 1
and νp(n!) =

1
p−1

∑r
i=0 ai(p

i− 1), where

n =
∑r
i=0 aip

i with 0 ≤ ai ≤ p− 1.

Problem 8. Prove that if νp(x) > 0, then

∣∣∣∣xnn
∣∣∣∣
p

→ 0 as n→ ∞.

Intermediate

Problem 9. Prove that U (1) := {x ∈ K | |x − 1| < 1} has the structure of a Zp-module by defining for

a ∈ Zp and x ∈ U (1), define xa := limn→∞ xan , where an is any sequence of rational integers converging to
a.

Problem 10. Describe the structure of the multiplicative groups Q×
3 , Q3(i)

× and Q3(
√
3)×.

Problem 11. Classify all continuous group homomorphisms χ : Q×
p → C×.

Problem 12.

(1) Define a measure µ× on Q×
p by

dµ×(α) =
dµ(α)

|α|
where µ is the measure on Qp from Problem Set 3, restricted to the subset Q×

p ⊂ Qp.
Show that µ× is multiplication-invariant, i.e.

µ×(xA) = µ×(A).

(2) Compute µ×(Z×
p ) and µ×(1 + pnZp).

(3) For a function f : Qp → C and a continuous group homomorphism χ : Q×
p → C×, define the

zeta-function

ζ(f, χ) :=

∫
Q×

p

f(α)χ(α)dµ×(α).

Compute ζ(fn, χs) where fn(x) = IpnZp
and χs(x) = |x|s for s ∈ C.

(4) Compute the ratio

γ :=
ζ(fn, χs)

ζ(f̂n, χ1−s)
.

where f̂n is the Fourier transform of fn.
On which parameters (e.g. n, s) does γ depend?

Advanced

Problem 13. In this problem we will show that Fp((t))× ∼= Z⊕ Z/(p− 1)Z⊕ ZN
p .

(1) Show that gn(a) = (1 + tn)a defines a function gn : Zp → U (n).

(2) Show that U (nps) = gn(p
sZp)U (nps+1).

(3) Show that a /∈ pZp ⇐⇒ gn(p
sa) /∈ U (nps+1).

(4) Show that

g =
∏

gcd(n,p)=1

gn

defines a function g : ZN
p → U (1).

(5) Use part (1) to show that g is surjective by showing that g(A) is dense and compact.
(6) Use part (2) to show that g is injective and deduce that U (1) ∼= ZN

p .

(7) Conclude that Fp((t))× ∼= Z⊕ Z/(p− 1)Z⊕ ZN
p .
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Bonus: Commutative Algebra

Problem 14. A short exact sequence of groups is a series of maps

1 G H F 1,
φ ψ

where φ is injective, ψ is surjective, and Im(φ) = ker(ψ).

(1) Show that if there is a short exact sequence as above, then F ∼= H/G.
(2) Suppose that G, H, and F are abelian. Show that the following are equivalent:

(a) There is a homomorphism θ : H → G such that θ ◦ φ is the identity on G.
(b) There is an isomorphism H ∼= G⊕ F .

Hint : Consider the maps G → G ⊕ F and G ⊕ F → F given by g 7→ (g, 0) and (g, f) 7→ f ,
respectively.

Problem 15. (Snake Lemma) Let R be a commutative ring (e.g., Zp).
(1) Show that if f : M → N is an R-module homomorphism then the sequence of R-modules

0 ker f M N coker f 0
f

is exact where coker f = N/ im f .
(2) Show that the blue commutative diagram of R-modules induces the red homomorphisms of R-

modules
0 kerα A A′ cokerα 0

0 kerβ B B′ cokerβ 0

α

f f ′

β

(3) Show that the blue commutative diagrams of R-modules with exact rows induce the red exact
sequences of R-modules

0 0 0

kerα kerβ ker γ

A B C

0 A′ B′ C ′

f

α

g

β γ

g f ′ g′

A B C 0

A′ B′ C ′

cokerα cokerβ coker γ

0 0 0

f

α

g

β

g

γ

f ′ g′

(4) Show that the blue commutative diagram of R-modules with exact rows induces the red exact
sequence of R-modules

0 0 0

0 ker f kerα kerβ ker γ

A B C 0

0 A′ B′ C ′

cokerα cokerβ coker γ coker g′ 0

0 0 0

δ

f

α

g

β γ

f ′ g′
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