PAWS 2024: LOCAL FIELDS
PROBLEM SET 3

JACKSYN BAKEBERG, THOMAS BROWNING, ANNA DIETRICH, SIDNEY WASHBURN

The goal for the exercises in Problem Set 3 is to give you a chance to practice using Hensel’s lemma as
well as explore other related ideas that were not introduced in the lecture. The problems are divided into
three parts: beginner, intermediate, and advanced. Some of the advanced problems require prior knowledge
of Galois theory, but all other problems should be entirely self-contained. There are many different ideas
introduced in this set, so have fun trying some new things out!

BEGINNER

Problem 1. Prove that Q, 2 Q, as fields for any p # ¢. Also prove Q, # R.
Hint: Roots of unity

Problem 2. Prove that (z* — 2)(2? — 17)(2? — 34) has a root in Z, for every prime p.

Problem 3. Show that the equation 3z3 + 4y® + 523 = 0 has nonzero solutions in R and in Q,, for every
prime p (however, it has no nonzero solution in Q, but this is much harder to prove).

Problem 4. The congruence 2° +6 = 0 (mod 131) has a root at =5 (mod 131). Use Hensel’s lemma to
find roots of 2% +6 =0 (131%) and 2 + 6 =0 (1313).

Hint: Use the explicit lifting formula given in problem 5.

INTERMEDIATE

Problem 5. Let f(z) be a polynomial with integer coefficients. Suppose that a is a root of f(x) = 0
(mod p) and that f’(a) # 0 (mod p). Let f'(a)~! denote the multiplicative inverse of f’(a) mod p. Show
that if a,, is a lift of a to a root of f(x) =0 (mod p™), then

Uni1 = an + D" (_f'(a)—1@>

pn
is a lift of a to a root of f(z) =0 (mod p*!).

Problem 6.

(1) Let p be an odd prime, and let f: Q, = Q, be a field automorphism.
(a) Let € Q,. Show that € Z, if and only if 1 + pz? is a square in Q.
(b) Show that f(Z,) = Z, and more generally f(p*Z,) = p*Z,.
(c) Show that f is continuous.
(d) Show that f is the identity map.
(2) Let f: Q2 — Q2 be a field automorphism.
(a) Let z € Qy. Show that z € Zs if and only if 1 + 822 is a square in Q.
(b) Show that f is the identity map.
(3) Let f: R — R be a field automorphism.
(a) Show that f(Rzo) = Rzo.
(b) Show that f is the identity map.



Problem 7. Let f(z) = a,a2™ + ... + ap be a polynomial over a valued field K with a non-archimedean
valuation v. The Newton polygon of f is defined as the lower convez hull of the points (i, v(a;)).

For example, suppose that f(z) = 52° 4+ 2% + 12522 + 3z + 25 € Q[z]. Then, the Newton polygon with
respect to H-adic valuation is the following:

Y

(2,3)

(0,2)

/ (5.1)

(1,0) (3,0) (4,0)

(1) Draw the Newton polygon for f(z) = 2° + 122* + 52° + 2722 4 8z + 3 with respect to 2-adic, 3-adic,
and 5-adic valuations.

Newton polygons are useful when trying to determine whether a polynomial is irreducible or not. In fact,
the valuations of the roots of a polynomial are entirely determined by the behavior of the Newton polygon.
Suppose that m; are the slopes of each of the lines in the Newton polygon, and p; is the length of the
projection of that line to the xz-axis. Then, f has p; roots of valuation —m,; in an algebraic closure of K.

(2) Find two monic polynomials of degree 3 in Q5[z] with the same Newton polygon, but where one is
irreducible and the other not.

(3) A polynomial f(z) = ana™ + ...+ ag € Zylx] is an Eisenstein polynomial if v(a,) = 0, v(a;) > 0
fori=1,...,n—1, and v(ag) = 1. Show that an Eisenstein polynomial is irreducible over Q, using
Newton polygons.

A quadratic form in n variables over a ring R is a function f : R® — R that can be written as f(r) = 27 Ax
for some symmetric matrix A € M,,x,(R). A is called the Gram matrix of f. We say that two quadratic
forms f and g are equivalent over R if there exists an invertible matrix U € GL,,(R) so that f(z) = g(Uz).
A quadratic form f is called isotropic if f represents 0 non-trivially (i.e. there exists « # 0 so that f(z) = 0).

Problem 8. Prove the “Weak Hasse Principle” for binary quadratic forms: If f is a rational binary (2
variable) quadratic form which is isotropic in Q,, for all p (including p = oo [i.e. R]), then f is isotropic over

Q.

Problem 9. Let p be an odd prime. Let f and g be quadratic forms with coefficients in Z,. Show that if
the coefficients of f and g are sufficiently close, then f and g are equivalent over Z,. Follow the steps below:
(1) Let F and G be the Gram matrices of f and g respectively. We are looking for invertible U so that
UTFU = G. Let d = v,(det(F)). Consider (I +S)TF(I+S) with § = 2F~1(G — F). Prove that if
G = F mod p*, where > d+ 1, then S = 0 mod p+—?.
(2) Put Fy = (I + S)TF(I + S) and conclude G — F; = 0 mod p*~<. Now induct to construct U.
(3) Extra: Adapt the proof above to p = 2.

Problem 10. Prove the strong version of Hensel’s Lemma in Z,,: Let f € Zy[z] and ag € Z, so that | f(ag)| <
|f'(ao)|?>. Then the sequence ani1 = a, — f(an)/f'(a,) converges to a root a € Z, of f. Furthermore,
o — a0l < [f(a0)/f'(a0)?| < 1.
Hints:
(1) Put ¢ = |f(ao)/f'(a0)?| < 1. Prove that |a,| < 1, |a, — ag| < ¢ using induction, and that
[f(an)/f'(an)?] < .
(2) For the third claim, apply the order 2 Taylor expansion to a,1. Also consider the Taylor expansion

on f'(an41)-
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Problem 11.

(1) Show there exists a non-trivial map A : Q, — R/Z such that
(i) A(z) is a rational number with only a p-power in its denominator;
(ii) A(x) — x is a p-adic integer; and
(iii) Az +vy) = A(z) + A(y).
(2) Define A : Q, — C* by A(z) = €2, This is a homomorphism on the additive group of Q,.
What is the kernel of A?
(3) We can define a measure p on Q, such that
(i) #(Z,) = 1 and
(ii) for every measurable set A and z € Q,, we have u(z + A) = p(A) (i.e. the measure is
translation-invariant).
Using these properties, compute p(p™Z,). More generally, compute p(aZ,) for any o € Q,.
(4) For a function f : Q, — C, define the Fourier transform of f to be

~

fly) = A f(@)A(zy)du(z).
Compute the Fourier transform of the indicator function
1 xepZy,
0 else.

f(z) = ]Ip"Zp(m) = {

Hint: you will need to show the following very useful trick: on a compact group endowed with a
translation-invariant measure, if A : K — C* is a homomorphism, then

_Ju(K) A trivial;
/K Ma)dp(z) = {0 else.

First try to show this when K is a finite group endowed with the counting measure.

ADVANCED

Problem 12. Fix a prime number p.

(1) Let Xy, X1, ... be an indeterminates, and let W,, = Xgn +prWl + .-+ p"X,, n>0. Show that
there exist polynomials S, S1,... and Py, Py, ... in Z[X, X1, ...; Yy, Y1,...] such that

W, (S0, S1,...) = Wp(Xo, X1,...) + Wo (Yo, Y1,...),
Wo(Po, Pi,...) = Wn(Xo, X1,...) - Wn(Yo, Y,...).
(2) Let R be a commutative ring. For a = (ag,a1,...) and b = (bg, b1, ...) where a;,b; € R, define
a+b=(So(a,b),S1(a,b),...), a-b=(Py(a,b),Pi(a,b),...).
Show that with these operations the sequences a = (ag, a1, ...) form a commutative ring with unit
W (R). This is called the ring of Witt vectors over R.
(3) Assume pR = 0 (for example, R = F,). For every Witt vector a = (ag,a1,...) € W(R), consider the
“ghost components”
a(n) = Wn(a) = ap" eraf”*l + +pnan
as well as the two mappings V, F': W(R) — W(R) defined by
Va=(0,a0,a1,...) and Fa=(af,dl,...)
(these are called Verschiebung and Frobenius). Show that
(Va)™ =pa™' and o™ = (Fa)™ + p"a,.
(4) Let k be a field of characteristic p. Show that V' is a homomorphism on the additive group of W (k)
and F' is a ring homomorphism, and that
VFa=FVa=pa.
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(5) If k is a perfect field of characteristic p, show that W (k) is a complete discrete valuation ring with
residue field k. What is the characteristic of W (k)?
(6) Describe W (F,).

Problem 13. In this problem, we will prove Krasner’s lemma and look at an application.

(1) Let K be a complete non-archimedean field and let K3 be the separable closure of K. Given
x € K°P let zo,...,z, € K°P be the Galois conjugates of = over K.
(a) Show that for all &« € K*°P and o € Gal(K*P/K), |o(a)| = |af.
(b) Let y € K°°P. Show that if |y — x| < |y — ;| for all i = 2,...,n, then K(x) C K(y).
Hint: Consider the extension K (x,y)/K(y). Apply Part (a) to y — x.
Prove that the following are equivalent for a valued field (K, v):
(a) Hensel’s Lemma
(b) Krasner’s Lemma
(¢) Every monic polynomial f(z) = 2™ + ...+ c12 + ¢o € Ok|[z] with ¢,—1 # 0 and ¢; = 0 for all
i #n — 1 has a linear factor z + ¢ in O with ¢ =¢,_.
(3) Use Krasner’s lemma to prove that C,, the completion of the algebraic closure of Q,, is algebraically
closed.

(2)

Hint: The roots of a separable, monic polynomial are a continuous function of the coefficients. You
may use that the algebraic closure of Q,, is dense in C,,.



