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PROBLEM SET 3

JACKSYN BAKEBERG, THOMAS BROWNING, ANNA DIETRICH, SIDNEY WASHBURN

The goal for the exercises in Problem Set 3 is to give you a chance to practice using Hensel’s lemma as
well as explore other related ideas that were not introduced in the lecture. The problems are divided into
three parts: beginner, intermediate, and advanced. Some of the advanced problems require prior knowledge
of Galois theory, but all other problems should be entirely self-contained. There are many different ideas
introduced in this set, so have fun trying some new things out!

Beginner

Problem 1. Prove that Qp ̸∼= Qq as fields for any p ̸= q. Also prove Qp ̸∼= R.
Hint : Roots of unity

Problem 2. Prove that (x2 − 2)(x2 − 17)(x2 − 34) has a root in Zp for every prime p.

Problem 3. Show that the equation 3x3 + 4y3 + 5z3 = 0 has nonzero solutions in R and in Qp for every
prime p (however, it has no nonzero solution in Q, but this is much harder to prove).

Problem 4. The congruence x3 + 6 ≡ 0 (mod 131) has a root at x ≡ 5 (mod 131). Use Hensel’s lemma to
find roots of x3 + 6 ≡ 0 (1312) and x3 + 6 ≡ 0 (1313).

Hint : Use the explicit lifting formula given in problem 5.

Intermediate

Problem 5. Let f(x) be a polynomial with integer coefficients. Suppose that a is a root of f(x) ≡ 0
(mod p) and that f ′(a) ̸≡ 0 (mod p). Let f ′(a)−1 denote the multiplicative inverse of f ′(a) mod p. Show
that if an is a lift of a to a root of f(x) ≡ 0 (mod pn), then

an+1 = an + pn
(
−f ′(a)−1 f(a)

pn

)
is a lift of a to a root of f(x) ≡ 0 (mod pn+1).

Problem 6.

(1) Let p be an odd prime, and let f : Qp → Qp be a field automorphism.
(a) Let x ∈ Qp. Show that x ∈ Zp if and only if 1 + px2 is a square in Qp.
(b) Show that f(Zp) = Zp and more generally f(pkZp) = pkZp.
(c) Show that f is continuous.
(d) Show that f is the identity map.

(2) Let f : Q2 → Q2 be a field automorphism.
(a) Let x ∈ Q2. Show that x ∈ Z2 if and only if 1 + 8x2 is a square in Q2.
(b) Show that f is the identity map.

(3) Let f : R → R be a field automorphism.
(a) Show that f(R≥0) = R≥0.
(b) Show that f is the identity map.
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Problem 7. Let f(x) = anx
n + . . . + a0 be a polynomial over a valued field K with a non-archimedean

valuation v. The Newton polygon of f is defined as the lower convex hull of the points (i, v(ai)).
For example, suppose that f(x) = 5x5 + x3 + 125x2 + 3x + 25 ∈ Q[x]. Then, the Newton polygon with

respect to 5-adic valuation is the following:

x

y

(5, 1)

(3, 0) (4, 0)

(2, 3)

(1, 0)

(0, 2)

(1) Draw the Newton polygon for f(x) = x5 +12x4 +5x3 +27x2 +8x+3 with respect to 2-adic, 3-adic,
and 5-adic valuations.

Newton polygons are useful when trying to determine whether a polynomial is irreducible or not. In fact,
the valuations of the roots of a polynomial are entirely determined by the behavior of the Newton polygon.
Suppose that mi are the slopes of each of the lines in the Newton polygon, and pi is the length of the
projection of that line to the x-axis. Then, f has pi roots of valuation −mi in an algebraic closure of K.

(2) Find two monic polynomials of degree 3 in Q5[x] with the same Newton polygon, but where one is
irreducible and the other not.

(3) A polynomial f(x) = anx
n + . . . + a0 ∈ Zp[x] is an Eisenstein polynomial if v(an) = 0, v(ai) > 0

for i = 1, . . . , n− 1, and v(a0) = 1. Show that an Eisenstein polynomial is irreducible over Qp using
Newton polygons.

A quadratic form in n variables over a ring R is a function f : Rn → R that can be written as f(x) = xTAx
for some symmetric matrix A ∈ Mn×n(R). A is called the Gram matrix of f . We say that two quadratic
forms f and g are equivalent over R if there exists an invertible matrix U ∈ GLn(R) so that f(x) = g(Ux).
A quadratic form f is called isotropic if f represents 0 non-trivially (i.e. there exists x ̸= 0 so that f(x) = 0).

Problem 8. Prove the “Weak Hasse Principle” for binary quadratic forms: If f is a rational binary (2
variable) quadratic form which is isotropic in Qp for all p (including p = ∞ [i.e. R]), then f is isotropic over
Q.

Problem 9. Let p be an odd prime. Let f and g be quadratic forms with coefficients in Zp. Show that if
the coefficients of f and g are sufficiently close, then f and g are equivalent over Zp. Follow the steps below:

(1) Let F and G be the Gram matrices of f and g respectively. We are looking for invertible U so that
UTFU = G. Let d = νp(det(F )). Consider (I + S)TF (I + S) with S = 1

2F
−1(G−F ). Prove that if

G = F mod pµ, where µ ≥ d+ 1, then S = 0 mod pµ−d.
(2) Put F1 = (I + S)TF (I + S) and conclude G− F1 = 0 mod p2µ−d. Now induct to construct U .
(3) Extra: Adapt the proof above to p = 2.

Problem 10. Prove the strong version of Hensel’s Lemma in Zp: Let f ∈ Zp[x] and a0 ∈ Zp so that |f(a0)| <
|f ′(a0)|2. Then the sequence an+1 = an − f(an)/f

′(an) converges to a root α ∈ Zp of f . Furthermore,
|α− a0| ≤ |f(a0)/f ′(a0)

2| < 1.

Hints:

(1) Put c = |f(a0)/f ′(a0)
2| < 1. Prove that |an| ≤ 1, |an − a0| ≤ c using induction, and that

|f(an)/f ′(an)
2| ≤ c2

n

.
(2) For the third claim, apply the order 2 Taylor expansion to an+1. Also consider the Taylor expansion

on f ′(an+1).
2



Problem 11.

(1) Show there exists a non-trivial map λ : Qp → R/Z such that
(i) λ(x) is a rational number with only a p-power in its denominator;
(ii) λ(x)− x is a p-adic integer; and
(iii) λ(x+ y) = λ(x) + λ(y).

(2) Define Λ : Qp → C× by Λ(x) = e2πiλ(x). This is a homomorphism on the additive group of Qp.
What is the kernel of Λ?

(3) We can define a measure µ on Qp such that
(i) µ(Zp) = 1 and
(ii) for every measurable set A and x ∈ Qp, we have µ(x + A) = µ(A) (i.e. the measure is

translation-invariant).
Using these properties, compute µ(pnZp). More generally, compute µ(αZp) for any α ∈ Qp.

(4) For a function f : Qp → C, define the Fourier transform of f to be

f̂(y) =

∫
Qp

f(x)Λ(xy)dµ(x).

Compute the Fourier transform of the indicator function

f(x) = IpnZp
(x) =

{
1 x ∈ pnZp,

0 else.

Hint: you will need to show the following very useful trick: on a compact group endowed with a
translation-invariant measure, if Λ : K → C× is a homomorphism, then∫

K

Λ(x)dµ(x) =

{
µ(K) Λ trivial;

0 else.

First try to show this when K is a finite group endowed with the counting measure.

Advanced

Problem 12. Fix a prime number p.

(1) Let X0, X1, . . . be an indeterminates, and let Wn = Xpn

0 + pXpn−1

1 + · · ·+ pnXn, n ≥ 0. Show that
there exist polynomials S0, S1, . . . and P0, P1, . . . in Z[X0, X1, . . . ;Y0, Y1, . . .] such that

Wn(S0, S1, . . .) = Wn(X0, X1, . . .) +Wn(Y0, Y1, . . .),

Wn(P0, P1, . . .) = Wn(X0, X1, . . .) ·Wn(Y0, Y1, . . .).

(2) Let R be a commutative ring. For a = (a0, a1, . . .) and b = (b0, b1, . . .) where ai, bi ∈ R, define

a+ b = (S0(a, b), S1(a, b), . . .), a · b = (P0(a, b), P1(a, b), . . .).

Show that with these operations the sequences a = (a0, a1, . . .) form a commutative ring with unit
W (R). This is called the ring of Witt vectors over R.

(3) Assume pR = 0 (for example, R = Fp). For every Witt vector a = (a0, a1, . . .) ∈ W (R), consider the
“ghost components”

a(n) = Wn(a) = ap
n

0 + pap
n−1

1 + · · ·+ pnan

as well as the two mappings V, F : W (R) → W (R) defined by

V a = (0, a0, a1, . . .) and Fa = (ap0, a
p
1, . . .)

(these are called Verschiebung and Frobenius). Show that

(V a)(n) = pan−1 and a(n) = (Fa)(n) + pnan.

(4) Let k be a field of characteristic p. Show that V is a homomorphism on the additive group of W (k)
and F is a ring homomorphism, and that

V Fa = FV a = pa.
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(5) If k is a perfect field of characteristic p, show that W (k) is a complete discrete valuation ring with
residue field k. What is the characteristic of W (k)?

(6) Describe W (Fp).

Problem 13. In this problem, we will prove Krasner’s lemma and look at an application.

(1) Let K be a complete non-archimedean field and let Ksep be the separable closure of K. Given
x ∈ Ksep, let x2, . . . , xn ∈ Ksep be the Galois conjugates of x over K.
(a) Show that for all α ∈ Ksep and σ ∈ Gal(Ksep/K), |σ(α)| = |α|.
(b) Let y ∈ Ksep. Show that if |y − x| < |y − xi| for all i = 2, . . . , n, then K(x) ⊆ K(y).

Hint : Consider the extension K(x, y)/K(y). Apply Part (a) to y − x.
(2) Prove that the following are equivalent for a valued field (K, v):

(a) Hensel’s Lemma
(b) Krasner’s Lemma
(c) Every monic polynomial f(x) = xn + . . . + c1x + c0 ∈ OK [x] with cn−1 ̸= 0 and ci = 0 for all

i ̸= n− 1 has a linear factor x+ c in OK with c = cn−1.
(3) Use Krasner’s lemma to prove that Cp, the completion of the algebraic closure of Qp, is algebraically

closed.

Hint : The roots of a separable, monic polynomial are a continuous function of the coefficients. You
may use that the algebraic closure of Qp is dense in Cp.
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