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PROBLEM SET 0

JACKSYN BAKEBERG, THOMAS BROWNING, ANNA DIETRICH, SIDNEY WASHBURN

Welcome to PAWS! Below are the exercises for Problem Set 0, which are intended to provide some
background on common vocabulary and notation that will be used in this course. The exercises are organized
into review problems and advanced problems. You are absolutely not obligated (or expected) to finish all
of these problems before our first meeting, but we recommend that you at least attempt the problems in
the review section if you have not seen the material before. Most importantly, work on the problems that
interest you!

Review Problems

Problem 1. Let x1, x2, . . . be elements of R. We call (xn) a sequence and say that the sequence (xn)
converges to a real number L if for every ε > 0, there exists an integer N such that |xn − L| < ε for all
n ≥ N .

(1) Suppose that a sequence (xn) converges to x and also converges to y. Show that x = y.
(2) Suppose that a sequence (xn) converges to x and a sequence (yn) converges to y. Show that the

sequence (xn + yn) converges to x+ y. Show that (xnyn) converges to xy as well.

Problem 2. A subset S ⊆ R is said to be open if for all x ∈ S, there exists an “open ball”

B(x, r) = {y ∈ R : |x− y| < ε}

contained in S. A subset S is said to be closed if its complement Sc is open.

(1) Let a < b be real numbers. Show that the interval (a, b) is open but not closed, that [a, b] is closed
but not open, and that [a, b) and (a, b] are neither open nor closed.

(2) Show that an arbitrary union of open sets is open. Give an example where an arbitrary intersection
of open sets is not open.

(3) Show that a subset U is closed if and only if the limit points of all convergent sequences in U are
contained in U .

Problem 3. The field Q(i) consists of all complex numbers a+ bi with a, b ∈ Q.

(1) Compute (1 + i)−1.
(2) Show that for any nonzero element a+ bi ∈ Q(i), the inverse (a+ bi)−1 indeed lies in Q(i).

Problem 4. One definition of characteristic can be stated with the notion of additive order. If F is a field,
and a ∈ F , then the additive order of a is the smallest integer n such that na is equal to 0. The characteristic
of a field char(F ) is 0 if the additive order of every nonzero element of F is infinite, and is 0 < p < ∞ if the
additive order of every nonzero element is p. If char(F ) = p > 0, then F has finite characteristic.

(1) Show that if char(F ) = p > 0, then p must be prime.
(2) Show that Z /pZ (the integers modulo p, also called Fp) is a field of characteristic p.
(3) Show that if char(F ) = p > 0, then Fp embeds into F .
(4) Show that if F is a finite field containing a subfield K with p elements, then F has pm elements,

with m = [F : K] (the degree of F as a vector space over K).
(5) Give an example of an infinite field with finite characteristic.
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Problem 5. In a domain R (a ring with no zero-divisors), an element x ∈ R is prime if x | ab implies x | a
or x | b, for any a, b ∈ R. An element x ∈ R is irreducible if x cannot be expressed as the product of two
non-units in R.

(1) Prove that if x ∈ R is prime, then x is irreducible.

A domain R is a unique factorization domain (abbreviated UFD) if every non-zero element x ∈ R can be
expressed as a product x = u · pe11 · · · perr , where u is a unit and each pi is irreducible, and the pi are unique
up to permutation and rescaling by a unit.

(2) The ring R = Z[i] happens to be a UFD. Factor 2, 3, and 5 in R.

Hint : Any factorization must be into elements of smaller absolute value.

Although there are domains that are not UFDs, this lecture series will only focus on rings that are UFDs.
And in a UFD, irreducible elements are prime, so we won’t have to worry about the distinction between
primes and irreducibles.

Problem 6. A domain R is a principal ideal domain (abbreviated PID) if every ideal of R is principal. All
PIDs are also UFDs. The rings Z, Z[i], and Fq[t] are all examples of PIDs and are thus UFDs.

Prove that if R is a PID, then a principal ideal (x) is maximal if and only if x is irreducible.

Problem 7. Given a domain R, the fraction field of R is the set of symbols of the form a/b, where a, b ∈ R,
b ̸= 0. Two fractions a/b and c/d are declared equal if ad = bc. Formally, if F denotes the fraction field,
then F = (R× (R− {0}))/ ∼, where (a, b) ∼ (c, d) ⇐⇒ ad = bc.

(1) We can equip F with an addition and multiplication law as follows: a/b + c/d := (ad + bc)/bd and
(a/b) · (c/d) := (ab)/(cd). Prove that the addition and multiplication laws are well-defined. (e.g.
show that if a/b ∼ a′/b′ and c/d ∼ c′/d′, then a/b+ c/d ∼ a′/b′ + c′/d′.)

(2) Prove that F is a ring.
(3) Prove that F is a field.
(4) What is the field of fractions of Z? Z[i]? Q[t]?
(5) Prove that if R is already a field, then R is isomorphic to its fraction field.

Problem 8. Suppose that R is a ring. A left R-module M is an abelian group M and a map R×M → M
such that for all r, s ∈ R and x, y ∈ M , the following properties hold:

(a) r(x+ y) = rx+ ry,
(b) (r + s)x = rx+ sx,
(c) (rs)x = r(sx), and
(d) 1(x) = x.

A right R-module can be defined similarly with a map M × R → M . Note that if R is commutative, then
right and left modules are the same. For this problem, you may assume that all rings are commutative.

(1) Let M be an R-module. Show that for all m ∈ M , 0(m) = 0, and −1(m) = −m.
(2) Show that R is a module over itself.
(3) Let I be an ideal of R. Show that I and R/I are R-modules.
(4) What is another name for a module over a field?

A module M is called finitely generated over R if it has a finite basis m1, . . . ,mk.

(5) Show that Q is not a finitely generated Z-module.
(6) Explain why being a Z-module means the same thing as being an Abelian group.

Problem 9. We can also define characteristic categorically. An object A in a category C is called initial if
there is a unique morphism A → B for all objects B in C.

(1) Show that Z is an initial object in the category of rings. In other words, show that for every ring R,
there is a unique ring homomorphism Z → R.

From part (1), there is a unique homomorphism τ : Z → F for all fields F . The characteristic of a field F is
then defined to be the non-negative generator of the ideal ker τ .

(2) Show that if char(F ) = 0, then Q embeds into F .
(3) Show that if k ⊂ K is a field extension, then char(k) = char(K).
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(4) Use the categorical definition of characteristic to show that char(F ) is either 0 or prime.

Advanced Problems

Problem 10. Prove the sum
∑

p 1/p diverges in the steps below. Note that this proof does not assume

there are infinitely primes in Z. Make sure to justify any operations you perform on infinite sums/products.

(1) Let p1, p2, ..., pℓ(n) be the primes less than n and put λ(n) =

ℓ(n)∏
i=1

1

(1− 1/pi)
. Prove

λ(n) =
∑

a1,...,aℓ≥0

1

pa1
1 · · · paℓ

ℓ

.

(2) Prove λ(n) → ∞ as n → ∞.
(3) Calculate that

log λ(n) =

(
ℓ∑

i=1

1/pi

)
+

ℓ∑
i=1

∑
m≥2

1/(mpmi ).

(4) Prove

log λ(n) <

(
ℓ∑

i=1

1/pi

)
+ 2

ℓ∑
i=1

p−2
i ,

and conclude
∑

p 1/p diverges.

(5) Adapt the proof above to prove that
∑

f 1/p
deg(f) diverges, where the sum runs over monic irreducible

polynomials in Fq[t].

Problem 11.

(1) Let X ⊆ R. Suppose that for every decreasing sequence of nonempty closed subsets

X ⊃ K1 ⊃ K2 ⊃ K3 ⊃ · · · ,
the intersection

⋂∞
n=1 Kn is nonempty. Show that every sequence (xn) in X has a convergent

subsequence.
(2) Is the converse true? Prove or disprove.

Problem 12. Throughout this problem, you may use the fact that F×
p is cyclic (isomorphic to the additive

group Z/(p− 1)Z).
(1) Fix an odd prime p. For a ∈ F×

p , define (a/p) := 1 if a is a square in Fp and (a/p) := −1 otherwise.

Prove that (·/p) : F×
p → {±1} is surjective homomorphism.

(2) Prove that there is only one surjective homomorphism F×
p → {±1}.

(3) Prove (a/p) ≡ a(p−1)/2 mod p.
(4) Prove that an odd prime p can be expressed as a sum of two integer squares iff p ≡ 1 modulo 4.

(Hint: Consider p as an element of Z[i] and the quotient Z[i]/(p)).
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