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Introduction

Many questions in number theory are motivated by studying the solutions of polynomial equations
with integer or rational coefficients. For example, consider the equation

x2 ´ 2y2 “ 5z2. (1)

By inspection, we can see that there are many real solutions—for example, p
?
5, 0, 1q—but we might

ask for solutions in which x, y, z are rational. It turns out that

x “ y “ z “ 0

is the only rational solution, as we can see by studying this equation modulo 5. Indeed, suppose
that we have a rational solution px, y, zq ‰ p0, 0, 0q to (1). Then, we can rescale x, y, z by a common
factor to obtain another solution, and thus, up to rescaling, we can assume that x, y, z are integers
with 5 ∤ gcdpx, y, zq. Moreover, we may assume that 5 ∤ y since if this were not the case, we would
also have 5 | x, which implies 52 | px2 ´ 2y2q, so that 5 | z as well. Thus, since we may assume the
residue class of y is invertible mod 5, any rational solution px, y, zq to (1) yields a non-zero solution
px, yq to the equation

x2y´2 ” 2 pmod 5q.

However, such a solution is impossible since 2 is not a quadratic residue modulo 5!
Now, we can rephrase what we’ve just shown as proving that (1) does not have any non-zero

solutions over the field of 5-adic numbers, denoted Q5. The field Q5 is an example of a local field,
and these types of fields are the focus of this mini-course. One key feature of Q5 is that studying
solutions of polynomial equations in Q5 can often be reduced to the solving congruence relations
modulo 5n for every integer n ě 1, and so, determining the existence of solutions over a local field
can be as straightforward as solving the equation over a finite field. In contrast, over a so-called
global field (such as the rational numbers), questions about solutions to polynomial equations can run
very deep. Local and global fields are related by the local-to-global principle, which states, roughly
speaking, that if a solution to an equation exists “everywhere locally,” then it exists “globally.” In
the example we considered above, this would mean that if (1) has a solution over Qp, for every
prime p, as well as over the real numbers R, then (1) has a solution over Q. Unfortunately, the
local-to-global principle only holds for a special class of degree 2 equations, and this result is known
as the Hasse–Minkowski Theorem. Nevertheless, the study of local solutions to polynomial equation
is often a key tool to the study of global solutions. In this course, we will start by introducing the
theory of local fields and their algebraic properties.
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Alice Pozzi for many insightful conversations during the process of writing these lecture notes, and I
thank Greg Knapp, Chathumini Kondasinghe, Jaclyn Lang, Sean O’Donnell, Nick Rome, Aniruddha
Sudarshan, and Ian Whitehead for helpful feedback on earlier versions of my notes and lectures.
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Lecture 1

One of the many useful properties of the real numbers R and the complex numbers C is that we
have a notion of size for elements in R or C. Specifically, for any real number x P R, we can define
the (real) absolute value of x by

|x|R “

#

x if x ě 0,

´x if x ă 0,
(1.1)

and for any complex number x “ a` bi, a, b P R, we can define the (complex) absolute value of x by

|x|C “
a

a2 ` b2.

In particular, you might notice that the restriction of | ¨ |C to R agrees with | ¨ |R. It turns out that
this notion of the size of an element, or more precisely, the notion of an absolute value on R or C, is
one of the key ideas that has allowed mathematicians to develop a robust analytic theory for R and
C. In this lecture, we explore how to generalize the notion of an absolute value and construct fields
that share some important properties with R or C but also have several different features.

1.1 Absolute values

We start with the following definition of an absolute value on a field K:

Definition 1.1.1. An absolute value (or multiplicative valuation) on a field K is a function

| ¨ | : K Ñ R

such that

(i) |x| ě 0, and |x| “ 0 if and only if x “ 0,

(ii) |xy| “ |x||y|,

(iii) |x ` y| ď |x| ` |y| (the triangle inequality).

If, in addition, we have

(iv) |x ` y| ď maxt|x|, |y|u (the strong triangle inequality),

the absolute value | ¨ | is called non-archimedean. Otherwise, | ¨ | is called archimedean.

When a field K is equipped with an absolute value, we call it a valued field. We start with several
examples of absolute values on the following fields:

• the field of rational numbers, Q “
␣

a
b

ˇ

ˇ a, b P Z and b ‰ 0
(

,

• the field of rational functions over a finite field, Fqptq “
␣ gptq
hptq

ˇ

ˇ gptq, hptq P Fqrts and hptq ‰ 0
(

,

• the field of Gaussian numbers, Qpiq “ ta ` bi | a, b P Qu.

Recall that the rings Z, Fqrts, and Zris are all unique factorization domains, meaning that in each
of these rings, we have a well-defined notion of unique factorization into irreducible elements. We
also recall that in a unique factorization domain, an element is irreducible if and only if it is prime.
These properties plays an important role when defining non-archimedean absolute values.
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Example 1.1.2. For any field K, the trivial absolute value is defined by

|x| “

#

0 if x “ 0,

1 if x ‰ 0.

Note that we largely omit this absolute value from our discussion.

Example 1.1.3. We give two types of absolute values on Q:

(1) The standard absolute value, denoted | ¨ |8, is defined by (1.1) restricted to Q.

(2) For a prime p, the p-adic absolute value is defined by

|x|p “

#

0 if x “ 0,
1
pm if x ‰ 0,

where we have expressed x P Qˆ as x “ pma
b for some a, b P Z with p ∤ ab.

Example 1.1.4. We give two types of absolute values on Fqptq:

(1) The degree absolute value on Fqptq is defined by

|f |8 “

#

0 if f “ 0,

q´pdeg h´deg gq if f ‰ 0,

where we have expressed fptq P Fqptqˆ as f “
g
h , for some g, h P krts, with h ‰ 0,

(2) For a monic irreducible polynomial pptq of degree d, the pptq-adic absolute value is defined by

|f |pptq “

#

0 if f “ 0,
1

qdm
if f ‰ 0,

where we have expressed fptq P Fqptqˆ as

fptq “ pptqm
gptq

hptq
,

for some gptq, hptq P Fqrts with pptq ∤ gptqhptq.

Example 1.1.5. If pK, | ¨ |q is a valued field, then pK, | ¨ |sq is a valued field for any s P Rą0.

Example 1.1.6. Let K be a field equipped with a non-archimedean absolute value | ¨ |. We can
extend the absolute value | ¨ | to the function field Kptq in a natural way by defining

∥ f ∥“ maxt|a0|, . . . , |an|u

for a polynomial fptq “ a0 ` a1t ` ¨ ¨ ¨ ` ant
n.

p‹q Example 1.1.7. We can check that 3 is a prime element in Zris, which allows us to write an

element a P Qpiqˆ as a “ 3m ¨ b1

c1 for some elements b1, c1 P Zris with 3 ∤ b1c1. Then we can define an
absolute value on Qpiq by

|x| “

#

0 if x “ 0,
1
3m if x ‰ 0,

and this absolute value agrees with | ¨ |3 when restricted to Q.
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p‹q Example 1.1.8. If we instead consider 5 as an element in Qpiq, we see that it factors as
5 “ p2 ` iqp2 ´ iq, and neither of the factors p2 ˘ iq is a unit in Zris. As such, we cannot adapt the
absolute value defined in Example 1.1.7 by replacing 3 with 5. (Exercise 1.1.9: Why not?)

However, we find that p2˘ iq P Zris are both prime elements, and there is no unit u P Zrisˆ with
p2` iq “ up2´ iq. So, for each choice of π “ p2˘ iq, we can write an element a P Qpiqˆ as a “ πm ¨ b

c
for some elements b, c P Zris with π ∤ bc. Then, we can define an absolute value on Qpiq by

|x|π “

#

0 if x “ 0,
1
5m if x ‰ 0.

We want to show that both of these choices of an absolute value on Qpiq agree with the 5-adic
absolute value when restricted to the rationals—that is, if x P Q, we have |x|5 “ |x|2˘i. Let

x “ 5m
b

c
“ p2 ` iqmp2 ´ iqm

b

c

with integers b, c such that 5 ∤ bc in Z. It suffices to show that p2 ˘ iq ∤ bc in Zris. Suppose for the
sake of a contradiction that p2 ˘ iq ¨ d “ bc for d P Zris. Then, taking the complex absolute value
squared of both sides, we obtain an equality of integers

5 ¨ |d|2C “ |p2 ˘ iq|2C|d|2C “ |bc|2C “ pbcq2

which implies that 5 divides bc since 5 is prime when considered as an integer.

Remark 1.1.10. For a general number field, we typically define valuations attached to a prime ideal
in its ring of integers rather than a prime element; we can conflate these notions in Examples 1.1.7
and 1.1.8 without confusion because of the fact that Zris is a principal ideal domain.

Exercise 1.1.11. Which of the absolute values in the examples above are non-archimedean?

Now, given a valued field pK, | ¨ |q, we define the distance between two points x, y P K by

dpx, yq “ |x ´ y|,

which makes K into a metric space. In particular, the family of open balls defined by

Bpa, rq :“ tx P K
ˇ

ˇ |x ´ a| ă ru

forms a base of neighborhoods for a uniquely determined topology on K. We call two absolute values
on K equivalent if they define the same topology on K. The following proposition gives concrete
conditions for two absolute values on K to be equivalent:

Proposition 1.1.12. Let |¨|1 and |¨|2 be two absolute values on K. The following are equivalent:

(i) | ¨ |1 and | ¨ |2 are equivalent.

(ii) There exists a real number s ą 0 such that |x|1 “ |x|s2 for all x P K.

(iii) For any x P K, |x|1 ă 1 implies |x|2 ă 1.

Proof. We prove (ii) ñ (i) ñ (iii) ñ (ii).

(ii) ñ (i): If there exists a real number s ą 0 such that |x|1 “ |x|s2 for all x P K, the subsets

B1pa, rq “ tx P K
ˇ

ˇ |x ´ a|1 ă ru and B2pa, r1{sq “ tx P K
ˇ

ˇ |x ´ a|2 ă r1{su

coincide. Thus, the topologies induced by | ¨ |1 and | ¨ |2 are the same.
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(i) ñ (iii): This implication follows from the fact that for any absolute value |¨| onK, the inequality
|x| ă 1 is equivalent to having

lim
nÑ8

xn “ 0

with respect to the topology induced by | ¨ |.

(iii) ñ (ii): Assume (iii), and fix an element y P K such that |y|1 ą 1. To prove (ii), it suffices to
show that for any non-zero element x P K, we have

log |x|1

log |x|2
“

log |y|1

log |y|2
ą 0.

Equivalent, we show that if |x|1 “ |y|α1 for some α P R, then |x|2 “ |y|α2 . Indeed, let
x P K with x ‰ 0. Since |y|1 ą 1, there exists some α P R such that |x|1 “ |y|α1 . To
prove that |x|2 ď |y|α2 , we construct a sequence of rational numbers pan{bnqnPN that
converges to α from above. Then, since

|x|1 “ |y|α1 ă |y|
an{bn
1 ùùñ

ˇ

ˇ

ˇ

ˇ

xbn

yan

ˇ

ˇ

ˇ

ˇ

1

ă 1,

condition (iii) implies that
ˇ

ˇ

ˇ

ˇ

xbn

yan

ˇ

ˇ

ˇ

ˇ

2

ă 1 ùùñ |x|2 ď |y|
an{bn
2 .

Thus, we have |x|2 ď |y|α2 , and a similar argument establishes the reverse inequality.

Example 1.1.13. On Q, the norms | ¨ |p and | ¨ |q are not equivalent if p ‰ q.

Example 1.1.14. On Qpiq, the norms | ¨ |p2˘iq defined in Example 1.1.8 are not equivalent. To see
this, we note that the sequence p2` iqn converges to 0 with respect to | ¨ |p2`iq, but |p2` iqn|p2´iq “ 1.

We state without proof a classification of absolute values on Q, which is due to Ostrowski:

Proposition 1.1.15 ([6, Ch.2, Proposition 3.7]). Every absolute value on Q is equivalent to
either a p-adic valuation | ¨ |p or the standard absolute value | ¨ |8.

Exercise 1.1.16. Prove the product formula: for every rational number a ‰ 0, we have
ź

p

|a|p “ 1,

where p varies over all prime numbers as well as the symbol 8.

1.2 Additive valuations

For field K equipped with a non-archimedean absolute value | ¨ |, we can define a function

v : K Ñ R Y t8u

by
vpxq “ ´ log |x| for x ‰ 0 and vp0q “ 8,

where log : Rą0 Ñ R is the natural logarithm function. In particular, the properties of a non-
archimedean absolute value listed in Definition 1.1.1 translate to analogous properties of v, which
we now summarize in the following definition:
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Definition 1.2.1. An additive valuation on a field K is a function

v : K Ñ R Y t8u

such that

(i) vpxq “ 8 if and only if x “ 0,

(ii) vpxyq “ vpxq ` vpyq,

(iii) vpx ` yq ě mintvpxq, vpyqu, with equality if vpxq ‰ vpyq.

If, in addition, vpKˆq has a smallest positive value, we call the valuation v discrete.

We have just seen that a non-archimedean absolute value gives rise to an additive valuation on
K. Conversely, for an additive valuation v on K, we obtain an absolute value by setting

|x| “ q´vpxq,

for some fixed real number q ą 1. As Proposition 1.1.12 might suggest, two additive valuations
v1 and v2 on K are equivalent if v1 “ sv2 for some real number s ą 0. Throughout these notes,
we switch freely between the language of multiplicative and additive valuations depending on the
context. For instance, we frequently use both the “p-adic absolute value” | ¨ |p and the “p-adic
valuation” vp in discussions of Q.

Now, given an additive valuation on a field K, we introduce the following terminology:

• The valuation group of K is vpKˆq Ď R. If v is discrete, then vpKˆq “ sZ, where s P vpKˆq

is the smallest positive value; it is called normalized if s “ 1.

• The valuation ring of K is the subset

O “ tx P K | vpxq ě 0u “ tx P K | |x| ď 1u.

We see immediately from Definition 1.2.1 that O is a ring. More precisely, one can show that
O an integral domain with field of fractions K that satisfies the additional property that for
every x P K, we have either x P O or x´1 P O. (In a general context, this type of domain is
referred to as a valuation ring, which is the reason for calling O the valuation ring of K.)

• The unit group of O is Oˆ “ tx P K | vpxq “ 0u “ tx P K | |x| “ 1u.

• Since O is a valuation ring, the subset O∖Oˆ forms an ideal of O. In fact, this is the unique
maximal ideal of O, and we denote it by

p “ tx P K | vpxq ą 0u “ tx P K | |x| ă 1u “ tx P O | x´1 R Ou.

• The residue field of O is κ “ O{p. If K has the same characteristic as κ, we say K is of equal
characteristic; if not, we say K is of mixed characteristic. When κ ă 8, we set q “ #κ.

• When v is discrete, a prime (or uniformizing) element of O is any element π P O such that
vpπq is the smallest positive value in the valuation group vpKˆq. One can check that p “ πO.

Conventions. Throughout these notes, we fix the notation O, p, κ as above for a field K equipped
with a non-archimedean valuation v. If in addition, v is discrete, we assume that v is normalized
since we can always replace a discrete valuation with an equivalent normalized discrete valuation.

To denote a correspondence between an additive and a multiplicative valuation, we use match-
ing subscripts but often suppress this subscript when the correspondence is implied. If a discrete
valuation v gives rise to an absolute value | ¨ |, we write | ¨ | “ q´vpxq for some real number q ą 1.
In particular, if the residue field κ has finite order, we take q “ #κ unless otherwise specified.
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Example 1.2.2. Let p be a prime, and equip the field Q with the p-adic valuation vp. Then,

• The valuation group vpQˆq is Z.

• The valuation ring is O “

!

r
s P Q

ˇ

ˇ

ˇ
pr, sq “ 1, p ∤ s

)

.

• The unique maximal ideal of O is p “

!

r
s P O

ˇ

ˇ

ˇ
p | r

)

.

• The residue field of O is κ “ Fp via the map r
s ÞÑ rs´1 pmod pq.

• We can take π “ p to be a prime element in O.

Example 1.2.3. Equip the field Fqptq with the t-adic valuation. Then,

• The valuation group vpFqptqˆq is Z.

• The valuation ring is O “

"

fptq “
gptq
hptq P Fqptq

ˇ

ˇ

ˇ

ˇ

g, h P Qrts and hp0q ‰ 0

*

.

• The unique maximal ideal of O is p “ tfptq P O | fp0q “ 0u.

• The residue field of O is κ “ O{p is isomorphic to Fq via the map f ÞÑ fp0q.

• We can take π “ t to be a prime element in O.

We conclude this section with the following proposition that establishes that O is always a
principal ideal domain when v is a discrete valuation:

Proposition 1.2.4. Let v be a discrete valuation on K. The nonzero ideals of O are given by

pn “ πnO “ tx P K | vpxq ě nu, n ě 0,

where π is a prime element, i.e., vpπq “ 1, and we have

pn{pn`1 – O{p. (1.2)

Proof. Recall that by convention, we assume any discrete valuation has been normalized, so we can
fix a prime element π P O with vpπq “ 1. Let a ‰ 0 be an ideal of O, and let x P a be an element
with smallest possible value vpxq “ n ă 8. We can write x “ uπn for some unit u P Oˆ, and thus
πnO Ď a. For the reverse inclusion, if y “ u1πm P a is an arbitrary element with u1 P Oˆ, then
m “ vpyq ě n, and hence, we have y “ pu1πm´nqπn P πnO.

The isomorphism in (1.2) arises from the map aπn ÞÑ a pmod pq.

Remark 1.2.5. While we have only seen examples of discrete valuations thus far, non-discrete valu-
ations do exist—we construct an example of such a valuation in Lecture 5.
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1.3 Completions

We now shift to studying how the notion of convergence interacts with non-archimedean absolute
values; as we see below, the strong triangle inequality has many implications on the behavior of
sequences in K. We start by recalling the definition of a special type of sequence:

Definition 1.3.1. A sequence panqnPN is called Cauchy if, for every ε ą 0, there exists an N P N
such that

|an ´ am| ă ε for all n,m ě N.

It is very useful to note that the characterization of Cauchy sequences simplifies considerably
when the absolute value is non-archimedean. For instance, if | ¨ | is non-archimedean, then a sequence
pxnqnPN is Cauchy if and only if

lim
nÑ8

|xn`1 ´ xn| “ 0.

Moreover, if limnÑ8 xn “ x ‰ y with respect to a non-archimedean absolute value | ¨ |, then we have

|xn ´ y| “ |x ´ y|

for sufficiently large n P N.

Exercise 1.3.2. Prove these claims about sequences that are Cauchy with respect to a non-
archimedean absolute value and show that they need not hold for an archimedean absolute value.

Definition 1.3.3. A valued field pK, | ¨ |q is called complete if every Cauchy sequence panqnPN in
K converges to an element a P K, i.e., there exists an element a P K such that

lim
nÑ8

|an ´ a| “ 0.

Example 1.3.4. The field R is complete with respect to the real absolute value | ¨ |R.

Example 1.3.5. The field Q is not complete with respect to the 5-adic absolute value. To prove
this, it suffices to show that there is a sequence pxnqnPN of integers such that pxnqnPN is Cauchy with
respect to the 5-adic absolute value and such that x :“ limnÑ8 xn satisfies

|x2 ` 1|5 “ lim
nÑ8

|x2
n ` 1|5 “ 0.

Indeed, if x P Q, this would imply that a rational number satisfies the equation x2 ` 1 “ 0, which
is impossible since all rational squares are positive. To exhibit the sequence xn, we can start by
choosing an integer x1 such that x2

1 ` 1 “ 0 pmod 5q. For example, take x1 “ 2. Then, we can
construct the sequence pxnqnPN iteratively such that at each step, we have

• x2
n ` 1 “ bn5

n, for some bn P Z, and

• xn`1 ” xn pmod 5nq.

More specifically, given xn and bn as above, we define xn`1 as follows. Writing

xn`1 “ xn ` an5
n

for an unknown variable an P Z, we impose the condition

x2
n`1 ` 1 “ x2

n ` 2anxn5
n ` 52n ` 1 “ 5npbn ` 2anxnq ” 0 pmod 5n`1q.

Thus, it suffices to solve for an in the congruence relation

bn ` 2xnan ” bn ` 2 ¨ 2an ” 0 pmod 5q.

But 4 is invertible in Z{5Z, so a solution for an always exists.
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Exercise 1.3.6. In the above example, explain how we implicitly used the fact that the polynomial
x2 ` 1 has distinct roots mod 5.

Exercise 1.3.7. For an odd prime p, show that Q is not complete with respect to the p-adic absolute
value by exhibiting a Cauchy sequence of rationals whose square converges p-adically to a squarefree
integer. Try to adapt the method to p “ 2—what goes wrong?

Given any valued field pK, | ¨ |q, the process of completion yields a complete valued field p pK, | ¨ |q.

To describe this process, we construct a field pK and show how to extend the absolute value | ¨ | to
pK. We leave it as Exercise 1.3.8 to prove that p pK, | ¨ |q is both complete and unique. Indeed, to

construct pK, we take R be the ring of all Cauchy sequences of pK, | ¨ |q under term-by-term addition
and multiplication, and define m to be the ideal of all nullsequences with respect to | ¨ |, i.e.,

m :“
!

sequences pxnqnPN in K
ˇ

ˇ

ˇ
lim
nÑ8

|xn| “ 0
)

.

One can show that m is in fact a maximal ideal in R, so we can define a field

pK :“ R{m.

We embed K into pK by mapping every a P K to the class of the constant Cauchy sequence
pa, a, a, . . . q, and we extend the valuation | ¨ | to pK by setting

|a| “ lim
nÑ 8

|an|,

where a P pK is represented by the Cauchy sequence panqnPN.

Exercise 1.3.9. Why does this limit exist?

Now, the most well-known examples of complete fields are probably the fields R or C, both of
which are complete with respect to the standard (archimedean) absolute value. A famous theorem
of Ostrowski proves that for any valued field pK, | ¨ |q that is complete with respect to an archimedean
valuation, there is an isomorphism σ from K onto R or C satisfying

|a| “ |σa|s for all a P K,

for some fixed s P p0, 1s. In light of this result, henceforth, we will focus nearly all of our attention
on non-archimedean absolute values. The following example of a non-archimedean absolute value
on Q highlights many of the ideas that are to come in the next lecture:

Example 1.3.10. Let p be a prime. The field of p-adic numbers, denoted Qp, is the completion of Q
with respect to the p-adic absolute. We now describe Qp more explicitly. Following the completion
process outlined above, we define

Qp :“ R{m,

where R (resp. m) is the ring (resp. maximal ideal) of Cauchy sequences (resp. nullsequences) with
respect to the p-adic absolute value. Consider the formal series

8
ÿ

v“m

avp
v, (1.3)

where av is an integer satisfying 0 ď av ă p and m P Z. We can write down an associated sequence
of partial sums

xk “

m`k
ÿ

v“m

avp
v.
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In particular, the sequence pxkqkPN is Cauchy since we have

lim
kÑ8

|xk`1 ´ xk|p “ lim
kÑ8

ˇ

ˇak`1p
k`1

ˇ

ˇ

p
ď lim

kÑ8

1

pk`1
“ 0.

Thus, any formal series of the form in (1.3) is an element of Qp, and we prove in the next lecture
that any element of Qp can be expressed as such a formal series.
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Lecture 2

Let K be a field that is equipped with a discrete non-archimedean valuation v. In the previous
lecture, we described a process for constructing the completion pK of K with respect to v; we review
a few key points of this construction using the language of additive valuations. Indeed, supposing
we have constructed pK, we can canonically extend v to a valuation pv on the completion pK by taking

pvpaq “ lim
nÑ8

vpanq,

where an P K and a “ limnÑ8 an P pK. Since v satisfies the strong triangle inequality, if a ‰ 0,
then the sequence vpanq must eventually become constant. In other words, for sufficiently large n,

we have an equality vpanq “ vpaq, and thus, an equality of valuation groups vpKˆq “ pvp pKˆq. This
means that the extended valuation pv is also discrete and normalized.

Throughout this section, we keep the conventions set in Lecture 1. Specifically, we’ll take O Ď K
(resp. pO Ď pK) to be the valuation ring of v (resp. pv), and let p (resp. pp) be its maximal ideal.

2.1 More on completions

Continuing from the end of Lecture 1, we start with the following proposition:

Proposition 2.1.1. For n ě 1, we have an isomorphism

pO{ppn – O{pn.

Proof. Consider the homomorphism O Ñ pO{ppn defined by

a ÞÑ a pmod ppnq.

By inspection, the kernel of this map is pn. To see it is surjective, we note that by the construction
of pK, for every x P pO, there is an element a P O such that vpx ´ aq ě n, i.e., a ” x pmod ppnq.

Now, Proposition 2.1.1 implies that the residue fields of pK and K are equal; we can use this fact
to characterize elements of pK using formal Laurent series:

Proposition 2.1.2. Let R Ď O be a system of representatives for κ “ O{p such that 0 P R,

and let π P O be a prime element. Then, every x ‰ 0 in pK admits a unique representation as a
convergent series

x “ πmpa0 ` a1π ` a2π
2 ` ¨ ¨ ¨ q,

where ai P R, a0 ‰ 0, and m P Z.

Proof. Let x “ πmu for some u P pOˆ and m P Z. By Proposition 2.1.1, the residue class u pmod ppq

has a unique representative a0 P R with a0 ‰ 0, which means we can write u “ a0 ` πb1 for some
b1 P pO. Repeating this process iteratively, for each n ě 1, we can obtain an expression

u “ a0 ` a1π ` a2π
2 ` ¨ ¨ ¨ ` anπ

n ` πn`1bn`1,

where the ai are uniquely determined by previous equations and each bi P pO is some element. This
process yields a uniquely determined infinite series

8
ÿ

ν“0

aνπ
ν .

11



In particular, this infinite series converges to u P pOˆ since

lim
nÑ8

|u ´ sn| ď lim
nÑ8

|πn`1bn`1| “ 0,

where psnqnPN is the associated sequence of partial sums.

Example 2.1.3. Recall that in Example 1.3.10, we constructed the field of p-adic numbers, Qp as
the completion of Q with respect to the p-adic valuation | ¨ |p. Its valuation ring, denoted Zp, is
called the ring of p-adic integers and its residue field is Fp, the finite field with p elements. Using
Proposition 2.1.2, we can now define Zp as the set of formal sums

a0 ` a1p ` a2p
2 ` ¨ ¨ ¨ , (2.1)

where ak is an integer satisfying 0 ď ak ă p, and addition and multiplication in Zp is defined via the
usual carry-over rules for digits. Below are some examples of p-adic expansions of elements of Zp:

(a) ´1 “ pp ´ 1q ` pp ´ 1qp ` pp ´ 1qp2 ` pp ´ 1qp3 ` ¨ ¨ ¨ P Zp,

(b)
1

p ´ 1
“ 1 ` p ` p2 ` p3 ` ¨ ¨ ¨ P Zp,

(c) Example 1.3.5 give a 5-adic expansion for i P Z5.

(d) (Exercise) Show that x P Qp is rational if and only if its p-adic expansion is periodic.

Example 2.1.4. Consider the field of rational functions Fqptq equipped with the t-adic valuation
vt. We show that the completion of Fqptq with respect to vt is the field of formal Laurent series
over Fq, which we denote by Fqpptqq. Indeed, in Example 1.2.3, we computed that Fq is the residue
of Fqptq with respect to vt. Thus, by Proposition 2.1.2, elements in the completion of Fqptq with
respect to vt can be written as formal Laurent series of the form

fptq “ tmpa0 ` a1t ` a2t
2 ` ¨ ¨ ¨ q,

where ai is an integer satisfying 0 ď ai ă q and m P Z. The valuation ring of Fqpptqq is the ring of
formal power series, denoted FqJtK.

p‹q Example 2.1.5. We complete the field Qpiq with respect to the (non-archimedean) absolute
value | ¨ |3 defined in Example 1.1.7. Since Q Ď Qpiq, we have

Q3piq Ď zQpiq.

Using Proposition 2.1.2, we show that this is in fact an equality. Indeed, we first note that

κ “ Zris{p3q – Zrxs{p3, x2 ` 1q – F3rxs{px2 ` 1q,

and since x2 ` 1 does not have a root in F3,

F3rxs{px2 ` 1q – F32 fl F3.

Fix a system R Ď Zris of representatives for κ such that each a P R is of the form c` id for integers

0 ď c, d ă 3, and let x P zQpiq. By Proposition 2.1.2, we can express x uniquely as a formal sum

x “
ÿ

kěm

ak3
k,

12



where ai P R and m P Z. Since ak is of the form ak “ ck ` idk, 0 ď ck, dk ă 3, for each k, we can
rewrite the formal sum expression for x as

x “
ÿ

kěm

pck ` idkq3k

“
ÿ

kěm

ck3
k ` i

ÿ

kěm

dk3
k,

which is an element of Q3piq, as desired.

p‹q Example 2.1.6. We complete the field Qpiq with respect to the (non-archimedean) absolute
value | ¨ |π defined in Example 1.1.8. Our approach follows the previous example identically, with
the exception of two key differences: first, since π “ 2 ˘ i, we have

Zris{pπq – Z{5Z – F5.

Second, we showed |5|π “ |5|5 “ |π|π, and so, we can take 5 P Zpiq as a uniformizing element with

respect to | ¨ |π. Thus, by Proposition 2.1.2, we can express any x P zQpiq uniquely as a formal sum

ÿ

kěm

ak5
k,

where ak P Z with 0 ď ak ă 5 and m P Z. We conclude that zQpiq “ Q5.

2.2 Locally compact fields

Henceforth, we assume | ¨ | is a discrete non-archimedan absolute value and that pK, | ¨ |q is a complete
valued field. We denote the valuation corresponding to | ¨ | by v and write | ¨ | “ q´vpxq. Let O
denote the valuation ring of K, and let p and κ “ O{p denote the maximal ideal and residue field
of O, respectively. Additionally, we fix a uniformizing element π P O.

We explore some topological properties of K arising from the fact that O is a discrete valuation
ring. Indeed, recall that the absolute value | ¨ | induces a topology on K whose base of neighborhoods
is given by the family of open balls

Bpa, rq :“ tx P K
ˇ

ˇ |x, a| ă ru.

To start, the following proposition shows that K is totally disconnected :

Proposition 2.2.1. The following properties hold in any field that is equipped with a non-
archimedean absolute value:

(1) Any point of an open ball is a center of the ball.

(2) Two open balls are either disjoint, or one is contained in the other.

(3) Every ball is both open and closed, and all balls are homeomorphic.

Proof. We leave the proofs of (1) and (2) as Exercise 2.2.2. For (3), let r ą 0, and let

Bcpa, rq :“ tx P K
ˇ

ˇ |x, a| ă r.u

denote the closed ball of radius r centered at a P K. Then, if q´pn`1q ă r ď q´n, we have

Bpa, rq “ Bcpa, q´pn`1qq,

13



and if q´pn`1q ă r ď q´n, we have
Bcpa, rq “ Bpa, q´nq.

To see that all open balls are homeomorphic, we note that the map given by

x ÞÑ
x ´ a

r

maps the open ball of radius r centered at a onto the open unit ball centered at 0. In particular, its
inverse is given by

x ÞÑ a ` rx.

Remark 2.2.3. It will be useful in later lectures to remember that the valuation ring O is both open
and closed in K since it coincides exactly with the closed unit ball Bcp0, 1q.

Exercise 2.2.4. Use Proposition 2.2.1 to give an alternative proof to Proposition 2.1.1.

Example 2.2.5. We write an explicit basis of neighborhoods in K of the zero element as the chain

O Ě p Ě p2 Ě p3 Ě ¨ ¨ ¨

of ideals in the valuation ring O. Indeed, we have

pn “

"

x P K

ˇ

ˇ

ˇ

ˇ

|x| ă
1

qn´1

*

“ B

ˆ

0,
1

qn´1

˙

.

While we originally defined the notion of completing a field analytically, we now give a more
algebraic characterization of O; as we see below, this new perspective on O is actually closely related
to the language of power series we used in Proposition 2.1.2 but has some important advantages.

For n ě 1, there are canonical homomorphisms

O ÝÑ O{pn

and
O{p

λ1
ÐÝÝ O{p2

λ2
ÐÝÝ O{p3

λ3
ÐÝÝ ¨ ¨ ¨ .

This collection of maps allows us to construct a homomorphism

O ÝÑ lim
ÐÝ
n

O{pn

into the projective limit

lim
ÐÝ
n

O{pn “

#

pxnq P

8
ź

n“1

O{pn
ˇ

ˇ

ˇ

ˇ

λnpxn`1q “ xn, @n ě 1

+

.

In particular, viewing the rings O{pn as topological rings with the discrete topology, we can equip
ś8

n“1 O{pn with the product topology, and lim
ÐÝ
n

O{pn becomes a topological ring in the natural way.

We have the following characterization of O:

Proposition 2.2.6. The canonical map

O ÝÑ lim
ÐÝ
n

O{pn

is an isomorphism (of rings) as well as a homeomorphisms (of topological spaces).
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Proof. As a homomorphism of rings, this map is injective since its kernel is

8
č

n“1

pn “ p0q.

For surjectivity, let p “ πO, and fix a system of representatives R Ď O of O{p such that 0 P R. As
we saw in the proof of Proposition 2.1.2, elements a pmod pnq P O{pn can be written uniquely as

a ” a0 ` a1π ` ¨ ¨ ¨ ` an´1π
n´1 pmod pnq,

where ai P R. In particular, this means each element s P lim
ÐÝn

O{pn is given by a sequence of sums

sn “ a0 ` a1π ` ¨ ¨ ¨ ` an´1π
n´1, for n ě 1,

where the ai P R are fixed coefficients. Thus, s is the image of the element

x “ lim
nÑ8

sn “

8
ÿ

ν“0

aνπ
ν P O.

To show this map is in fact a homeomorphism, we note that it maps the basis of neighborhoods of
zero in O given in Example 2.2.5 onto a basis of neighborhoods of zero in lim

ÐÝn
O{pn.

Example 2.2.7. We exhibit the isomorphism in Proposition 2.2.6 for K “ Qp. In this case, we
have O “ Zp, and recall that we have been viewing a p-adic integer

x “

8
ÿ

k“0

akp
k P Zp

as a sequence of partial sums of integers. To translate to viewing Zp as a projective limit, we instead
consider x to be a sequence of residue classes

xn “

n´1
ÿ

k“0

akp
k pmod pnq P Z{pnZ,

so that by construction, the sequence pxnqnPN satisfies the property that

λnpxn`1q “ xn,

where λn : Z{pn`1Z Ñ Z{pnZ is the canonical projection. In other words, we have shown that

x P lim
ÐÝ
n

Z{pnZ “

#

pxnq P

8
ź

n“1

Z{pnZ
ˇ

ˇ

ˇ

ˇ

λnpxn`1q “ xn, @n ě 1

+

.

While this might seem like a subtle change in how we view Zp, it has quite an impact on how we do
arithmetic in Zp. Specifically, we replace the carry-over arithmetic used in in Example 2.1.3 with
component-wise operations in the projective limit. It can be surprising that the projective limit of
the finite rings Z{pnZ is of characteristic 0.

Now, the projective limit presentation of the valuation ring O not only gives a more natural ring
structure but also provides new tools for studying topological properties of O. Specifically, when
the residue field κ “ O{p is finite, (1.2) implies that O{pn is a finite ring for every n ě 1. So, in this
case, Proposition 2.2.6 expresses O as the projective limit of finite rings, and thus, O is compact.
This fact, combined with Proposition 2.2.1, implies that if K has finite residue field, it is locally
compact, i.e., every point x P K has a compact neighborhood. This class of fields is very important,
and so we have the following definition:
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Definition 2.2.8. A non-archimedean local field is a field that is complete with respect to a
discrete valuation and has a finite residue field.

It immediately follows from our discussion above that a non-archimedean local field pK, | ¨ |q is
locally compact and that its valuation ring O is compact.

Example 2.2.9. Here are some non-archimedean local fields that we’ve encountered so far:

• pQp, | ¨ |pq

• pFqpptqq, | ¨ |tq

• pQ3piq, | ¨ |3q

• pQ5piq – Q5, | ¨ |p2˘iqq

Example 2.2.10. We give an example of a field that is complete with respect to a discrete non-
archimedean absolute value but has an infinite residue field. Indeed, let F “ Qptq be the field of
rational functions of the rational numbers, and equip F with the t-adic valuation defined in Example
1.1.4(2). As shown in Example 1.2.3, this valuation is discrete and non-archimedean, but its residue
field is isomorphic to Q via the map f ÞÑ fp0q.
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Lecture 3

Throughout this lecture, we take pK, | ¨ |q to be a non-archimedean local field and let O denote the
valuation ring of K, and let p and κ “ O{p denote its maximal ideal and residue field, respectively.
We also fix a choice of uniformizing element π P O.

3.1 Hensel’s Lemma

Let fpxq P Orxs be a polynomial, and let fpxq P κrxs denote its reduction modulo π. When f
has a root in O, then f necessarily has a root in κ. It turns out that the converse is often true in
non-archimedean local fields: in this case, we say that a root of f in κ can be lifted to a root of f in
O. In fact, we already saw an instance of this idea in Example 1.3.5 when we constructed a root of
x2 ` 1 in Q5 starting from a root in F5. We start with the following proposition, which is a version
of Hensel’s Lemma stated for roots of polynomials:

Proposition 3.1.1 (Hensel’s Lemma for roots). Let fpxq P Orxs be a monic polynomial and
suppose that there exists an element a P O such that:

• fpaq ” 0 pmod πq,

• f 1paq ı 0 pmod πq.

Then there exists a unique ã P O such that fpãq “ 0 and ã ” a pmod πq.

Now, Proposition 3.1.1 is an immediate corollary of the following more general statement of
Hensel’s lemma. To state this general result, we recall from Example 1.1.6 that we can extend the
absolute value | ¨ | to the function field Kptq in a natural way by defining

∥ f ∥“ maxt|a0|, . . . , |an|u

for a polynomial fptq “ a0 `a1t`¨ ¨ ¨`ant
n. We call a polynomial fpxq P Orxs primitive if ∥ f ∥“ 1.

Theorem 3.1.2 (Hensel’s Lemma). If a primitive polynomial fpxq P Orxs admits a factorization

fpxq ” gpxqhpxq pmod pq

into relatively prime polynomials g, h P κrxs, then fpxq admits a factorization

fpxq “ gpxqhpxq

into polynomials g, h P Orxs such that degpgq “ degpgq and

gpxq ” gpxq pmod pq and hpxq ” hpxq pmod pq.

Proof. Our approach to this proof is similar to the iterative method that we used in Example 1.3.5
to show that there is a factorization

x2 ` 1 “ px ´ αqpx ´ βq

over Q5. However, in this setting, we must be a bit careful about the degrees of the polynomials in
each step of our construction. Let d “ degpfq and m “ degpgq so that degphq ď d´m. Additionally,
let g0, h0 P Orxs be polynomials such that
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• g0 ” g pmod pq,

• h0 ” h pmod pq,

• degpg0q “ m and degph0q ď d ´ m.

Since pg, hq “ 1, there exist polynomials a, b P Orxs such that ag0 ` bh0 ” 1 pmod pq. So, we fix a
choice of τ P p such that

|τ | “ maxt∥ f ´ g0h0 ∥, ∥ ag0 ` bh0 ´ 1 ∥u.

We now iteratively construct polynomials gn, hn P Orxs of the form

gn “ g0 ` p1τ ` ¨ ¨ ¨ ` pnτ
n,

hn “ h0 ` q1τ ` ¨ ¨ ¨ ` qnτ
n,

where pi, qi P Orxs are polynomials of deg ă m and ď d ´ m, respectively, and such that for n ě 0,

f ” gnhn pmod τn`1q. (3.1)

Then, taking the limit as n Ñ 8 will give the desired g, h P Orxs. Indeed, (3.1) is satisfied for n “ 0
by our choice of τ . So, assuming we have polynomials gn, hn P Orxs satisfying (3.1), we show how
to construct the desired gn`1, hn`1 P Orxs. Let

fn`1 “ τ´pn`1qpf ´ gnhnq P Orxs.

Then, one can show that (3.1) holding for n ` 1 reduces to the equivalence

g0qn`1 ` h0pn`1 ” fn`1 pmod τq.

Since g0a ` h0b ” 1 pmod τq for some a, b, P Orxs, we can write

g0afn`1 ` h0bfn`1 ” fn`1 pmod τq, (3.2)

and so we might naively take qn`1 “ afn`1 and pn`1 “ bfn`1. However, since the degrees of these
choices for qn, pn might be too large, we instead write

bpxqfn`1pxq “ qpxqg0pxq ` pn`1pxq,

where degppn`1q ă degpg0q “ m. Then, since the leading coefficient of g0 is a unit, we have
qpxq P Orxs, and thus, by plugging this expression for bfn`1 into (3.2), we obtain the congruence

g0pafn`1 ` h0qq ` h0pn`1 ” fn`1 pmod τq.

We leave it as Exercise 3.1.3 to show that we can take qn`1 P Orxs to be the polynomial afn`1`h0q
with all coefficients divisible by τ omitted.

Hensel’s lemma is a very powerful tool for studying complete valued fields—in fact, many of
the results we prove for such fields can be proved from Hensel’s lemma directly without the full
strength of completeness. The remainder of this lecture gives several applications of Hensel’s lemma
within the context of non-archimedean local fields; the upcoming problem set explores more general
properties of Henselian fields, i.e., fields that are equipped with a non-archimedean valuation whose
valuation rings satisfies Hensel’s lemma. To aid in the applications discussed below, we state without
proof a stronger version of Hensel’s lemma:

Theorem 3.1.4 (Hensel’s Lemma, stronger version, [3, Ch. II.2, Proposition 2]). Let fpxq P Orxs

and suppose that there exists a P O such that

|fpaq| ă |f 1paq|2.

Then, there exists a unique a1 P O such that fpa1q “ 0 and |a1 ´ a| ă |f 1paq|.
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3.2 Squares in Qp

Our first application of Hensel’s lemma is an explicit description of elements that are squares in Qp:

Proposition 3.2.1. Let p be a prime. An element a P Qˆ
p is a square if and only if a “ p2nu for

some n P Z and u P Zˆ
p with

• u pmod pq is a square in Fp if p is odd;

• u ” 1 pmod 8q if p “ 2.

Proof. Let a P Qˆ
p . First, we note that if a “ b2, for some b P Qˆ

p , then vpaq is even, so up to
rescaling by a power of p, we can assume that a P Zˆ

p . Suppose that a P Zˆ
p is a square. If p is odd,

the mod p reduction of a must be a quadratic residue. If p “ 2, then a must be a non-zero square
mod 8, and hence, a ” 1 pmod 8q.

Conversely, consider the polynomial fpxq “ x2 ´ a P Orxs. Then f 1pxq “ 2x.

• If p is odd and there exists b P Z with b2 ” a pmod pq, it follows that

|fpbq|p ă 1 “ |f 1pbq|2p,

so by Theorem 3.1.4, there exists a unique lift b̃ P Zp with b̃ ” b pmod pq and fpb̃q “ 0.

• If p “ 2 and a ” 1 pmod 8q, we have

|fp1q|2 “ |12 ´ a|2 ď
1

8
ă

1

4
“ |2 ¨ 1|22,

so by Theorem 3.1.4, there exists a unique b P Z2 such that |b ´ 1|2 ă 1
2 and fpbq “ 0.

As we’ll discuss in Lectures 5, Proposition 3.2.1 allows us to classify quadratic extensions of Qp.

3.3 Roots of unity in non-archimedean local fields

We next use Hensel’s lemma to study roots of unity in non-archimedean local fields. For any field
K, we denote the groups of n-th roots of unity and roots of unity in Kˆ by

µnpKq “ tx P K | xn “ 1u and µ8pKq “
ď

ną0

µnpKq,

respectively. Then, since any finite subgroup of the multiplicative group of a field is cyclic, µnpKq is
cyclic of order dividing n. The group µ8pKq is torsion—that is, every element has finite order—but
it need not be finite. For example, µ8pCq is infinite.

For a non-archimedean local field K, it turns out that µ8pKq is always finite. To prove this fact,
we start by studying the groups µnpKq for p ∤ n via Hensel’s Lemma.

Proposition 3.3.1. Let K be a non-archimedean local field with residue field κ – Fq of charac-
teristic p. If n P Zą0 is coprime to p, then µnpKq is cyclic of order gcdpn, q ´ 1q.

19



Proof. Let a P µnpKq be an n-th root of unity, so that an “ 1 for some n P Zą0. Then |a|np “ |1|p,
so a P O. Thus, it suffices to determine the roots of fpxq “ xn ´ 1 in O. Indeed, the polynomial
fpxq “ xn ´ 1 P Orxs has derivative f 1pxq “ nxn´1. In particular, since p ∤ n, we see that the
mod π reductions pf̄ , f̄ 1q are coprime. Thus, since any element a P O with an “ 1 reduces to a
non-zero element in κ, we can apply Proposition 3.1.1 to see that the roots of f are in bijection
with the solutions of f̄ in κˆ. Since any finite subgroup of the units of a field is cyclic, we deduce
that κˆ is a cyclic group of order pq ´ 1q, and hence, the number of solutions of f̄ in κ is equal to
gcdpn, q ´ 1q.

Now, Proposition 3.3.1 shows that µ8pKq contains a cyclic subgroup of order pq ´ 1q, and so
we might wonder whether µ8pKq “ µq´1pKq. Indeed, since we have determined all the elements of
µ8pKq of order prime to p, to answer this question, it suffices to study the roots of unity of p-power
order. However, Hensel’s Lemma does not help in this respect, since

pxpn

´ 1q “ px ´ 1qp
n

P κrxs,

so that all pn-th roots of unity reduce to 1 in κ. Instead, to study the structure of µpnpKq, we
require properties of the p-adic exponential and logarithm functions. After we develop these tools
in the next lecture, we prove that µpnpKq is in fact finite; for now, however, we study this question
by hand in two concrete cases.

Example 3.3.2. If K has finite characteristic, then µ8pKq “ µq´1pKq. This is immediate, since

pxpn

´ 1q “ px ´ 1qp
n

P Krxs.

Example 3.3.3. Let K “ Qp for an odd prime p. We will show that the only p-th root of unity in
Qp is 1, so that µ8pQpq “ µp´1pQpq is cyclic of order p ´ 1. By contradiction, suppose that ζ ‰ 1
is a p-th root of 1 in Qp; then ζ “ 1 ` px for some x P Zp. Then

0 “
ζp ´ 1

ζ ´ 1
“ ζp´1 ` ζp´2 ` ¨ ¨ ¨ ` ζ ` 1

“

p´1
ÿ

i“0

p1 ` xpqi.

By noting that p1 ` xpqi “ 1 ` ipx pmod p2q, we obtain

0 “

p´1
ÿ

i“0

p1 ` ipxq “ p `
p2pp ´ 1qx

2
“ p pmod p2q,

a contradiction.

Exercise 3.3.4. Show that µ8pQ2q “ µ2pQ2q “ t˘1u.
Hint: Show that the only 4-th roots of unity in Q2 are ˘1.

We continue to study fields that contain roots of unity through the remainder of this mini-course.
Specifically, in Lectures 4 & 5, we consider fields of the form Qppζmq, where ζm P Qp is a primitive
m-th root of unity for m P Zą0. Such a field is called a cyclotomic field—we will see that these
types of fields are again non-archimedean local fields and that they provide an interesting class of
examples for studying local fields.
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3.4 The Teichmuller map

We conclude our exploration of applications related to Hensel’s lemma by revisiting Proposition 2.1.2,
which gave a description of the elements of a complete local field as power series with respect to a
fixed prime element. As we saw in its proof, this result relies on a choice of a system of representatives
in O for the residue field κ. For example, in Zp, we often choose the set of representatives, R “

t0, 1 . . . , p ´ 1u. While this choice is natural in many ways, R is not closed under multiplication,
which can complicate arithmetic. As it turns out, a canonical choice of representatives can be chosen
using the Teichmuller map that we now describe. To summarize, the non-zero representatives in
this canonical choice are precisely the roots of unity in κ of order prime to p.

Theorem 3.4.1. Let K be a non-archimedean local field with residue field κ of characteristic p.
There is a uniquely defined map ω : κ Ñ O, called the Teichmuller map, that satisfies

ωpaq ” a pmod πq and ωpabq “ ωpaqωpbq.

Moreover, if K has characteristic p, then ω is a ring homomorphism.

To prove Theorem 3.4.1, we require the following lemma:

Lemma 3.4.2. Let a, b P O such that a ” b pmod πnq. Then ap ” bp pmod πn`1q.

Proof. This statement is clear if p “ 2. So, suppose p is odd and write a “ b ` xπn for some x P O.
Then, we have

ap “ pb ` xπnqp “

p
ÿ

i“0

ˆ

p

i

˙

bi “ bp ` p ¨ πny ` πnpz

for some y, z P O. The result follows since the element p is in the ideal pπq if κ has characteristic p.

Proof of Theorem 3.4.1. We construct the Teichmuller map as follows. For every element a P κ,
choose a lift ra P O. For an element a P κ, define the sequence

a0 “ a, an`1 “ panq
1
p for n ě 0.

We leave it as Exercise 3.4.3 to show that this construction makes sense because the map x ÞÑ xp

is a field automorphism on κ. Consider the sequence of elements of O given by pĂan
pn

qně0. It follows
from Lemma 3.4.2 that this sequence is Cauchy; moreover, its limit is independent of the choice of
representatives of elements of κ in O, again by Lemma 3.4.2. For a P κ, we denote

ωpaq :“ lim
nÑ8

Ăan
pn

.

By construction ωpaq ” a pmod πq, so it remains to show that ω is compatible with multiplication.
Given a, b P κ, by definition

ωpabq “ lim
nÑ8

Ćanbn
pn

and ωpaqωpbq “ lim
nÑ8

pĂan ¨ Ăbn qp
n

.

But, from Lemma 3.4.2,

lim
nÑ8

|Ćanbn
pn

´ pĂan ¨ Ăbn qp
n

| “ 0.

Hence, ω respects multiplication. In addition, ifK has characteristic p (so Ăan
pn

`Ăbn
pn

“ pĂan`Ăbn qp
n

),
a similar argument shows that ω is compatible with addition as well. In the latter case, one can
easily check that ωp1q “ 1, so that ω is a ring homomorphism.
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For a P κ, we call ωpaq P O the Teichmuller lift of a. It is an immediate consequence of Theorem
3.4.1 that the Teichmuller map can be used to describe the roots of unity in K of order prime to p:

Corollary 3.4.4. If #κ “ q, the Teichmuller map defines a group isomorphism

ω : κˆ Ñ µq´1pKq.

In fact, using Theorem 3.4.1, we can classify non-archimedean local fields of equal characteristic,
up to isomorphism:

Theorem 3.4.5. Let pK, | ¨ |q be a non-archimedean local field of equal characteristic p, and let κ
be the residue field of K. Then, K is isomorphic to κppT qq.

Proof. Let π be a prime element for K. Since K is the fraction field of O, it suffices to show that
O – κrrT ss. Consider the map

ϕ : κrrT ss Ñ O
ÿ

ně0

anT
n ÞÑ

ÿ

ně0

ωpanqπn

where ω is the Teichmuller map. Then, ϕ is a ring homomorphism because ω is a ring homomorphism,
and it is bijective by Prop. 2.1.2. The conclusion follows.

In the next lecture, we complete the classification of non-archimedean local fields by treating the
mixed characteristic case.
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Lecture 4

Throughout this section, we take pK, | ¨ |q to be a non-archimedean local field. As usual, let O
denote the valuation ring of K, and let p and κ “ O{p denote its maximal ideal and residue field,
respectively. The goal of this lecture is to combine some of the tools we acquired in Lectures 2 & 3
to classify non-archimedean local fields and then study the multiplicative structure of Kˆ.

4.1 Review of some field theory

Before we return to the classification of non-archimedean local fields, we recall some important facts
from field theory, starting from the following definition:

Definition 4.1.1. If K Ă L are fields, we say that L is a (field) extension of K and denote it by
L{K. We say that L{K is finite if L is finite-dimensional as a K-vector space; in this case, the
degree of L{K, denoted rL : Ks is equal to the dimension of L as a K-vector space.

Example 4.1.2. Here are some examples of finite field extensions that we have encountered so far:

(1) C{R is a field extension of degree 2.

(2) Qpiq{Q is a field extension of degree 2.

(3) Qppζmq{Qp, where ζm is a primitive m-th root of unity, is a cyclotomic field extension. We
will study this type of field extension in detail in the next lecture.

(4) Fpr{Fp is a field extension of degree r.

We frequently require the fact that if L{K is a finite extension, then every element α P L is
algebraic over K—that is, α is the root of a polynomial gpxq P Krxs of positive degree. To see this,
consider the map

φ : Krxs Ñ L, g ÞÑ gpαq

If this map were injective, the subring generated by α in L, denoted by Krαs, would be infinite
dimensional over K, which would prevent L from being finite dimensional over K. Moreover, the
map is non-zero because constants are mapped to non-zero elements of L. Thus, the kernel of φ is
an ideal 0 Ĺ I Ĺ Krxs, and so since Krxs is a principal ideal domain, we can write kerpφq “ pfpxqq

for some monic polynomial of positive degree. The polynomial fpxq P Krxs is called the minimal
polynomial of α over K and is necessarily irreducible in Krxs. If, in addition, α is the root of a
monic polynomial in Orxs, we say that α is integral over O, and the subring of elements in L that
are integral over O is called the integral closure of O in L.

4.2 Classification of non-archimedean local fields

Our goal is to prove the following classification of non-archimedean local fields:

Proposition 4.2.1. Up to isomorphism, non-archimedean local fields are precisely finite extensions
of Qp for a prime p and fields of the form Fqpptqq for a prime power q.

Before we can prove Proposition 4.2.1, we need to understand how to extend an absolute value
on K to an absolute value on a finite extension L{K. Indeed, let L{K be a finite extension of degree
n. We start by defining the norm map NL{K : L Ñ K as follows: for an element α P L, the norm
of α, denoted NL{Kpαq, is the determinant of the K-linear map on L defined by multiplication by
α. From this definition, we obtain the following properties of the norm map:
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• NL{Kp0q “ 0,

• NL{Kpαq “ αn for any α P K,

• NL{Kpαβq “ NL{KpαqNL{Kpβq for any α, β P L.

Exercise 4.2.2. Prove that these properties of the norm map hold.

Now, in Theorem 4.2.4 below, we use the norm map to give an explicit formula for extending the
absolute value on K to an absolute value on L. The existence and uniqueness of this absolute value
on L relies crucially on the following lemma, which makes use of Hensel’s Lemma to characterize
integrality of elements of L purely in terms of the norm map.

Lemma 4.2.3. Let pK, | ¨ |q be a non-archimedean local field, and let L{K be a finite extension of
degree n. Also, let A Ď L be the integral closure of O in L. Then, we have

A “
␣

α P L
ˇ

ˇNL{Kpαq P O
(

.

Proof. Let α P Lˆ, and let

fpxq “ xd ` ad´1x
d´1 ` ¨ ¨ ¨ ` a0 P Krxs

be the minimal polynomial of α over K. It is a (non-trivial) fact that NL{Kpαq “ ˘am0 ; for a
complete proof, cf. [6, Ch. 1.2]. Suppose that α is a root of the polynomial gpxq P Orxs. Then fpxq

divides gpxq as a polynomial in Krxs; then it follows that fpxq itself is in Orxs by Gauss’s Lemma,
cf. [1, Ch. 9.3 Proposition 5]. Given this, we have α P A ñ fpxq P Orxs ñ NL{Kpαq P O.

For the reverse implication, we use Hensel’s lemma to show for any irreducible polynomial

gpxq “ b0 ` b1x ` ¨ ¨ ¨ ` bnx
n P Krxs

such that b0bn ‰ 0, we have

|bi| ď maxt|b0|, |bn|u for 0 ă i ă n. (4.1)

We then apply this to fpxq to conclude that NL{Kpαq P O ñ a0 P O ñ fpxq P Orxs ñ α P A.
Indeed, let gpxq be as above. After multiplying g by a suitable element of K, we can assume that
g P Orxs with 1 “ maxt|b0|, . . . , |bn|u. Suppose for the sake of a contradiction that (4.1) does not
hold, and let br to be the first coefficient with |br| “ 1 ą maxt|b0|, |bn|u. Then, we have

maxt|b0|, ¨ ¨ ¨ , |br´1|u ă 1,

meaning there is a modulo p factorization of gpxq of the form

gpxq ” xrpbr ` br`1x ` ¨ ¨ ¨ ` bnx
n´rq pmod pq.

However, this contradicts Hensel’s lemma since gpxq is assumed to be irreducible.

We are finally ready to prove how to extend absolute values for finite extensions of non-archimedean
local fields, which then allows us to prove Proposition 4.2.1:

Theorem 4.2.4. Let pK, | ¨ |Kq be a non-archimedean local field, and let L{K be a finite extension
of degree n. We can extend | ¨ |K in a unique way to a valuation | ¨ |L of L via the formula

|α|L “
ˇ

ˇNL{Kpαq
ˇ

ˇ

1{n

K
.

In this case, L is also complete with respect to the extended valuation.
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Proof. For α P L, we show that the function defined by

|α|L “
ˇ

ˇNL{Kpαq
ˇ

ˇ

1{n

K
(4.2)

is a non-archimedean absolute value on L, and by inspection, it agrees with | ¨ |K on its restriction
to K. Conditions (i) and (ii) in Definition 1.1.1 follow immediately from (4.2), so we verify that the
strong triangle inequality holds. Indeed, we leave it as Exercise 4.2.5 to use Lemma 4.2.3 to prove

|γ|L ď 1 ðùñ γ P A for all γ P L,

i.e., A “ OL. Once this has been established, the fact that OL Ď L is a subring implies

|γ|L ď 1 ñ |γ ` 1|L ď 1, for all γ P L,

which is equivalent to the strong triangle inequality.
To show that this extension of | ¨ |K to L is unique, let | ¨ |1L be another extension of | ¨ |K to L.

By Proposition 1.1.12(iii), it suffices to show that for all α P L

|α|L ă 1 ñ |α|1L ă 1.

Suppose that this does not hold, i.e., there is some α P L such that |α|L ă 1 but |α|1L ą 1. Then, if

fpxq “ xd ` ad´1x
d´1 ` ¨ ¨ ¨ ` a0 P Orxs

is the minimal polynomial of α over K, we can rearrange the equation fpαq “ 0 to obtain

|1|1L “
ˇ

ˇ´ad´1α
´1 ´ ¨ ¨ ¨ ´ a0pα´1qd

ˇ

ˇ

1

L
ď maxt

ˇ

ˇad´1α
´1

ˇ

ˇ

1

L
, . . . ,

ˇ

ˇa0pα´1qd
ˇ

ˇ

1

L
u. (4.3)

However, since each ai P O and |α´1|1L ă 1, (4.3) yields the inequality 1 ă 1, a contradiction.
Lastly, the fact that L is complete with respect to the extended valuation follows from viewing

L as a normed n-dimensional vector space over K, cf. [6, Ch. 2, Proposition 4.9].

Remark 4.2.6. For a non-archimedean local fields pK, | ¨ |Kq of equal characteristic p, we have showed
that K – FqppT qq for some q “ pf . On the other hand, we have showed that every finite extension
of a local field is itself a local field. This is not a contradiction. For example, let K “ FpppT qq and
let fpxq “ x2 ´ T , which is irreducible over K. Denoting L “ Krxs{pfpxqq the extension L{K is
quadratic, and one can see that L “ Fpppxqq, so that K and L are isomorphic as fields. However, the
natural map

K “ FpppT qq Ñ L “ Fpppxqq, T ÞÑ x2

is not an isomorphism!

Remark 4.2.7. Theorem 4.2.4 actually holds for any complete valued field pK, | ¨ |q. However, if
pK, | ¨ |q is not complete, the uniqueness of the extension of a valuation does not hold. For example,
on 5-adic valuation on Q extends to the non-equivalent absolute values | ¨ |p2˘iq over Qpiq.

Conventions warning. In Theorem 4.2.4, let vK be the additive valuation associated to | ¨ |K

so that vK extends uniquely to an additive valuation vL of L via the formula

vLpαq “
1

n
vK

`

NL{Kpαq
˘

.

While the valuation vL is discrete, it is not necessarily normalized since by our conventions,
we assume that vK is normalized. When we need to distinguish between the valuation vL that
extends vK and the normalized valuation on L, we use vpL

to denote the latter.
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Proof of Proposition 4.2.1. First, let L be a finite extension of degree n of K “ Qp or K “ Fppptqq.
By Theorem 4.2.4, we conclude that L is complete with respect to the (discrete non-archimedean)
extended absolute value. To see that L also has a finite reside field, we note that its residue field ν is
an extension of Fp of maximal degree n. Indeed, this follows from the fact that if x1, . . . , xn P ν are
linearly independent over Fp, then any choice of preimages x1, . . . , xn P L are linearly independent
over K.

Now, let L be a non-archimedean local field, v its discrete valuation, and p the characteristic of
its residue class field. Theorem 3.4.5 already addressed the case where L has characteristic p, so we
assume that L has characteristic 0. In this case, since vppq ą 0, the restriction of v to Q must be
equivalent to the p-adic valuation vp. Since L is complete, it must contain Qp, i.e., L is an extension
of Qp. The finiteness of the extension L{Qp follows from the local compactness of the topological
vector space L.

This classification of non-archimedean local fields leads to the following definition:

Definition 4.2.8. We call non-archimedean local fields of mixed characteristic p-adic number
fields and non-archimedean local fields of equal characteristic power series fields.

4.3 Multiplicative structure of Kˆ

We begin our study of the multiplicative structure of Kˆ by defining the following subsets of Kˆ:

U pnq “ 1 ` pn “

"

x P K

ˇ

ˇ

ˇ

ˇ

|x ´ 1| ă
1

qn´1

*

.

Similarly to the basis of neighborhoods of 0 P K given in Example 2.2.5, the subsets U pnq form a
basis of neighborhoods of 1 P Kˆ. Moreover, one can check that each U pnq Ď Oˆ is actually a
subgroup, giving a descending chain

Oˆ “ U p0q Ě U p1q Ě U p2q Ě ¨ ¨ ¨ .

We call U pnq the n-th higher unit group and U p1q the group of principal units.

Exercise 4.3.1. Prove that for n ě 1, there are isomorphisms

Oˆ{U pnq – pO{pnqˆ and U pnq{U pn`1q – O{p.

The next proposition uses Hensel’s lemma to give an initial decomposition of Kˆ:

Proposition 4.3.2. The multiplicative group of a non-archimedean local field K admits the
decomposition

Kˆ – pπq ˆ µq´1pKq ˆ U p1q,

where π P O is a uniformizing element, pπq “ tπk | k P Zu Ď O, and q “ #κ.

Proof. Given the choice of a uniformizing element π P O, we can write every element a P Kˆ as
a “ πv ¨ u for u P Oˆ. Let ū the image of u P κ. Then by Corollary 3.4.4, we have

u “ ωpūq ¨
u

ωpūq

where ωpūq P µq´1pKq and u
ωpūq

P U p1q.
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Now, Proposition 4.3.2 reduces understanding the multiplicative structure of Kˆ to understand-
ing the multiplicative structure of U p1q. While it is possible to give a precise module structure of
U p1q for any non-archimedean local field K, we restrict our attention to p-adic number fields for
the remainder of this section. In this case, we can construct both an exponential function and a
logarithm function, and these functions are quite useful tools. However, there’s a key difference
between the usual exponential and logarithm functions defined on R or C: the p-adic exponential
function is not defined on all of K, while the p-adic logarithm function is defined on all of Kˆ.

To construct a p-adic logarithm function on Kˆ, we show that there is a uniquely determined
continuous homomorphism

log : Kˆ Ñ K

such that log p “ 0 and such that for principal units p1 ` xq P U p1q, we have

logp1 ` xq “ x ´
x2

2
`

x3

3
´ ¨ ¨ ¨ . (4.4)

Our strategy for accomplishing this is to do the following:

(i) Show that the logarithm series defined in (4.4) converges for p1 ` xq P U p1q.

(ii) Show that the logarithm series defined in (4.4) is a homomorphism for elements in U p1q.

(iii) Use Proposition 4.3.2 to extend the logarithm function on U p1q to all of Kˆ.

Indeed, let vp denote the valuation on K extending the usual p-adic valuation on Qp, and, let
p1 ` xq P U p1q. For (i), we leave it as Exercise 4.3.3 to show that if vppxq ą 0, then

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

xn

n

ˇ

ˇ

ˇ

ˇ

“ 0.

For (ii), the logarithm series in (4.4) defines a homomorphism since we have an equality

log pp1 ` xqp1 ` yqq “ logp1 ` xq ` logp1 ` yq

as formal power series, and all series in the above equation converge for p1 ` xq, p1 ` yq P U p1q.
It remains to extend our logarithm function to all of Kˆ. To this end, let vp be the normalized

valuation on K so that vp “ evp, where pO “ pe, and fix a choice of uniformizing element π P O.
Then, for every α P Kˆ, writing α “ πvppαq ¨ uα, Proposition 4.3.2 gives a unique representation

α “ πvppαqωpūαq
uα

ωpūαq
,

where ūα the image of uα P κ, ωpūαq P µq´1pKq, and uα

ωpūαq
P U p1q. Defining

log π “ ´
1

e
log

ˆ

up

ωpūpq

˙

,

we obtain the desired homomorphism log : Kˆ Ñ K by setting

logα “ vppαq log π ` log

ˆ

uα

ωpūαq

˙

.

By inspection, this map is continuous and satisfies the property that log p “ 0.

Exercise 4.3.4. Show this construction is independent of the choice of uniformizing element π P O.

27



We next use the p-adic logarithm to give an isomorphism U pnq – pn for sufficiently large n:

Proposition 4.3.5. Let K{Qp be a p-adic number field with valuation ring O and maximal ideal
p, and let pO “ pe. Then, for n ą e

p´1 , the power series

logp1 ` zq “ z ´
z2

2
`

z3

3
´ ¨ ¨ ¨ and exppxq “ 1 ` x `

x2

2!
`

x3

3!
` ¨ ¨ ¨

give two mutually inverse isomorphisms (and homeomorphisms)

U pnq
log

´́´́ Ñ́Ð́´́ ´́
exp

pn.

Proof. This proof requires a careful analysis of the p-adic valuation of the terms that appear in the
power series expansions of log and exp. We outline the main steps of the proof below, but leave the
details as Exercise 4.3.6. Throughout the proof, vp is the usual p-adic valuation on Qp, and we
assume it has been extended (uniquely) to K{Qp; the normalized valuation of K is vp “ evp.

To start, let n P N be a natural number with n “
řr

i“0 aip
i, 0 ď ai ă p. One can show that

(i)
vppnq

n ´ 1
ď

1

p ´ 1
;

(ii) vppn!q “
1

p ´ 1

r
ÿ

i“0

aipp
i ´ 1q.

Next, we use (i) to show that for z ‰ 0 with vppzq ą e
p´1 , we have

vp

ˆ

zn

n

˙

ě vppzq ñ vpplogp1 ` zqq “ vppzq,

and thus, log maps U pnq into pn for n ą e
p´1 . For the reverse map in Proposition 4.3.5, we use (ii)

to show that exppxq converges for vppxq ą e
p´1 and that if, in addition x ‰ 0 and n ą 1, we have

vp

ˆ

xn

n!

˙

ě vppxq ñ vppexppxq ´ 1q “ vppxq.

Thus, exp maps pn into U pnq for n ą e
p´1 . Lastly, for vppxq, vppzq ą e

p´1 , we have

exp logp1 ` zq “ 1 ` z and log exppxq “ x,

by the usual identities of these formal power series.

We finally have the tools to give a more explicit description of the structure of Kˆ. Note that
the proof of this result uses some more advanced commutative algebra techniques; the main idea is
to use the isomorphism in Proposition 4.3.5 to show that we can write U p1q as the direct product of
some number of copies of Zp and a finite order subgroup, which turns out to be given by the p-power
roots of unity in Kˆ.

Proposition 4.3.7. Let K be a p-adic number field, and let q “ #O{p. Then, we have

Kˆ – Z ‘ Z{pq ´ 1qZ ‘ Z{paZ ‘ ZrK:Qps
p ,

for some a P Zą0, where this isomorphism holds both algebraically and topologically.
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Proof. By Proposition 4.3.2, it suffices to describe the structure of U p1q an abelian group. We prove
this in two cases. First, if e

p´1 ă 1, Proposition 4.3.5 immediately implies that U p1q – p “ πO – O,
so it suffices to describe the latter as an abelian group. Here K is a finite extension of Qp, so that
O can be viewed as a Zp-module. In paritcular, it is free and finitely generated, cf. [2, Proposition

2.36], so it must be isomorphic to O – ZrK:Qps
p as a Zp-module by the structure theorem for finitely

generated modules over PIDs. This concludes the argument in case e
p´1 ă 1.

On the other hand, if e
p´1 ą 1, we pick some n ą e

p´1 , and note that U pnq – ZrK:Qps
p . In addition,

U p1q itself has a canonical structure of Zp-module: for a P Zp, we choose a sequence of an P Zą0

with an Ñ a in Zp and for x P p, define

p1 ` xqa :“ lim
nÑ8

p1 ` xqan (4.5)

We leave it as Exercise 4.3.8 to show that p4.5q gives a well-defined Zp-module structure on U p1q.
Now, we have the following commutative diagram

1 // U pnq

��

// Oˆ

��

// pO{pnqˆ

��

// 1

1 // U p1q // Oˆ // pO{pqˆ // 1

where the rows are exact. In particular, the Snake Lemma, cf. [4, Ch. III.9, Lemma 9.1], implies
that

U p1q{U pnq – ker
`

pO{pnqˆ Ñ pO{pqˆ
˘

.

Moreover, the map
O{πn´1 Ñ U p1q{U pnq, a ÞÑ 1 ` πa

is a bijection (though not a group homomorphism!), so the target has order qn´1. Thus, we have an
exact sequence of Zp-modules,

1 Ñ U pnq Ñ U p1q Ñ U p1q{U pnq Ñ 1

where U pnq is free of rank rK : Qps and the quotient U p1q{U pnq is finite of order qn´1. From the
structure theorem for finitely generated modules over PIDs, cf. [1, Ch. 12.1, Theorem 5], we have

U p1q – ZrK:Qps
p ˆ C,

for C a finite group of order dividing qn´1. But C is a finite subgroup of the multiplicative group
of a field, so it has to be cyclic of p-power order. This concludes the general case.

Remark 4.3.9. We have the following analogous statement for when K is a power series field:

Kˆ – Z ‘ Z{pq ´ 1qZ ‘ ZN
p .

As in the above proof, we need to determine the Zp-module structure of U p1q, but this setting
requires a more involved argument; see [6, Ch. 2, Proposition 5.7] for a complete proof.

29



Lecture 5

Throughout this section, we take pK, | ¨ |Kq to be a non-archimedean local field and let vK be the
additive valuation associated to | ¨ |K . Recall from Theorem 4.2.4 that if L{K is a finite extension
of degree n, then vK extends uniquely to an additive valuation vL of L via the formula

vLpαq “
1

n
vK

`

NL{Kpαq
˘

. (5.1)

Following our usual conventions, we denote the valuation ring of K by OK and its maximal ideal
and residue field by pK and κK , respectively. The corresponding invariants for the finite extension
L{K are denoted by OL, pL, and κL. From (5.1), we observe that

vKpKˆq Ď vLpLˆq and κK Ď κL.

Our goal in this lecture is to study how valuation groups and residue fields behave in extensions of
non-archimedean local fields, which is a first step towards classifying p-adic fields.

5.1 Quadratic extensions of Qp

We begin by using Propositions 3.2.1 and 4.3.7 to classify quadratic extensions of Qp. Indeed, let
L{Qp be a quadratic extension of K so that we have L “ Qppαq, where α is the root of an irreducible
quadratic polynomial fpxq “ ax2 ` bx ` c P Qprxs. By the quadratic formula, we can write

α “
´b `

?
b2 ´ 4ac

2c
,

and so for ∆ “ b2 ´ 4ac, we have L “ Qpp
?
∆q. Thus, to classify the possible quadratic extensions

of Qp, it suffices to determine the structure of Qˆ
p {pQˆ

pq2. To this end, Proposition 4.3.7 gives

Qˆ
p – ppq ˆ xωpaqy ˆ U p1q,

where ωpaq is the Teichmuller lift of a generator a P Fˆ
p , i.e., xωpaqy – µp´1pQpq. Now, when p is an

odd prime, Proposition 3.2.1 implies that we have

pQˆ
pq2 – pp2q ˆ xωpaq2y ˆ U p1q,

and thus,
Qˆ

p {pQˆ
pq2 – Z{2Z ˆ Z{2Z.

To summarize, we have shown the following classification of quadratic extension of Qp:

Proposition 5.1.1. When p is odd, there are 3 quadratic extensions of Qp, up to isomorphism.

Exercise 5.1.2. Determine, up to isomorphism, the number of quadratic extensions of Q2.

We exhibit these extensions of Qp explicitly in the example below, which allows us to compare
and contrast the behavior of the valuation group and residue field in each extension.

Example 5.1.3. Let p be an odd prime and fix a choice of integer 0 ă a ď p ´ 1 such that a is not
a square modulo p. We define the following quadratic extensions of K “ Qp:

• L1 “ Qpp
?
pq

• L2 “ Qpp
?
apq
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• L3 “ Qpp
?
aq

By our above discussion, L1, L2, and L3 are the three non-isomorphic quadratic extensions of Qp,
so let’s compare the valuation groups of these extensions. Indeed, for ease of notation, we shorten
the subscript “Li” to “i” on the invariants associated to Li. For example, vi denotes the additive
valuation on Li extending the p-adic valuation on Qp. We first note that vppQˆ

p q “ v3pLˆ
3 q “ Z

since a “ p
?
aq2 implies

v3paq “ 2v3p
?
aq ñ v3p

?
aq “ 0.

On the other hand, since p “ p
?
pq2, we have

v1ppq “ 2v1p
?
pq ñ v1p

?
pq “

1

2
,

which means vppQˆ
p q Ĺ v1pLˆ

1 q Ď 1
2Z. A similar argument shows vppQˆ

p q Ĺ v2pLˆ
2 q Ď 1

2Z.

Exercise 5.1.4. Prove that κ1 “ κ2 “ Fp but Fp Ĺ κ3.

5.2 Ramification index and inertia degree

As Example 5.1.3 illustrated, the relative behavior of valuation groups and residue fields is useful in
characterizing extensions of non-archimedean local fields, which leads us to the following definition:

Definition 5.2.1. We define the ramification index of the extension L{K to be the index

e “ epL{Kq “
`

vLpLˆq : vKpKˆq
˘

,

and we define the inertia degree of the extension L{K to be the degree

f “ fpL{Kq “ rκL : κKs.

Exercise 5.2.2. Prove that if K Ď L Ď M is a tower of non-archimedean local fields, then

epM{Kq “ epM{LqepL{Kq and fpM{Kq “ fpM{LqfpL{Kq.

Now, we’ve already seen that n ě f in the proof of Proposition 4.2.1, and we can observe that
n ě e by (5.1). In fact, we have a much more precise relationship between the degree of the field
extension L{K and its ramification index and inertia degree:

Proposition 5.2.3. If L{K is a finite extension of non-archimedean local fields, then

rL : Ks “ ef.

Proof. We first prove the inequality ef ď rL : Ks. Let w1, . . . , wf P OL be representatives of a basis
of κL{κK , and let πL P OL be a prime element in OL so that 1, πL, . . . , π

e´1
L P Lˆ represent the

cosets in vLpLˆq{vKpKˆq. We show that the elements

␣

wjπ
i
L

ˇ

ˇ 1 ď j ď f and 0 ď i ď e ´ 1
(

(5.2)

are linearly independent over K. Suppose that

e´1
ÿ

i“0

˜

f
ÿ

j“1

aijwj

¸

πi
L “

e´1
ÿ

i“0

siπ
i
L “ 0, (5.3)
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where aij P K with some aij ‰ 0. Without loss of generality, assume that for each 0 ď i ď e ´ 1,
if si ‰ 0, then vKpai1q is minimal among the coefficients of si. We first show that if si ‰ 0, then
vLpsiq P vKpKˆq. Indeed, since the set twju form a set of representatives of a basis of κL{κK , if
si ‰ 0, then we have a linear combination

si
ai1

” w1 ` bi2w2 ` ¨ ¨ ¨ ` bifwf ı 0 pmod pLq, (5.4)

which implies vLp si
ai1

q ă 1. However, the bij in (5.4) are all in OK so that vLp si
ai1

q ě 0. Thus,

vL

ˆ

si
ai1

˙

“ 0 ùñ vLpsiq “ vKpai1q P vKpKˆq.

Returning to (5.3), we can combine our assumption that there is some aij ‰ 0 with the strong
triangle inequality to conclude that there must be some ℓ ‰ i with

vLpsiπ
i
Lq “ vLpsℓπ

ℓ
Lq ‰ 0.

However, this gives a contradiction since it would imply that

vLpπi
Lq “ vLpπℓ

Lq ` vLpsℓq ´ vLpsiq ” vLpπℓ
Lq pmod vKpKˆqq.

The reverse inequality ef ě rL : Ks follows from the fact that the set in (5.2) gives an integral
basis of OL over OK . To see this, consider the OK-module

M “

e´1
ÿ

i“0

f
ÿ

j“1

OKwjπ
i
L.

We leave is as Exercise 5.2.4 to first show that for each n ě 1, we have

OL “ M ` pnKOL,

and then use this fact to conclude M “ OL, as desired.

The equality rL : Ks “ ef is often called the fundamental identity. As we see in the next section,
this relationship between the ramification index and inertia degree plays an important role in the
study of extensions of non-archimedean local fields, starting from the following definition:

Definition 5.2.5. Let L{K be a finite extension of non-archimedean local fields of degree n, and
let e “ epL{Kq and f “ fpL{Kq be the ramification index and inertia degree of L{K, respectively.

(a) If e “ 1 (and f “ n), we call the extension L{K unramified.

(b) If e “ n (and f “ 1), we call the extension L{K totally ramified.

It can be useful to keep in mind the following characterization of unramified and totally ramified
extensions: an extension L{K in unramified when πK is a generator for the maximal ideal pL Ď OL

and is totally ramified when the residue field does not grow, i.e., κL “ κK .

Example 5.2.6. Continuing Example 5.1.3, we’ve shown that Qp has two totally ramified quadratic
extensions and one unramified quadratic extension. Consider the quartic extension Qpp

?
p,

?
aq{Qp.

It is the composite of two totally ramified quadratic extensions of Qp but is not itself totally ramified.
Rather, as we see in the field diagram below, Qpp

?
p,

?
aq{Qp contains an unramified subextension
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Qpp
?
aq, and so since ramification indices and inertia degrees are multiplicative in field extensions,

we conclude that Qpp
?
p,

?
aq{Qp has both ramification index and inertia degree equal to 2.

Qpp
?
p,

?
aq

Qpp
?
pq Qpp

?
aq Qpp

?
apq

Qp

Example 5.2.7. While we do not prove it in this mini-course, it turns out there are only finitely
many extensions of a non-archimedean local field of a fixed degree. For p ă 200, the LMFDB
database [8] classifies (up to isomorphism) all p-adic fields of degree ă 16 and provides interesting
information about each p-adic field, including its ramification index and inertia degree over Qp.

5.3 Decomposing extensions of non-archimedean local fields

We now shift our focus to decomposing an extension of non-archimedean local fields into subexten-
sions that have specific ramification behavior. The key idea that allows such a decomposition is that
every finite extension L{K contains a (unique) maximal unramified subextension whose residue field
is equal to κL. This follows from the next proposition, which characterizes unramified subextensions
of a non-archimedean local field:

Proposition 5.3.1. Let L{K be a finite extension of non-archimedean local fields. The map
K 1 ÞÑ κ1 sending an unramified extension K 1 of K contained in L to its residue field κ1 is a
one-to-one correspondence between the sets

tK Ď K 1 Ď L, K 1{K unramified u ÐÑ tκ Ď κ1 Ď κLu.

Moreover, the bijection is compatible with inclusion.

Proof. We start by showing surjectivity: let κ1 be a field with κ Ď κ1 Ď κL, and write κ1 “ κpαq for
some α P κL. Also, let fpxq P κrxs be the minimal polynomial of α over κ. Then, over κ1, we have

fpxq “ px ´ αqgpxq, (5.5)

and since any irreducible polynomial in κrxs is coprime to its derivative, cf. [1, Chapter 13.5,
Proposition 37], the factors gpxq and px ´ αq are coprime. Take any monic lift f̃pxq P OKrxs of
degree deg f “ n; by Proposition 3.1.1, there is a factorization

f̃ “ px ´ α̃qg̃pxq,

for α̃ P OL and g̃ P OLrxs. Since f is irreducible over κ, f̃ must be irreducible over K, so that
f̃ is the minimal polynomial of α̃ over K. Let K 1 :“ Krα̃s. Its residue field contains κ1, so that
fpK 1{Kq ě rκ1 : κs “ n. On the other hand, by the fundamental identity, we have

n “ rK 1 : Ks “ epK 1{KqfpK 1{Kq

which forces epK 1{Kq “ 1 and fpK 1{Kq “ n. Thus, K 1{K is unramified with residue field κ1.
To show injectivity, and compatibility with inclusion, we proceed as follows. Let K1,K2 Ď L be

two unramified extensions of K with residue fields

κ Ď κ1 Ď κ2 Ď κL.
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As above, write κ1 “ κpαq, let f be the minimal polynomial of α over κ, and take f̃ P OKrxs to
be any monic lift of f of degree n “ deg f . By the uniqueness in Proposition 3.1.1, we deduce that
there is a unique root α̃ P OL of f̃ reducing to α P κL. Moreover, since α P κ1 Ď κ2, α̃ is contained
in both K1 and K2. However, since K1 is unramified, comparing degrees as above gives K1 “ Kpα̃q,
and we conclude K1 Ď K2.

Remark 5.3.2. In the proof of Proposition 5.3.1, we took f̃pxq P Orxs to be a lift of the minimal
polynomial fpxq P κrxs of any generator of the field extension κ1{κK . Thus, if #κ1 “ pf , we can

assume that fpxq divides xpf
´1 ´ 1 P κrxs, cf. [1, Ch. 14.2, Proposition 15].

As an immediate consequence of Proposition 5.3.1, we see that if L{K is a finite extension of
non-archimedean local fields, then there is a unique maximal intermediate extension

K Ď Kur Ď L

that is unramified over K and has degree fpL{Kq. Thus, by Proposition 5.2.3, we have

epL{KqfpL{Kq “ rL : Ks “ rL : KursrKur : Ks “ rL : Kurs ¨ fpL{Kq.

We can therefore express L{K as a totally ramified extension of an unramified extension:

L

Kur

K

totally ramified,
degree epL{Kq

maximal unramified,
degree fpL{Kq

(5.6)

This type of field diagram is especially useful because we can give explicit descriptions of unramified
and totally ramified extensions of non-archimedean local fields.

Now, to illustrate this decomposition idea more concretely, we revisit an important example that
appeared in Lecture 3: cyclotomic extensions of Qp, i.e., Qppζq{Qp, where ζ P Qp is a primitive m-th
root of unity. The following two examples demonstrate that ramification in the extension Qppζq{Qp

behaves completely differently depending on whether p dividies m. By understanding the two cases
pm, pq “ 1 and m “ ps, we can describe ramification in a general cyclotomic extension of Qp.

Example 5.3.3. Let ζ P Qp be an m-th root unity, where pm, pq “ 1, and let L “ Qppζq. We use the
same approach as in the proof of Proposition 5.3.1 to show L{Qp is an unramified extension of degree
f , where f is the smallest natural number such that pf ” 1 pmod mq. Indeed, let ϕpxq P Zprxs be the
minimal polynomial of ζ over Qp. Since ϕpxq |xm ´ 1, we can apply Hensel’s lemma as in the proof
of Proposition 3.3.1 to see that the modulo pL reduction ϕpxq P Fprxs is the minimal polynomial of
ζ “ ζ pmod pLq over κL. Thus, since ϕpxq and ϕpxq have equal degrees, we have shown

rL : Qps “ rFppζq : Fps ď rκL : Fps ď rL : Qps,

i.e., L{Qp is unramified. Now, let f “ rκL : Fps so that #κL “ pf . To see that f is the smallest
number such that n | pf ´ 1, we note that κˆ

L contains a cyclic subgroup of order m generated by ζ.
Thus, m | pf ´ 1, and the minimality of f follows since κL “ Fppζq.

Example 5.3.4. Let ζ P Qp be a ps-th root unity, and let L “ Qppζq. We show that L{Qp is a
totally ramified extension of degree pp´1qpm´1 and that 1´ζ P OL is a prime element. We consider
the two cases s “ 1 and s ě 2:
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(i) Let s “ 1, and recall from Example 3.3.3 that ζ is a root of the polynomial

Φppxq “ xp´1 ` xp´2 ` ¨ ¨ ¨ ` x ` 1.

One can show that Φppxq is the minimal polynomial of ζ over Qp, meaning rL : Qps “ p ´ 1.

Moreover, we can factor Φppxq over OL as Φppxq “
śp´1

i“1 px ´ ζiq, which yields the equality

Φpp1q “ p “

p´1
ź

i“1

p1 ´ ζiq.

We leave it as Exercise 5.3.5 to use the identity

1 ´ ζi “ p1 ´ ζqp1 ` ζ ` ¨ ¨ ¨ ` ζi´1q

to show that vLp1 ´ ζq “ vLp1 ´ ζiq for 1 ď i ď p ´ 1, from which it follows that

vLppq “ pp ´ 1qvLp1 ´ ζq ñ vLp1 ´ ζq “
1

p ´ 1
.

Thus, by Proposition 5.2.3, we have vLpLˆq “ 1
p´1Z, and our conclusion follows.

(ii) Let s “ t ` 1 ě 2. Since ζp
t

is a p-th root of unity, case (i) shows that

vLpζp
t

´ 1q “
1

p ´ 1
.

Now, write ζ “ 1 ` η for some η P OL with vLpηq ą 0 so that we have

ζp
t

´ 1 “ p1 ` ηqp
t

´ 1 “ ηp
t

` pηy, (5.7)

for some y P OL. By rearranging (5.7) and using that vLppnyq ą vLppq ě 1
p´1 “ vLpζp

t

´ 1q,
we obtain

vLpηp
t

q “
1

p ´ 1
ñ vLpηq “ vLpζ ´ 1q “

1

pp ´ 1qpt
.

To conclude that vLpLˆq “ 1
pp´1qpt , we note that ζ is a root of the polynomial Φppxpt

q, meaning

rL : Qps ď pp ´ 1qpt.

We now combine Examples 5.3.3 and 5.3.4 to determine the behavior of ramification in a general
cyclotomic extension of Qp. Let ζm be a primitive m-th root of unity and write m “ m1ps, with
pm1, pq “ 1. We can decompose the extension Qppζmq{Qp into a tower of subextensions as follows:

L “ Qppζmq

Kurpζpq

Kur “ Qppζm1 q

K “ Qp

totally ramified,

degree ps´1

totally ramified,
degree p ´ 1

maximal unramified,
degree f as in Ex. 5.3.3

We conclude that the extension Qppζmq{Qp is neither unramified nor totally ramified. Instead, it
has ramification index pp ´ 1qps´1 and its residue field is of degree f over Fp.
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Remark 5.3.6. As promised in Remark 1.2.5, we construct a field that is equipped with a non-discrete
valuation. Let K “ Qppζpq, and for each n ě 1, let Kn “ Qppζpn`1q. Then, we have the following
infinite tower of non-archimedean local fields:

Qp Ă K Ă K1 Ă ¨ ¨ ¨ Ă Kn Ă ¨ ¨ ¨

At each step in this construction, we can extend the p-adic valuation vp on Qp to a discrete valuation
on Kn. However, if we define K8 “

Ť

ně1 Kn, then Example 5.3.4 shows that vp extends to a non-
discrete valuation on K8. This type of construction plays an important role in Iwasawa theory.

For a general extension L{K of non-archimedean local fields, the process of decomposing L{K
into a diagram of the form (5.6) is of course a bit more complicated than in the cyclotomic case.
However, we can still describe it in a surprisingly explicit way. Indeed, the maximal unramified
subextension K Ď Kur Ď L is obtained by adjoining all roots of unity contained in L whose order is
prime to the characteristic of κK ; this follows exactly as in Example 5.3.3 but replacing Qp with K.
As for the totally ramified extension L{Kur, the following proposition characterizes totally ramified
extensions of non-archimedean local fields:

Proposition 5.3.7. Let L{K be a finite extension of non-archimedean local fields. Then, L{K
is totally ramified if and only if L “ Kpαq, where α is a root of a polynomial

fpxq “ a0x
n ` a1x

n´1 ` ¨ ¨ ¨ ` an P Krxs

with
vpa0q “ 0, vpaiq ą 0 for i “ 1, . . . , n ´ 1, and vpanq “ 1.

Such a polynomial is called an Eisenstein polynomial.

Proof. We leave the proof of this proposition for your future explorations of local fields, but if you
want a proof now, see [5, Proposition 7.55].

Thus, Propositions 5.3.1 and 5.3.7 show that we can characterize unramified and totally ex-
tensions of Qp using roots of cyclotomic and Eisenstein polynomials, respectively. While the con-
struction of the totally ramified extensions Qppζpsq{Qp in Example 5.3.4 might seem unrelated to
Proposition 5.3.7, the two are actually related in an interesting way: since

Φppxq “
xp ´ 1

x ´ 1
“ xp´1 ` xp´2 ` ¨ ¨ ¨ ` x ` 1,

we see that the shifted polynomial

Φppx ` 1q “
px ` 1qp ´ 1

x
“ xp´1 ` pxp´2 ` ¨ ¨ ¨ `

ppp ´ 1q

2
x ` p

has ζp ´ 1 as a root and is an Eisenstein polynomial in Qprxs. Similarly, we can show that ζps ´ 1

is a root of the Eisenstein polynomial Φpppx ` 1qp
s´1

q, and thus, the totally ramified cyclotomic
extensions Qpζpsq{Qp are generated by roots of Eisenstein polynomials.
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