PAWS Root Systems: PROBLEM SET 5

Devjani Basu, Marcella Manivel, Mishty Ray, Ajmain Yamin

November 12, 2024

Question 1: This problem deals with *p*-adic integers and *p*-adic numbers.

(1) Consider the sequence of integers

 $4, 34, 334, 3334, \dots$

Is this a Cauchy sequence with respect to the 5-adic topology on \mathbb{Q} ? If so, what is the limit?

(2) Show that every series of the form

 $a_{-n}p^{-n} + \dots + a_0 + a_1p + \dots + a_mp^m + \dots$, with $0 \le a_i < p$ for all i,

has a sequence of partial sums which is a Cauchy sequence with respect to the *p*-adic topology on \mathbb{Q} .

(3) Show that -1 is a square in \mathbb{Z}_5 . In other words, find a series

 $a_0 + a_1 5 + a_2 5^2 + \cdots$, with $a_i \in \{0, 1, 2, 3, 4\}$ for all i,

such that

$$(a_0 + a_1 5 + a_2 5^2 + \cdots)^2 + 1 = 0.$$

Question 2:

Let F be a non-archimedean local field and assume that G = GSpin(V) is quasi-split (hence you have root datum). Using the root datum for GSpin, show that there is an embedding of the following groups,

$$\mathbf{G}_n \hookrightarrow \mathbf{G}_{n+1} \hookrightarrow \mathbf{G}_{n+2}.$$

One can proceed as follows:

(1) Assume that n = 2m where m is a positive integer. The derived group of GSpin_i is Spin_i . Furthermore, GSpin_i is an almost direct product (has finite intersection) of Spin_i and the connected component of the center. The connected component of the center of G_i is $\{e_0^*(t) : t \in \operatorname{GL}(1)\}$. First, show that for each root subgroup there is an embedding of G_n into G_{n+1} and then into G_{n+2} .

- (2) Next, embed the connected component of the center of G_n into G_{n+1} and then into G_{n+2} .
- (3) Then, to ensure that these embeddings are well-defined, show that it is well defined on the intersections.

Question 3: Consider the element

$$\mathfrak{q} = \begin{pmatrix} q^{1/2} & 0\\ 0 & q^{-1/2} \end{pmatrix} \in \mathrm{GL}_2(\mathbb{C}).$$

Define the \mathbb{C} -vector space V using the relation

$$V := \{ X \in \mathfrak{gl}_2(\mathbb{C}) : \mathfrak{q} X \mathfrak{q}^{-1} = q X \}.$$

Define the subgroup $H \subset GL_2(\mathbb{C})$ using the relation

$$H := \{g \in \mathrm{GL}_2(\mathbb{C}) : \mathfrak{q} X \mathfrak{q}^{-1} = X\}$$

The group H acts on V via

$$h \cdot X := hXh^{-1}.$$

- (1) Show that $V = \mathbb{C}$. For people with an algebraic geometry bent, $V = \mathbb{A}^1_{\mathbb{C}}$ is an affine variety over \mathbb{C} .
- (2) GL₂ is associated with the multiplicative root data given by the set of simple roots $\Delta = \{\alpha_1\}$ where

$$\begin{array}{c} \alpha_1: T_2 \to \mathbb{C}^\times \\ \begin{pmatrix} t_1 \\ & t_2 \end{pmatrix} \mapsto \frac{t_1}{t_2} \end{array}$$

Can you characterize V in the language of roots? (Eg. V is the eigenspace corresponding to the root ... when it attains the value ...)

- (3) Show that H is the diagonal torus in GL_2 . For people with an algebraic geometry bent, $H = \mathbb{G}_m \times \mathbb{G}_m$.
- (4) Show that the *H*-action on *V* gives you two orbits, $C_0 = \{0\}$ and $C_1 = \mathbb{C} \setminus \{0\}$. For people with an algebraic geometry bent, convince yourself that C_0 and C_1 are 0- and 1-dimensional varieties over \mathbb{C} .

You have computed a geometric version of the local Langlands correspondence for $\operatorname{GL}_2(F)$ for a non-archimedean local field F of residue characteristic $q = p^f$. The two orbits recover (the equivalence class of) the trivial representation $\mathbb{1}_{\operatorname{GL}_2}$ and an infinite-dimensional representation $\operatorname{St}_{\operatorname{GL}_2}$. These representations share an infinitesimal parameter (a semisimple map $\lambda : W_F \to \operatorname{GL}_2(\mathbb{C})$) determined by the matrix \mathfrak{q} . Can you guess which orbit corresponds to $\mathbb{1}_{\operatorname{GL}_2}$? For more information, feel free to talk to Mishty.