PAWS Root Systems: PROBLEM SET 3

Devjani Basu, Marcella Manivel, Mishty Ray, Ajmain Yamin October 14, 2024

Recall the following two definitions from the lecture notes:

Definition. A subset Φ^+ of Φ is a set of **positive roots** for the root system (Φ, V) if

- for each $\alpha \in \Phi$, exactly one of α or $-\alpha$ is contained in Φ^+ , and
- for any two distinct roots $\alpha, \beta \in \Phi^+$ such that $\alpha + \beta$ is a root, $\alpha + \beta \in \Phi^+$.

Definition. A subset Δ of Φ is a base for the root system (Φ, V) if

- Δ is a basis for V as a real vector space, and
- each root α can be expressed as a linear combination of elements of Δ
 in such a way that all the coefficients of the linear combination are all
 non-negative or all non-positive.

Question 1: For each of the root systems of rank two, $A_1 \times A_1, A_2, B_2, G_2$,

- (1) Identify a set of positive roots for the root system,
- (2) Identify a base for the root system,
- (3) Draw the fundamental chamber for that root system with respect to that choice of base.

Question 2: This exercise clarifies that making a choice of a base $\Delta \subset \Phi$ is equivalent to making a choice a set of positive roots $\Phi^+ \subset \Phi$.

- (1) Prove that if Φ^+ is a set of positive roots for the root system (Φ, V) , then the set of elements in Φ^+ which cannot be written as the sum of two elements in Φ^+ is a base for (Φ, V) (cf. Question 7).
- (2) Prove that if Δ is a base for (Φ, V) then the set of roots in Φ that can be written as a non-negative linear combination of elements in Δ is a set of positive roots for the root system (Φ, V) .
- (3) Let Δ be a base and Φ^+ be a set of positive roots for the root system (Φ, V) . Prove that the following are equivalent:

- (a) $\Delta \subset \Phi^+$.
- (b) Δ is the set of elements in Φ^+ which cannot be written as the sum of two elements in Φ^+ .
- (c) Φ^+ is the set of elements in Φ that can be written as a non-negative linear combination of elements in Δ .

Question 3: If (Φ, V) is a root system, then for each root $\alpha \in \Phi$, the **coroot** α^{\vee} is given by

$$\alpha^{\vee} = 2 \frac{\alpha}{(\alpha, \alpha)}.$$

The set of all coroots is denoted by Φ^{\vee} and is called the dual root system to Φ .

- (1) Given $\alpha = (1,0)$ and $\beta = (-1/2, \sqrt{3}/2)$, compute α^{\vee} and β^{\vee} .
- (2) Verify computationally that $(\alpha^{\vee})^{\vee} = \alpha$ and $(\beta^{\vee})^{\vee} = \beta$.
- (3) Prove that for any root $\gamma \in \Phi$, $(\gamma^{\vee})^{\vee} = \gamma$.

Question 4: Recall the definition of **isomorphism** of root systems. Use this to show that the root systems B_2 and C_2 are isomorphic, and the root systems $A_1 \times A_1$ and D_2 are isomorphic.

Question 5: This exercise has you prove the key proposition that was used to classify root systems of rank two. Suppose α and β are roots, α is not a multiple of β , and $(\alpha, \alpha) \geq (\beta, \beta)$. Prove that one of the following holds:

- (1) $(\alpha, \beta) = 0$
- (2) $(\alpha, \alpha) = (\beta, \beta)$ and the angle between α and β is $\pi/3$ or $2\pi/3$
- (3) $(\alpha, \alpha) = 2(\beta, \beta)$ and the angle between α and β is $\pi/4$ or $3\pi/4$
- (4) $(\alpha, \alpha) = 3(\beta, \beta)$ and the angle between α and β is $\pi/6$ or $5\pi/6$

Question 6: Prove that if α and β are distinct elements of a base Δ then $(\alpha, \beta) \leq 0$. In other words, prove that the angle formed between any two simple roots is always obtuse or a right angle.

Question 7: In any root system, there always exists a base.

Think about how you would prove this fact. Then read the proof of Theorem 8.16 in $[1]^1$ Summarize the argument in your own words.

Question 8: This exercise will clarify the relationship between various choices of bases of a root system (Φ, V) .

(1) Prove that any two Weyl chambers C, C' can be connected by a sequence of chambers $C_0 = C, C_1, \ldots, C_l = C'$ such that C_i is adjacent to C_{i+1} .

¹The book is available at Springer's website or on ResearchGate or at the link below.

- (2) Prove that if C, C' are adjacent Weyl chambers separated by hyperplane H_{α} then $s_{\alpha}(C) = C'$.
- (3) Using the previous two parts, prove that the Weyl group W acts simply transitively on the set of Weyl chambers. Conclude that the number of Weyl chambers is equal to the order of the Weyl group.
- (4) Prove that for each Weyl chamber C, there exists a unique base Δ_C for (Φ, V) such that C is the fundamental Weyl chamber associated to Δ_C .
- (5) Let Δ and Δ' be two bases for (Φ, V) . Prove that there exists a (unique) Weyl group element $w \in W$ such that $w(\Delta) = \Delta'$. Conclude that the base of a root system is well defined up to Weyl group automorphisms, and moreover, the number of distinct bases is equal to the order of the Weyl group.

Question 9: Let (Φ, V) and (Φ', V) be two (reduced) root systems in the same Euclidean vector space V. Suppose there exists a base for Φ which is also a base for Φ' . Prove that $\Phi = \Phi'$.

Question 10: This problem has you classify the irreducible (reduced) root systems of rank three. Let (Φ, V) be an irreducible root system of rank three. Let $\Delta = \{\alpha, \beta, \gamma\}$ be a base. Write $\theta_{\alpha,\beta}$, $\theta_{\beta,\gamma}$, $\theta_{\alpha,\gamma}$ to denote be the angles between the given simple roots in the subscripts.

- (1) Prove that the irreducibility of (Φ, V) implies that no two of the angles $\theta_{\alpha,\beta}$, $\theta_{\beta,\gamma}$, $\theta_{\alpha,\gamma}$ can be 90°.
- (2) Prove that $90^{\circ} \le \theta_{\alpha,\beta}, \theta_{\beta,\gamma}, \theta_{\alpha,\gamma} < 180^{\circ} \text{ and } \theta_{\alpha,\beta} + \theta_{\beta,\gamma} + \theta_{\alpha,\gamma} < 360^{\circ}.$
- (3) Conclude that
 - exactly one of the three angles $\theta_{\alpha,\beta}$, $\theta_{\beta,\gamma}$, $\theta_{\alpha,\gamma}$ is 90°,
 - at least one of the other two angles is 120°,
 - and none of the angles are 150°.
- (4) Without loss of generality, assume $\theta_{\alpha,\beta} \leq \theta_{\beta,\gamma} \leq \theta_{\alpha,\gamma}$. Conclude that $(\theta_{\alpha,\beta},\theta_{\beta,\gamma},\theta_{\alpha,\gamma}) = (90^{\circ},120^{\circ},120^{\circ})$ or $(90^{\circ},120^{\circ},135^{\circ})$.
- (5) There are three possibilities:
 - Case A: $(\theta_{\alpha,\beta}, \theta_{\beta,\gamma}, \theta_{\alpha,\gamma}) = (90^{\circ}, 120^{\circ}, 120^{\circ})$
 - Case B: $(\theta_{\alpha,\beta}, \theta_{\beta,\gamma}, \theta_{\alpha,\gamma}) = (90^{\circ}, 120^{\circ}, 135^{\circ})$ and $(\alpha, \alpha) < (\gamma, \gamma)$
 - Case C: $(\theta_{\alpha,\beta}, \theta_{\beta,\gamma}, \theta_{\alpha,\gamma}) = (90^{\circ}, 120^{\circ}, 135^{\circ})$ and $(\alpha, \alpha) > (\gamma, \gamma)$

Verify by inspecting the figures in Section 8.9 of [1] that the root systems A_3 , B_3 , C_3 fall into the above three cases respectively.

(6) Prove, using the fact that a root system is determined uniquely by any of its bases (see Question 9) that any irreducible root system of rank three is isomorphic to A_3 , B_3 , or C_3 .

References

[1] Brian Hall, Lie Groups, Lie Algebras, and Representations, volume 222 of Graduate Texts in Mathematics. Springer, Cham, second edition, 2015. An elementary introduction.(link to download)