PAWS Root Systems: PROBLEM SET 1

Devjani Basu, Marcella Manivel, Mishty Ray, Ajmain Yamin September 16, 2024

Question 1: Describe the difference between a root system and a basis.

Question 2: Verify that A_{ℓ} is a root system.

Question 3: Verify that $A_1 \times A_1$, B_2 , C_2 , G_2 are root systems of rank two.

Question 4: For every $\alpha \in \Phi$ for the root system of type A_2 , write down s_{α} and H_{α} . Now all of the H_{α} divide the plane into connected components. Visualize these connected components. Recall the terminology associated with these connected components.

Question 5: Fix a finite dimensional real vector space $V := \mathbb{R}^l$ with the standard Euclidean inner product (dot product). For $\alpha \in V$, let H_{α} denote the hyperplane or subspace perpendicular to α , i.e.

$$H_{\alpha} = \{ \beta \in V : (\alpha, \beta) = 0 \}.$$

Let s_{α} define a reflection, i.e.

$$s_{\alpha}(\lambda) = \lambda - \frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha$$

- 1. Verify that $s_{\alpha}^2=1.$ [So s_{α} has order 2 in the group of orthogonal transformations O(V).]
- 2. Let V' be a subspace of V. If a reflection s_{α} leaves V' invariant, prove that either $\alpha \in V'$ or else $V' \subset H_{\alpha}$.
- 3. Refer to the table in Section 5 (Classification of Root System). Show that the order of $s_{\alpha}s_{\beta}$ is 2, 3, 4, 6 when $\theta=\frac{\pi}{2},\frac{\pi}{3}$ or $\frac{2\pi}{3},\frac{\pi}{4}$ or $\frac{3\pi}{4},\frac{\pi}{6}$ or $\frac{5\pi}{6}$, respectively. [Note that $s_{\alpha}s_{\beta}=$ rotation through 2θ].
- 4. Show by example that $\alpha \beta$ may be a root even when $(\alpha, \beta) \leq 0$.

Question 6: Let Φ be a set of vectors in a euclidean space V, satisfying items [1]-[4] of Definition 4.4.

- 1. Prove that the only possible multiples of $\alpha \in \Phi$ which can be in Φ are $\pm 1/2\alpha, \pm \alpha, \pm 2\alpha$.
- 2. Verify that $\{\alpha \in \Phi | 2\alpha \notin \Phi\}$ is a root system.