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1. Introduction

These lecture notes are in draft form and are created for the Preliminary Arizona
Winter School 2024: Symmetries of root systems course. The hope for these
lecture notes is to make the subject accessible to advanced undergraduate and
early graduate students most of whom have a semester in Abstract Algebra. The
main sources for the notes are [Hum90], [Car89], [Hal15].

2. Intuitive Definition

A root system is a ”very symmetrical” set of vectors in n-dimensional Euclidean
space. The classical motivation for studying root systems is their role in the classi-
fication of semi-simple Lie algebras, i.e. classical and exceptional groups, over the
complex numbers. The root datum has connections to the Langlands dual group as
well as L-functions. Thus, root systems have connections to representation theory,
number theory, algebra, geometry, and physics.

Each of the following examples are in R2. How would one describe the symme-
tries that you see in the pictures? What properties can you derive?

Type A2

Type B2

1
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Type C2

Type G2

We will do an actual definition in a minute, but from these pictures, we see that

(1) For any vector v, ´v is also in the root system
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(2) If you take any vector v and look at the in the perpendicular to v, reflect
he whole picture across that line, the reflection corresponds to the original
picture.

Let V be a real Euclidean space endowed with a positive definite symmetric
bilinear form pλ, µq. A reflection s is a linear operator on V on which it sends a
nonzero vector α to ´α and fixes pointwise the hyperplane Hα orthogonal to α.
We typically write s “ sα understanding that for any c P R, scα “ sα. A finite
subgroup of reflections is an interesting type of finite subgroup of OpV q and there
is such a classification of all such groups!

Note that

(2.1) sαpλq “ λ ´
2pλ, αq

pα, αq
α

Once can easily compute that s2α “ 1 and so sα has order 2 in the group of
orthogonal transformations OpV q.

3. Basic Examples of Types of Root Systems

In our intuitive description of root systems, we only dealt with Rank 2. But
these generalize to higher rank in a natural way.

3.1. pAn´1, n ě 2). Consider the symmetric group Sn. Sn can be though of as
a subgroup of Opn,Rq. We can see this by noting that Rn has a standard basis
of vectors te1, e2, . . . , enu. We can make a permutation act on V by permuting
the standard basis vectors ( permuting the subscripts). Recall that a transpo-
sition is a permutation which exchanges two elements and keeps all other fixed.
Moreover, every permutation can be written as a product of transpositions. So
what happens with the transposition pijq? Let’s consider R4. We can see that
the trasnposition p23q as as a reflection sending e2 ´ e3 to it negative and fixing
pointwise the orthogonal compliment. Not that this is all the vectors having equal
ith and jth component). As we stated before and was in Problem set 0,, Sn is
generated by transpositions so it is a reflection group. Indeed, Sn is generated by
the transpositions pi, i ` 1q, 1 ď i ď n ´ 1.

3.2. pBn, n ě 2q. Let V be Rn, so Sn acts on V by permuting the basis vectors
as before. There are other reflections sending ei to ´ei and fixing the other ej.
Since the dimension of V is n, these sign changes generate of group of order 2n

isomorphic to pZ{2Zqn. This group of sign changes is

‚ normalized by Sn

‚ intersects Sn trivially.

Conjugating the sign change e1 to ´e1 by a transpositions gives another sign change
so the semidirect product with Sn is a group of order 2nn! and is a reflection group
that we call W . In general this will normally be a Weyl group which we will discuss
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later. The Weyl group can be thought of as the skeleton of the corresponding group
of Lie type.

3.3. (Dn, n ě 4q. There is another reflection group acting on Rn by permuting
the standard basis vectors, it is a subgroup of index 2 in the group of type Bn

above. Note that Sn normalizes the subgroup consisting of sign changes which
involve an even number of signs, generated by the reflections sending ei ` ej to
´pei ` ejq, i ‰ j. So the semidirect product is also a reflection group.

4. Root Systems

The origins of why these are called roots, come from the roots of characteristic
polynomials. One of the reasons that we study root systems is that many groups
have associated root data and this root data determines this group, up to iso-
morphism. Around the time period of 1880-1900 Cartan and Killing proved the
following.

Theorem 4.1. Every semisimple Lie algebra over the complex numbers has an
associated root system and the root system determines the Lie algebra (up to iso-
morphism).

The result was generalized by Chevalley in the 1940s and 1950s for reductive
groups. That is, he showed that

Theorem 4.2. Every reductive algebraic group has associated root data, and up
to isomorphism, this root data determines the group.

Next we define roots systems more formally. We fix a finite dimensional real
vector space V :“ Rl with the standard Euclidean inner product, which is also
known as the dot product.

Definition 4.3. For α P V,Hα denotes the hyperplane or subspace perpendicular
to α, i.e.

Hα “ tβ P V : pα, βq “ 0u.

Definition 4.4. A subset Φ of V is called a root system of V if the following
axioms are satisfied

(1) Φ is a finite set of non-zero vectors
(2) Φ spans V .
(3) if r, λ P Φ, then

srpλq “ λ ´
2pr, λq

pr, rq
r P Φ.

Another way to say this is that every root is closed under reflection through
the hyperplane perpendicular to r

(4) (Integrability)If r, λ P Φ then xλ, ry “
2pr, λq

pr, rq
is an integer.
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An element α P Φ is a root.
We will also assume in the definition for our root system, that it is reduced,

that is to say that the only scalar multiples of a root λ P Φ are λ and ´λ.

Not all definitions have item (4) - this is also called a Crystallographic root
system. Since Φ spans V , the dimension of V over the real numbers is l and is an
invariant of Φ called the rank of Φ, and denote it by rkpΦq.

Definition 4.5. Let Φ be a root system in V . For α P Φ, the hyperplanes Hα

divide V into connected components. These connected components of V z
Ť

α Hα

are the Weyl Chambers of Φ (We will see pictures in a minute, and will make
sense then.)

4.1. Examples. We will work in Rl with standard basis e1, e2, . . . el with the stan-
dard Euclidean inner product, also known as the dot product.

Example 4.6. The type A1 root system. For this example we will work in R2 with
the standard basis e1, e2. Let Φ “ te1 ´e2, e2 ´e1u. Geometrically we can represent
this with the following picture

e2 ´ e1

e1 ´ e2

Let V be the span of p´1, 1q. Then Φ is a root system in E. Let’s check the
integrability property (iv) in Def 4.4.

2pe1 ´ e2, e2 ´ e1q

pe2 ´ e1, e2 ´ e1q
“

2p´1 ´ 1q

p1 ` 1q
“ ´2.

This is the root system of type A1 which corresponds to the dimension of V , but
we drew this in R2 to generalize this to the rank 2 examples below.

Example 4.7. The type A2 root system. Consider R3 with the standard basis
vectors e1, e2, e3, Let Φ “ te1 ´ e2, e2 ´ e1, e1 ´ e3, e3 ´ e1, e2 ´ e3, e3 ´ e2u. The
span of Φ is the plane with normal vector e1 ` e2 ` e3. Let V be this subspace. We
claim that Φ is a root system in V . Geometrically, we can represent this with the
following picture.
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e2 ´ e1

e1 ´ e2

e2 ´ e3

e1 ´ e3e3 ´ e1

e3 ´ e2

To check integrability, one must check all the cases such as

2pe1 ´ e2, e2 ´ e3q

pe1 ´ e2, e1 ´ 22q
“

2p´1q

2
“ ´1.

Bot notice there are a lot of cases to check!

Example 4.8. The Al root system. Let e1, e2, . . . , el`1 be the standard basis of
Rl`1. Let Φ “ t˘pei ´ ejq : 1 ď i|j ď l ` 1u. Let V Ă Rl`1 be the span of Φ with
the inner form being the dot product.

Example 4.9. A1 ˆ A1 root system. Let e1, e2 be the standard basis. Consider
R2 with the dot product. We have two copies of the A1 root system. One given
as before with te1 ´ e2, e2 ´ e1u and the other given by te1 ` e2,´e1 ´ e2u. Let
Φ “ te1 ´e2, e2 ´e1, e1 `e2,´e1 ´e2u and as before we can represent geometrically
in the following picture.

e2 ´ e1

e1 ´ e2

e1 ` e2

´e1 ´ e2

Example 4.10. The B2 root system. Consider R2 with the dot product with basis
e1, e2. Let Φ “ t˘e1,˘e2,˘pe1 ` e2q,˘pe1 ´ e2qu. Then we can show that this is a
root system, and can be represented geometrically as follows: Type B2



SYMMETRIES OF ROOT SYSTEMS 7

e2 ´ e1

e1 ´ e2

e1 ` e2

´e1 ´ e2

e2

´e2

e1´e1

Example 4.11. The Type C2 root system. In R2 with the dot product and Φ “

t˘2e1,˘2e2,˘pe1 ` e2q,˘pe1 ´ e2qu

e2 ´ e1

e1 ´ e2

e1 ` e2

´e1 ´ e2

2e2

´2e2

2e1´2e1

Example 4.12. The Type G2 root system. Now consider R3 with basis elements
e1, e2, e3. Let Φ “ t˘pe1 ´ e2q,˘pe1 ´ e3q,˘pe2 ´ e3q,˘p2e1 ´ e2 ´ e3q,˘p2e2 ´

e1 ´ e3q,˘p2e3 ´ e1 ´ e2qu. Note that the fist six vectors are the same as for A2 and
these are in the hyperplane perpendicular to e1 ` e2 ` e3. The other vectors are in
the same plane, so let V be the plane. Let α “ e1 ´ e2 and β “ 2e2 ´ e1 ´ e3.
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β ` α

´β ´ 2α ´β ´ α

β ` 2α

α´α

´β ´ 3α ´β

β β ` 3α

3β ` 2α

´3β ´ 2α

As it turns out, we have now described all of the irreducible root systems of rank
2.

This is a nice place to give the following definitions that will be needed for
Problem set 2. Let Φ be a root system. The set of positive roots, which we
denote by Φ` is a subset of Φ such that

‚ For each α P Φ exactly one of α or ´α is contained in Φ`.
‚ For any two distince roots α, β P Φ` such that α` β is a root, α` β P Φ`.

An element in Φ` is called a simple root if it can not be written as the sum of
two elements in Φ`. The set of simple roots is referred to as a base for Φ.

5. Classification of Root Systems

The integrability condition in Def 4.4 restricts what angles are possible. We
define the symbol,

xβ, αy :“ 2
pα, βq

pβ, βq
.

Since xβ, αy and xα, βy are integers we have that

xβ, αyxα, βy “ 2
pβ, αq

pα, αq
¨ 2

pα, βq

pβ, βq

“ 4
pα, βq2

|α|2|β|2

“ 4 cos2 θ “ p2 cos θq
2.
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Since 2 cos θ P r´2, 2s and p2 cos θq2 is an integer,

cos θ P

"

0,˘
1

2
,˘

?
2

2
,˘

?
3

2
,˘1

*

which corresponds to the angles
"

π

2
,
π

3
or

5π

3
,
π

4
or

7π

4
,
π

6
or

11π

6
, 0 or π

*

.

We are wanting a reduced system, so no scalar multiples of a root α other than
α and ´α so 0 and π are not included, these correspond to 2α and ´2α. Another
way to look at this is if 4 cos θ “ 4 and then θ “ π which would make β “ ˘α.
The gives the following possibilities:

xα,βy xβ, αy θ

ˆ

|β|

|α|

˙2

0 0 π
2

unrestricted
1 1 π

3
1

-1 -1 2π
3

1
1 2 π

4
2

-1 -2 3π
4

2
1 3 π

6
3

-1 -3 5π
6

3

In the Al root system, all roots have equal length. In the B2 and C2 root systems,
two roots have length corresponding to 2 (the square of the ratio of the lengths).
In the G2 root system, two roots have length corresponding to 3 and all the angles

are multiples of
π

6
. This ends up leading to a classification of root systems.

We begin with a the following proposition which can be found in [Hal15], and is
also left as an exercise in Problem Set 3.

Proposition 5.1. Suppose α and β are roots, α is not a multiple of β and pα, αy ě

xβ, βq. Then one of the following holds.

(1) pα, βq “ 0
(2) pα, αq “ pβ, βq and the angle between α and β is π{3 or 2π{3.
(3) pα, αq “ 2pβ, βq and the angle between α and β is π{4 or 3π{4.
(4) pα, αq “ 3pβ, βq and the angle between α and β is π{6 or 5π{6.

Proposition 5.2. Every rank two root system is isomorphic to A1 ˆ A1, A2, B2,
or G2.

Proof. We assume that V “ R2; and let Φ Ă R2 be a root system and let θ be
the smallest angle occurring between any two vectors in Φ. Since the element in Φ
spans R2, we can find two linearly independent vectors α and β in Φ. If the angle
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between α and β is greater than π{2, then the angle between α and ´β is less than
π{2; thus the minimum angle is at most π{2. From 5.1, θ P tπ{2, π{3, π{4, π{6u.
Let α and β be two elements of Φ such that the angle between them is the minimum
angle θ. Then the vector ´s ` βpαq will be a vector that is at angle θ to β but
on the opposite side of β from α. Thus, ´sβpαq is at angle 2θ to α. Then ´ssβ ¨αβ
is at most 3θ to α. Continuing we get vectors at angle nθ to α for all n. Since a
nontrivial positive multiple of a roots is not a root, these vectors are unique. Each
of the allowed values of θ eveny divides 2π, we will eventually get to α again (else
there would be an angle smaller than θ).

Thus ϕ must consist of n equally spaced vectors with consecutive vectors sep-
arated by angle θ, where θ is one of the acute angles in Proposition 5.1. If say,
θ “ π{4 then in order to satisfy the length requires of Proposition 5.1, the roots
must alternate between shorter length and a second length that is greater by a fac-
tor of

?
2. Thus our root system must be isomorphic toB2. Similar reasoning shows

that all remaining values of θ yield one of the root systems A1 ˆA1, A2, B2, G2. □

6. A base of a root system and Weyl Chambers

Definition 6.1. A nonempty root system Φ us irreducible if it is not the direct
sum of two nonempty root systems.

Definition 6.2. A nonempty root system Φ is reducible if it can be written as a
disjoint union of nonempty root systems, i.e.

Φ “ Φ1

ğ

Φ2

where Φ1 and Φ2 are root systems.

Every root system is the direct sum of some set of irreducible root systems,
and this composition is unique up to the order of the terms. This is why for
classification purposes, we only need to consider irreducible root systems.

Definition 6.3. Two root systems pV1,Φ1q and pV2,Φ2q are isomorphic if there
is an invertible linear transformation V1 to V2 that maps Φ1 to Φ2 such that for
each pair of roots, the number xx, yy is preserved.

6.1. Weyl group. The group W generated by all reflections sα, where α P Φ, is
known as the Weyl group of Φ.

Recall that sα is the reflection through the hyperplane of α. Since Φ is a root
system, each sα preserves Φ so W pΦq may also be viewed as a subgroup of the
permutation group of Φ. Note that W pΦq is then finite.

Example 6.4. The Weyl group of A2. Recall that the root system of A2 is
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The Weyl group of this system is the subgroup of the symmetry group of A2 gen-
erated by reflections. This is the symmetry group of an equilateral triangle, which
is S3. (Think of as the vertices of an equilateral triangle).

Note that W is not the full symmetry group of the root system. If we rotate by
60 degrees, Φ is preserved, but not as an element of W .

6.2. Weyl Chambers. If Φ Ă V is a root system, consider the hyperplane Hα

perpendicular to each root α and recall that sα denotes the reflection about the
hyperplane. From before, the Weyl group is the group of reflections generated by
the s1

αs. Note that the complement of this set of hyperplanes is disconnected and
each component is called a Weyl chamber.

If Φ is a root system, a subset ∆ of Φ is called a base if the following conditions
hold”

(1) ∆ is a basis for V as a vector space.
(2) Each root α can be expressed as a linear combination of elements of ∆ with

linear coefficients in such a way that these coefficients are all non-positive
or all non-negative.

The non-negative roots are called positive roots and the non-positive roots are
called negative roots. The elements of ∆ are called simple roots.
Fix a set ∆ of simple roots, the fundamental Weyl chamber associated to ∆ are

the set of points v P V such that pα, vq ą 0 for all α P ∆.

Example 6.5. Recall that for A2,

Φ “ te1 ´ e2, e2 ´ e1, e1 ´ e3, e3 ´ e1, e2 ´ e3, e3 ´ e2u.

And as it turns out,

∆ “ te1 ´ e2, e3 ´ e1u.

Example 6.6. Base for G2. Recall from, before that we had α “ e1 ´ e2 and β “

2e2 ´ e1 ´ e3 and the roots were linear combinations of α and β. Then ∆ “ tα, βu

for G2. Which makes sense when we look at the geometric interpresation of the
root system for G2.
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β ` α

´β ´ 2α ´β ´ α

β ` 2α

α´α

´β ´ 3α ´β

β β ` 3α

3β ` 2α

´3β ´ 2α

,

Theorem 6.7. The order of the Weyl group is equal to the number of Weyl cham-
bers.

Proof. See Hall, Proposition 8.23 and Proposition 8.27. □

Recall from our A2 example, the Weyl group has 6 elements and there are 6
Weyl chambers.

7. Cartan Matrices and Dynkin Diagrams

Theorem 7.1. (Existence Theorem) Let Φ be an irreducible root system. Then
there exists a simple Lie algebra over C which has a root system equivalent to Φ.

A proof of the existence theorem can be found in [Tit66].

Theorem 7.2. (Isomorphism theorem) Any two simple Lie algebras over C with
equivalent root systems are isomorphic.

A proof of this theorem is in Jacobson[1]. This can be deceptive though.
Let Φ be a root system with base ∆ “ tα1, α2, . . . , αnu. Recall that xα, βy “

2pα, βq

pβ, βq
. The isomorphism theorem gives a matrix in [Car89, pg. 43] called the

Cartan matrix given by
pAijq “ pxαi, αjyq

which is an l ˆ l matrix with entries in the integers thanks to property (4) of
Definition 4.4 and this does not depend on the base that we choose.

Remark 7.3. Note that the diagonal elements of the Cartan matrix are xαi, αiy “ 2
for all i.
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Example 7.4. Cartan matrix for G2. We use the base for G2 of α “ e1 ´ e2 and
β “ 2e2 ´ e1 ´ e3 for G2. Then since we already know that the diagonal elements
are 2 from Remark 7.3 we just need to compute the following

xα, βy “
2pe1 ´ e2, 2e2 ´ e1 ´ e3q

2e2 ´ e1 ´ e3, 2e2 ´ e1 ´ e3q
“

2p´1 ´ 2q

1 ` 4 ` 1
“ ´1

xβ, αy “
2p2e2 ´ e1 ´ e3, e1 ´ e2q

pe1 ´ e2, e1 ´ e2q
“

2p´1 ´ 2q

2
“ ´3

Thus the Cartan matrix for G2 is

G2 :

ˆ

2 ´1
´3 2

˙

The Cartan matrices of the other individual simple algebras are shown below:

Al :

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

2 ´1
´1 2 ´1 0

´1 2 ´1
´1

´1
´1 2 ´1

0 ´1 2 ´1
´1 2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

Bl :

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

2 ´1
´1 2 ´1 0

´1 2 ´1
´1

´1
´1 2 ´1

0 ´1 2 ´1
´2 2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,
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Cl :

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

2 ´1
´1 2 ´1 0

´1 2 ´1
´1

´1
´1 2 ´1

0 ´1 2 ´2
´1 2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

Dl :

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

2 ´1
´1 2 ´1 0

´1 2 ´1
´1

´1
´1 2 ´1 ´1

0 ´1 2 0
´1 0 2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

F4 :

¨

˚

˚

˝

2 ´1 0 0
´1 2 ´1 0
0 ´2 2 ´1
0 0 ´1 2

˛

‹

‹

‚

,

E6 :

¨

˚

˚

˚

˚

˚

˝

2 ´1 0 0 0 0
´1 2 ´1 0 0 0
0 ´1 2 ´1 ´1 0
0 0 ´1 2 0 0
0 0 ´1 0 2 ´1
0 0 0 0 ´1 2

˛

‹

‹

‹

‹

‹

‚

,

E7 :

¨

˚

˚

˚

˚

˚

˚

˚

˝

2 ´1 0 0 0 0 0
´1 2 ´1 0 0 0 0
0 ´1 2 ´1 0 0 0
0 0 ´1 2 ´1 ´1 0
0 0 0 ´1 2 0 0
0 0 0 ´1 0 2 ´1
0 0 0 0 0 ´1 2

˛

‹

‹

‹

‹

‹

‹

‹

‚

,
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E8 :

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

2 ´1 0 0 0 0 0 0
´1 2 ´1 0 0 0 0 0
0 ´1 2 ´1 0 0 0 0
0 0 ´1 2 ´1 0 0 0
0 0 0 ´1 2 ´1 ´1 0
0 0 0 0 ´1 2 0 0
0 0 0 0 ´1 0 2 ´1
0 0 0 0 0 0 ´1 2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

In the last lecture we will see an example of using these matrices!

8. Dynkin Diagrams

Let Φ be a root system with base ∆, the associated Dynkin diagram corresponds
to the roots in ∆. Edges are drawn between the vertices as follows:

‚ If the vectors are orthogonal, there is no edge.
‚ If the vectors form an angle of 120 degrees, there is an undirected single
edge

‚ If the vectors form an angle of 135 degrees, there is a directed double edge
‚ If the vectors form an angle of 150 degrees, there is a directed triple edge.

We can also form the Dynkin Diagrams by reading off the Cartan matrices. The
vertices are lements of ∆ and between the two vertices α, β the number of edges is

#Edgespα, βq “ max p|xα, βy, |xβ, αy|q .

If one of the roots is a longer root, then we direct the multiple edges pointing
toward the longer root.

Example 8.1. Dynkin diagram for type A2. There are only two roots in the base
of A2 so the Dynkin diagram has two vertices , call them α1, α2. Between them is
just one edge and they have the same length so the graph is not directed. So the
Dynkin diagram for A2 is

α1 α2

Example 8.2. Dynkin diagram for type Al. We use the same base as before for
tyoe Al and use the Cartan matrix to read off the edges. Note that all of the edges
have the same length.

α1 α2 α3 α4

Example 8.3. Dynkin diagram for type G2. We have the simple roots, we will
call them α1, α2 with α2 being the longer root. From the Cartan matrix we have
the |xα2, α1y| “ 3, so there are three edges between the two vertices. We also have
an arrow pointing to the longer root. Hence, we have

α1 α2
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Follows is the description of the simple Lie algebras over the complex numbers.
For each algebra, we have the dimension, the rank, the number N of positive roots,
the order of the Weyl group W and the Dynkin diagram.

Type Dim Rank N —W— Dynkin diagram
Alpl ě 1q lpl ` 2q l 1

2
lpl ` 1q pl ` 1q!

Blpl ě 2q lp2l ` 1q l l2 2l ¨ l!
Clpl ě 3q lq2l ` 1q l l2 2l ¨ l!

Dlpl ě 4q l(2l-1) l l2 2l´1 ¨ l!

G2 14 2 6 12
F4 52 4 24 27 ¨ 32

E6 78 6 36 27 ¨ 34 ¨ 5

E7 133 7 63 210 ¨ 34 ¨ 5 ¨ 7

E8 248 8 120 214 ¨ 35 ¨ 52 ¨ 7

9. Root systems and the Langlands program

This lecture is coming to these notes soon!
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