Asymptotics of reductive *p*-adic groups

Marie-France Vignéras

Arizona Winter School 2025-03-12

Marie-France Vignéras Asymptotics of reductive *p*-adic groups

高 と く ヨ と く ヨ と

What are the "asymptotics" ? Why are the "asymptotics" interesting ?

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

同下 イヨト イヨト

You probably find, like me, that the classification of irreducible smooth representations of G is very involved !

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

You probably find, like me, that the classification of irreducible smooth representations of G is very involved !

But their behaviour around the identity, that we call the "asymptotics" of (π, V) , are expected to be more uniform if the characteristic of the coefficient field R is not p.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

You probably find, like me, that the classification of irreducible smooth representations of G is very involved !

But their behaviour around the identity, that we call the "asymptotics" of (π, V) , are expected to be more uniform if the characteristic of the coefficient field R is not p.

"asymptotics", "around the identity", "more uniform" this is vague !

イロト 不得 トイヨト イヨト 二日

The jumps where $G_{x,r} \neq G_{x,r+} = \bigcup_{s>r} G_{x,s}$ are rational numbers and the set of jumps is countable.

イロト 不得 トイヨト イヨト 二日

The jumps where $G_{x,r} \neq G_{x,r+} = \bigcup_{s>r} G_{x,s}$ are rational numbers and the set of jumps is countable.

'The depth $r = d(\pi)$ of π is the smallest number such that $V^{G_{x,r+}} \neq 0$ for some x.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

The jumps where $G_{x,r} \neq G_{x,r+} = \bigcup_{s>r} G_{x,s}$ are rational numbers and the set of jumps is countable.

'The depth $r = d(\pi)$ of π is the smallest number such that $V^{G_{x,r+}} \neq 0$ for some x.

"around the identity" means "on $G_{d(\pi)+} = \bigcup_{x \in \mathcal{B}(G)} G_{x,d(\pi)+}$ "

Example: "on $G_{x,0+}$ for any x" \Leftrightarrow "on a pro-p lwahori subgroup".

Example:

"on $G_{x,0+}$ for any x" \Leftrightarrow "on a pro-p lwahori subgroup".

because for any x, $G_{x,0+}$ is contained in a pro-p lwahori subgroup and the pro-p lwahori subgroups of G are conjugate.

Example:

"on $G_{x,0+}$ for any x" \Leftrightarrow "on a pro-*p* lwahori subgroup".

because for any x, $G_{x,0+}$ is contained in a pro-p lwahori subgroup and the pro-p lwahori subgroups of G are conjugate.

First example Suppose that the dimension of π is finite. For instance the trivial *R*-representation **1** of *G*. Then

 $\pi = \dim \pi \mathbf{1}$ on $\mathrm{Ker}\pi$

and we prove: $G_{x,d(\pi)+}$ is contained in Ker π for any x

Example:

"on $G_{x,0+}$ for any x" \Leftrightarrow "on a pro-*p* lwahori subgroup".

because for any x, $G_{x,0+}$ is contained in a pro-p lwahori subgroup and the pro-p lwahori subgroups of G are conjugate.

First example Suppose that the dimension of π is finite. For instance the trivial *R*-representation **1** of *G*. Then

 $\pi = \dim \pi \mathbf{1}$ on $\mathrm{Ker}\pi$

and we prove: $G_{x,d(\pi)+}$ is contained in $\operatorname{Ker}\pi$ for any x Hence

$$\pi = \dim \pi \mathbf{1}$$
 on $G_{d(\pi)+}$.

This is what we mean by "more uniform" for a finite dimensional smooth *R*-representation !

 $\mathsf{We}=\mathsf{Henniart}\;\mathsf{V}.$

When G is compact modulo the center, any irreducible smooth R-representation π of G is finite dimensional, the building of G is a point x, and G has a unique parahoric subgroup $G_{x,0}$. The groups $G_{x,r}$ are normal in G.

When G is compact modulo the center, any irreducible smooth R-representation π of G is finite dimensional, the building of G is a point x, and G has a unique parahoric subgroup $G_{x,0}$. The groups $G_{x,r}$ are normal in G.

Example: $G = D^*$ for a division central *F*-algebra of finite dimension $\{G_{x,r}, r > 0\} = \{ \text{Id} + P_D^i, i > 0 \text{ integer} \}$

When G is compact modulo the center, any irreducible smooth R-representation π of G is finite dimensional, the building of G is a point x, and G has a unique parahoric subgroup $G_{x,0}$. The groups $G_{x,r}$ are normal in G.

Example: $G = D^*$ for a division central *F*-algebra of finite dimension $\{G_{x,r}, r > 0\} = \{ \text{Id} + P_D^i, i > 0 \text{ integer} \}$

For G general, the proof is more involved.

When G is compact modulo the center, any irreducible smooth R-representation π of G is finite dimensional, the building of G is a point x, and G has a unique parahoric subgroup $G_{x,0}$. The groups $G_{x,r}$ are normal in G.

Example: $G = D^*$ for a division central *F*-algebra of finite dimension $\{G_{x,r}, r > 0\} = \{ \text{Id} + P_D^i, i > 0 \text{ integer} \}$

For G general, the proof is more involved.

When dim π is infinite what means "more uniform" ?

That's going to be the theme of my lecture !

<ロ> <部> < 部> < き> < き> < き</p>

For two virtual *R*-representations π_1, π_2 of *G*, for two distributions D_1, D_2 on *G* we will write $\pi_1 \sim \pi_2$ or $D_1 \sim D_2$ when they are equal on some unprecised open pro-*p* subgroup of *G*

- (同) (回) (回) - 回

For two virtual *R*-representations π_1, π_2 of *G*, for two distributions D_1, D_2 on *G* we will write $\pi_1 \sim \pi_2$ or $D_1 \sim D_2$ when they are equal on some unprecised open pro-*p* subgroup of *G*

Example $G = GL_n(D)$ for a central division *F*-algebra *D* of finite degre $d^2 = [D : F]$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

For two virtual *R*-representations π_1, π_2 of *G*, for two distributions D_1, D_2 on *G* we will write $\pi_1 \sim \pi_2$ or $D_1 \sim D_2$ when they are equal on some unprecised open pro-*p* subgroup of *G*

Example $G = GL_n(D)$ for a central division *F*-algebra *D* of finite degre $d^2 = [D : F]$. For a partition $\lambda = (\lambda_1 \ge \lambda_2 \ge ...)$ of *n* we have the upper triangular parabolic subgroup P_{λ} of $G = GL_n(D)$ with diagonal blocks of size $\lambda_1, \lambda_2, ...$

For two virtual *R*-representations π_1, π_2 of *G*, for two distributions D_1, D_2 on *G* we will write $\pi_1 \sim \pi_2$ or $D_1 \sim D_2$ when they are equal on some unprecised open pro-*p* subgroup of *G*

Example $G = GL_n(D)$ for a central division *F*-algebra *D* of finite degre $d^2 = [D : F]$. For a partition $\lambda = (\lambda_1 \ge \lambda_2 \ge ...)$ of *n* we have the upper triangular parabolic subgroup P_{λ} of $G = GL_n(D)$ with diagonal blocks of size $\lambda_1, \lambda_2, ...$ $P_{(n)} = G, P_{(1,...,1)} = B$ the upper triangular subgroup.

We think that

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

For two virtual *R*-representations π_1, π_2 of *G*, for two distributions D_1, D_2 on *G* we will write $\pi_1 \sim \pi_2$ or $D_1 \sim D_2$ when they are equal on some unprecised open pro-*p* subgroup of *G*

Example $G = GL_n(D)$ for a central division *F*-algebra *D* of finite degre $d^2 = [D : F]$. For a partition $\lambda = (\lambda_1 \ge \lambda_2 \ge ...)$ of *n* we have the upper triangular parabolic subgroup P_{λ} of $G = GL_n(D)$ with diagonal blocks of size $\lambda_1, \lambda_2, ...$ $P_{(n)} = G, P_{(1,...,1)} = B$ the upper triangular subgroup.

We think that

$$\pi = \sum_{\lambda} c_{\pi}(\lambda) \operatorname{ind}_{\mathcal{P}_{\lambda}}^{\mathcal{G}} 1, \ \ c_{\pi}(\lambda) \in \mathbb{Z}, \quad ext{on } \mathcal{G}_{d(\pi)+}.$$

We proved only \sim but we prove it when p is large enough.

• = • =

Proof: Reduction to $R = \mathbb{C}$ using that any cuspidal irreducible representation of $GL_n(D)$ over \mathbb{F}_{ℓ}^{ac} lifts to \mathbb{Q}_{ℓ}^{ac} (Minguez-Sécherre).

イロト 不得 トイヨト イヨト 二日

イロト 不得 トイヨト イヨト 二日

 \sim is enough for the following application:

 \sim is enough for the following application:

For any $x \in \mathcal{B}(G)$, $r \ge 0$, there is a unique polynomial $Q_{\pi,x,r}(X) \in \mathbb{Z}[X]$ such that

 $\dim V^{\mathcal{G}_{x,r+i}} = Q_{\pi,x,r}(q^{di}), \quad i >> 0 \text{ integer}.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

 \sim is enough for the following application:

For any $x \in \mathcal{B}(G)$, $r \ge 0$, there is a unique polynomial $Q_{\pi,x,r}(X) \in \mathbb{Z}[X]$ such that

 $\dim V^{\mathcal{G}_{x,r+i}} = Q_{\pi,x,r}(q^{di}), \quad i >> 0 \text{ integer}.$

If dim $\pi = \infty$ the degree of $Q_{\pi,x,r}(X)$ is $d^2 \sum_{i < j} \lambda_i \lambda_j$ for some partition λ of n.

 \sim is enough for the following application:

For any $x \in \mathcal{B}(G)$, $r \ge 0$, there is a unique polynomial $Q_{\pi,x,r}(X) \in \mathbb{Z}[X]$ such that

$$\dim V^{G_{x,r+i}} = Q_{\pi,x,r}(q^{di}), \quad i >> 0 \text{ integer}.$$

If dim $\pi = \infty$ the degree of $Q_{\pi,x,r}(X)$ is $d^2 \sum_{i < j} \lambda_i \lambda_j$ for some partition λ of n. 0 iff dim $V < \infty$ iff $\lambda = n$. d(n-1) iff $\lambda = (n-1,1)$ dn(n-1)/2 iff (π, V) is generic iff $\lambda = (1, ..., 1)$.

Particular case $G = GL_2(F)$

イロト イヨト イヨト イヨト 三日

$$\begin{split} & \mathcal{K}_{0} = GL_{2}(O_{F}) \text{ Moy-Prasad filtration } (\mathcal{K}_{i} = \mathrm{Id} + \mathcal{M}_{2}(P_{F}^{i}))_{i \geq 1} \\ & I_{0} = \begin{pmatrix} O_{F} & O_{F} \\ P_{F} & O_{F} \end{pmatrix}^{*} \text{ Iwahori, Moy-Prasad filtration} \\ & I_{1/2} = \mathrm{Id} + \begin{pmatrix} P_{F} & O_{F} \\ P_{F} & P_{F} \end{pmatrix} \supset I_{1} \supset I_{3/2} \supset \dots \\ & I_{i} = \mathrm{Id} + \begin{pmatrix} P_{F}^{i} & P_{F}^{i} \\ P_{F}^{i+1} & P_{F}^{i} \end{pmatrix} \supset I_{i+1/2} = \mathrm{Id} + \begin{pmatrix} P_{F}^{i+1} & P_{F}^{i} \\ P_{F}^{i+1} & P_{F}^{i+1} \end{pmatrix} \supset \dots \\ & i \text{ an integer} \end{split}$$

i an integer

★@ ★ ★ E ★ ★ E ★ = E

$$K_{0} = GL_{2}(O_{F}) \text{ Moy-Prasad filtration } (K_{i} = \text{Id} + M_{2}(P_{F}^{i}))_{i \geq 1}$$

$$I_{0} = \begin{pmatrix} O_{F} & O_{F} \\ P_{F} & O_{F} \end{pmatrix}^{*} \text{ Iwahori, Moy-Prasad filtration}$$

$$I_{1/2} = \text{Id} + \begin{pmatrix} P_{F} & O_{F} \\ P_{F} & P_{F} \end{pmatrix} \supset I_{1} \supset I_{3/2} \supset \dots$$

$$I_{i} = \text{Id} + \begin{pmatrix} P_{F}^{i} & P_{F}^{i} \\ P_{F}^{i+1} & P_{F}^{i} \end{pmatrix} \supset I_{i+1/2} = \text{Id} + \begin{pmatrix} P_{F}^{i+1} & P_{F}^{i} \\ P_{F}^{i+1} & P_{F}^{i+1} \end{pmatrix} \supset \dots$$
i an integer

 $\textit{K}_0 \supset \textit{I}_0 \supset \textit{I}_{1/2} \supset \textit{K}_1 \supset \textit{I}_1 \supset \textit{I}_{3/2} \supset \textit{K}_2 \supset \textit{I}_2 \supset \textit{I}_{2+1/2} \supset \textit{K}_3 \supset \textit{I}_3 \supset$

$$\begin{aligned} & K_0 = GL_2(O_F) \text{ Moy-Prasad filtration } (K_i = \mathrm{Id} + M_2(P_F^i))_{i \ge 1} \\ & I_0 = \begin{pmatrix} O_F & O_F \\ P_F & O_F \end{pmatrix}^* \text{ Iwahori, Moy-Prasad filtration} \\ & I_{1/2} = \mathrm{Id} + \begin{pmatrix} P_F & O_F \\ P_F & P_F \end{pmatrix} \supset I_1 \supset I_{3/2} \supset \dots \\ & I_i = \mathrm{Id} + \begin{pmatrix} P_F^i & P_F^i \\ P_F^{i+1} & P_F^i \end{pmatrix} \supset I_{i+1/2} = \mathrm{Id} + \begin{pmatrix} P_F^{i+1} & P_F^i \\ P_F^{i+1} & P_F^{i+1} \end{pmatrix} \supset \dots \\ & i \text{ an integer} \end{aligned}$$

 $K_0 \supset I_0 \supset I_{1/2} \supset K_1 \supset I_1 \supset I_{3/2} \supset K_2 \supset I_2 \supset I_{2+1/2} \supset K_3 \supset I_3 \supset$

0 0 0 0 1/2 1 1 3/2 2

Particular case $G = GL_2(F)$ The depth $d(\pi)$ of π is an integer or an half-integer.

$$\begin{aligned} & K_0 = GL_2(O_F) \text{ Moy-Prasad filtration } (K_i = \mathrm{Id} + M_2(P_F^i))_{i \ge 1} \\ & I_0 = \begin{pmatrix} O_F & O_F \\ P_F & O_F \end{pmatrix}^* \text{ Iwahori, Moy-Prasad filtration} \\ & I_{1/2} = \mathrm{Id} + \begin{pmatrix} P_F & O_F \\ P_F & P_F \end{pmatrix} \supset I_1 \supset I_{3/2} \supset \dots \\ & I_i = \mathrm{Id} + \begin{pmatrix} P_F^i & P_F^i \\ P_F^{i+1} & P_F^i \end{pmatrix} \supset I_{i+1/2} = \mathrm{Id} + \begin{pmatrix} P_F^{i+1} & P_F^i \\ P_F^{i+1} & P_F^{i+1} \end{pmatrix} \supset \dots \\ & I_i \text{ an integer} \end{aligned}$$

 $\textit{K}_0 \supset \textit{I}_0 \supset \textit{I}_{1/2} \supset \textit{K}_1 \supset \textit{I}_1 \supset \textit{I}_{3/2} \supset \textit{K}_2 \supset \textit{I}_2 \supset \textit{I}_{2+1/2} \supset \textit{K}_3 \supset \textit{I}_3 \supset$

・ 同 ト ・ ヨ ト ・ ヨ ト

$$G_{d(\pi)+} = \begin{cases} I_{d(\pi)+1/2} & \text{if } d(\pi) \text{ is an integer} \\ K_{d(\pi)+1/2} & \text{if } d(\pi) \text{ is a half-integer} \end{cases}$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → の < ↔

$$G_{d(\pi)+} = egin{cases} I_{d(\pi)+1/2} & ext{if } d(\pi) ext{ is an integer} \ K_{d(\pi)+1/2} & ext{if } d(\pi) ext{ is a half-integer} \end{cases}$$

There is a unique non-negative integer a_{π} such that

$$\pi = - a_{\pi} \mathbf{1} + \mathrm{ind}_B^{\mathsf{G}} \mathbf{1}$$
 on $\mathcal{G}_{d(\pi)+}$

$$G_{d(\pi)+} = egin{cases} I_{d(\pi)+1/2} & ext{if } d(\pi) ext{ is an integer} \ K_{d(\pi)+1/2} & ext{if } d(\pi) ext{ is a half-integer} \end{cases}$$

There is a unique non-negative integer a_{π} such that

$$\pi = -a_{\pi}\mathbf{1} + \mathrm{ind}_B^G\mathbf{1}$$
 on $\mathcal{G}_{d(\pi)+}$

No restriction on p, char(F), if one accepts a result that DeBacker cites relying on a private communication with Moy).

- (同) (回) (回) - 回

There is a unique non-negative integer a_{π} such that

$$\pi = -a_{\pi}\mathbf{1} + \mathrm{ind}_B^G\mathbf{1}$$
 on $\mathcal{G}_{d(\pi)+}$

No restriction on p, char(F), if one accepts a result that DeBacker cites relying on a private communication with Moy).

 $a_{\pi} = 0$ for a principal series $\operatorname{ind}_{B}^{G} \chi$

There is a unique non-negative integer a_{π} such that

$$\pi = -a_{\pi}\mathbf{1} + \mathrm{ind}_B^G\mathbf{1}$$
 on $\mathcal{G}_{d(\pi)+}$

No restriction on p, char(F), if one accepts a result that DeBacker cites relying on a private communication with Moy).

 $a_{\pi} = 0$ for a principal series $\operatorname{ind}_{B}^{G} \chi$ $a_{\pi} = 1$ for the Steinberg representation $\operatorname{St} = \operatorname{ind}_{B}^{G} 1/1$ if $q + 1 \neq 0$ in R.

There is a unique non-negative integer a_{π} such that

$$\pi = -a_{\pi}\mathbf{1} + \mathrm{ind}_B^G\mathbf{1}$$
 on $\mathcal{G}_{d(\pi)+}$

No restriction on p, char(F), if one accepts a result that DeBacker cites relying on a private communication with Moy).

 $a_{\pi} = 0$ for a principal series $\operatorname{ind}_{B}^{G} \chi$ $a_{\pi} = 1$ for the Steinberg representation $\operatorname{St} = \operatorname{ind}_{B}^{G} 1/1$ if $q + 1 \neq 0$ in R.

 $a_{\pi} = 2$ for $\pi \subset \operatorname{ind}_{B}^{G} 1/1$ of codimension 1 if q + 1 = 0 in R.

There is a unique non-negative integer a_{π} such that

$$\pi = -a_{\pi}\mathbf{1} + \mathrm{ind}_B^G\mathbf{1}$$
 on $G_{d(\pi)+}$

No restriction on p, char(F), if one accepts a result that DeBacker cites relying on a private communication with Moy).

 $a_{\pi} = 0$ for a principal series $\operatorname{ind}_{B}^{G} \chi$ $a_{\pi} = 1$ for the Steinberg representation $\operatorname{St} = \operatorname{ind}_{B}^{G} 1/1$ if $q + 1 \neq 0$ in R.

 $a_{\pi} = 2$ for $\pi \subset \operatorname{ind}_{B}^{G} 1/1$ of codimension 1 if q + 1 = 0 in R. $a_{\pi} = \dim JL(\pi)$ for a supercuspidal representation $JL(\pi)$ the R-representation of D^{*} of dimension > 1 image of π by Jacquet-Langlands, D the quaternion division F-algebra.

$$\dim V^{l_i} = \dim V^{l_{i+1/2}} = -a_\pi + 2q^i, \ \dim V^{\mathcal{K}_i} = -a_\pi + (q+1)q^i.$$

Can this be generalized to any G?

Are the asymptotics of the dimensions of fixed points by congruence subgroups of Moy-Prasad sg always polynomial ?

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ …

-

Can this be generalized to any G?

Are the asymptotics of the dimensions of fixed points by congruence subgroups of Moy-Prasad sg always polynomial ?

For $GL_n(D)$ there were two main steps in the proof:

- $R = \mathbb{C}$ harmonic analysis
- Reduction modulo ℓ , prime number $\ell \neq p$.

- (同) (回) (回) - 回

(Harish-Chandra)

• The distribution character of π is represented by a

(*) locally integrable G-invariant function $\theta_{\pi}(g)$ on G, locally constant on G_{reg}

$$\operatorname{tr}(\pi(f)) = \int_{\mathcal{G}} f(g) heta_{\pi}(g) \, dg, \quad f \in C^{\infty}_{\mathsf{c}}(\mathcal{G}).$$

(Harish-Chandra)

• The distribution character of π is represented by a (*) locally integrable *G*-invariant function $\theta_{\pi}(g)$ on *G*, locally constant on G_{reg}

$$\operatorname{tr}(\pi(f)) = \int_{\mathcal{G}} f(g) heta_{\pi}(g) \, dg, \quad f \in C^{\infty}_{c}(\mathcal{G}).$$

• There are finitely many nilpotent orbits in Lie(G). Nilpotent if the closure of its *G*-orbit \mathcal{O} contains 0. The nilpotent orbital integrals $\mu_{\mathcal{O}}$ converge.

(Harish-Chandra)

• The distribution character of π is represented by a (*) locally integrable *G*-invariant function $\theta_{\pi}(g)$ on *G*, locally constant on G_{reg}

$$\operatorname{tr}(\pi(f)) = \int_{\mathcal{G}} f(g) heta_{\pi}(g) \, dg, \quad f \in C^{\infty}_{c}(\mathcal{G}).$$

• There are finitely many nilpotent orbits in Lie(G). Nilpotent if the closure of its G-orbit \mathcal{O} contains 0. The nilpotent orbital integrals $\mu_{\mathcal{O}}$ converge.

• Homogeneity formula $t \in F^*$, $\varphi \in C_c^{\infty}(\text{Lie}(G))$, $\varphi_t(x) = \varphi(t^{-1}x)$,

$$\mu_{\mathcal{O}}(\varphi_{t^2}) = \mu_{\mathcal{O}}(\varphi) |t|_F^{\dim_F(\mathcal{O})}$$

(Harish-Chandra)

• The distribution character of π is represented by a (*) locally integrable *G*-invariant function $\theta_{\pi}(g)$ on *G*, locally constant on G_{reg}

$$\operatorname{tr}(\pi(f)) = \int_G f(g) heta_\pi(g) \, dg, \quad f \in C^\infty_c(G).$$

• There are finitely many nilpotent orbits in $\operatorname{Lie}(G)$. Nilpotent if the closure of its *G*-orbit \mathcal{O} contains 0. The nilpotent orbital integrals $\mu_{\mathcal{O}}$ converge.

• Homogeneity formula $t \in F^*$, $\varphi \in C_c^{\infty}(\text{Lie}(G))$, $\varphi_t(x) = \varphi(t^{-1}x)$,

$$\mu_{\mathcal{O}}(\varphi_{t^2}) = \mu_{\mathcal{O}}(\varphi) |t|_F^{\dim_F(\mathcal{O})}$$

• One can choose an O_F -lattice \mathcal{L} in $\operatorname{Lie}(G)$ on which the exponential map is defined and such that $K = \exp(\mathcal{L})$ is a group.

Local character expansion

 $\operatorname{tr}(\pi) \sim \sum_{i \in I(G)} c_{\pi}(i) i$

- (同) (回) (回) - 回

Local character expansion

 $\operatorname{tr}(\pi) \sim \sum_{i \in I(G)} c_{\pi}(i) i$

This implies that dim V^{K_i} , $K_i = \exp(p_F^{2i}\mathcal{L})$, $i \ge 0$ integer, eventually becomes polynomial

$$\dim V^{\mathcal{K}_i} = P_{\pi,\mathcal{L}}(q^i), \ \ P_{\pi,\mathcal{L}} \in \mathbb{Q}[X] \ \ ext{for} \ i >> 0$$

Local character expansion

 $\operatorname{tr}(\pi) \sim \sum_{i \in I(G)} c_{\pi}(i) i$

This implies that dim V^{K_i} , $K_i = \exp(p_F^{2i}\mathcal{L})$, $i \ge 0$ integer, eventually becomes polynomial

$$\dim V^{\mathcal{K}_i} = P_{\pi,\mathcal{L}}(q^i), \ \ P_{\pi,\mathcal{L}} \in \mathbb{Q}[X] \ \ ext{for} \ \ i >> 0.$$

With a suitable normalization of nilpotent orbital integrals:

• The numbers $c_{\pi}(i)$ are rational (Sandeep Varma).

Local character expansion

 $\operatorname{tr}(\pi) \sim \sum_{i \in I(G)} c_{\pi}(i) i$

This implies that dim V^{K_i} , $K_i = \exp(p_F^{2i}\mathcal{L})$, $i \ge 0$ integer, eventually becomes polynomial

$$\dim V^{\mathcal{K}_i} = P_{\pi,\mathcal{L}}(q^i), \ \ P_{\pi,\mathcal{L}} \in \mathbb{Q}[X] \ \ \text{for} \ i >> 0.$$

With a suitable normalization of nilpotent orbital integrals:

• The numbers $c_{\pi}(i)$ are rational (Sandeep Varma).

• If the nilpotent orbit giving *i* has maximal dimension among the nilpotents orbits such that $c_{\pi}(i) \neq 0$, then $c_{\pi}(i)$ is the dimension of a space of (possibly degenerate) Whittaker functionals (attached to *i*) on π (Moeglin-Waldspurger).

Assume char(F) = p The local character expansion is valid for $G = GL_n(D)$, using the truncated exponential $x \mapsto 1 + x$ (Bertrand Lemaire).

Assume char(F) = p The local character expansion is valid for $G = GL_n(D)$, using the truncated exponential $x \mapsto 1 + x$ (Bertrand Lemaire).

For general G and p >> 0 the local character expansion is valid (Waldspurger DeBacker).

Assume $\operatorname{char}(F) = p$ The local character expansion is valid for $G = GL_n(D)$, using the truncated exponential $x \mapsto 1 + x$ (Bertrand Lemaire).

For general G and p >> 0 the local character expansion is valid (Waldspurger DeBacker).

Nilpotent orbital integrals are not known to converge.

Assume char(F) = p The local character expansion is valid for $G = GL_n(D)$, using the truncated exponential $x \mapsto 1 + x$ (Bertrand Lemaire).

For general G and p >> 0 the local character expansion is valid (Waldspurger DeBacker).

Nilpotent orbital integrals are not known to converge.

When p is bad there may be infinitely many nilpotent orbital integrals, or different numbers of unipotent orbits in G and nilpotent orbits in $\text{Lie}(G)^*$ (even geometrically).

When $R = \mathbb{C}$ the number of nilpotent orbits is not usually the same as the number of associated classes of parabolic subgroups so such a simple answer for the asymptotics as for $GL_n(D)$ cannot hold.

伺 と く ヨ と く ヨ と

-

When $R = \mathbb{C}$ the number of nilpotent orbits is not usually the same as the number of associated classes of parabolic subgroups so such a simple answer for the asymptotics as for $GL_n(D)$ cannot hold.

When $\operatorname{char}(R) = \ell > 0, \ell \neq p$ for the asymptotics of $GL_n(D)$ we used that cuspidal \mathbb{F}_{ℓ}^{ac} -representations of GL(n, D) can be lifted to \mathbb{Q}_{ℓ}^{ac} -representations, so ultimately the results for $R = \mathbb{C}$ imply the results for $\operatorname{char}(R) = \ell$. For general *G* such a lifting result is not known, even for supercuspidal \mathbb{F}_{ℓ}^{ac} -representations of finite reductive groups. It holds when ℓ is banal for *G*, i.e. does not divide the pro-order of any compact subgroup (Dat-Helm-Kurinczuk-Moss).

When $R = \mathbb{C}$ the number of nilpotent orbits is not usually the same as the number of associated classes of parabolic subgroups so such a simple answer for the asymptotics as for $GL_n(D)$ cannot hold.

When $\operatorname{char}(R) = \ell > 0, \ell \neq p$ for the asymptotics of $GL_n(D)$ we used that cuspidal \mathbb{F}_{ℓ}^{ac} -representations of GL(n, D) can be lifted to \mathbb{Q}_{ℓ}^{ac} -representations, so ultimately the results for $R = \mathbb{C}$ imply the results for $\operatorname{char}(R) = \ell$. For general *G* such a lifting result is not known, even for supercuspidal \mathbb{F}_{ℓ}^{ac} -representations of finite reductive groups. It holds when ℓ is banal for *G*, i.e. does not divide the pro-order of any compact subgroup (Dat-Helm-Kurinczuk-Moss).

We looked at $SL_2(F)$ to see what happens in that basic case.

The nilpotent orbits of $SL_2(F)$ are represented by the matrices $\begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix}$ of orbit determined by $x(F^*)^2$. So $1 + |F^*/(F^*)^2|$ nilpotent orbits.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The nilpotent orbits of $SL_2(F)$ are represented by the matrices $\begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix}$ of orbit determined by $x(F^*)^2$. So $1 + |F^*/(F^*)^2|$ nilpotent orbits.

5 if p odd, $1 + 2^{e+2}$ if F/\mathbb{Q}_2 , e ramification index, ∞ if $F/\mathbb{F}_2((t))$.

The nilpotent orbits of $SL_2(F)$ are represented by the matrices $\begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix}$ of orbit determined by $x(F^*)^2$. So $1 + |F^*/(F^*)^2|$ nilpotent orbits.

5 if p odd, $1 + 2^{e+2}$ if F/\mathbb{Q}_2 , e ramification index, ∞ if $F/\mathbb{F}_2((t))$.

If $F/\mathbb{F}_2((t))$ it is not proved that the (complex) nilpotent orbital integrals converge. We are saved by the general fact:

 π extends to an open subgroup *H* of $GL_2(F)$ containing the centre *Z* of $GL_2(F)$.

The nilpotent orbits of $SL_2(F)$ are represented by the matrices $\begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix}$ of orbit determined by $x(F^*)^2$. So $1 + |F^*/(F^*)^2|$ nilpotent orbits.

5 if p odd, $1 + 2^{e+2}$ if F/\mathbb{Q}_2 , e ramification index, ∞ if $F/\mathbb{F}_2((t))$.

If $F/\mathbb{F}_2((t))$ it is not proved that the (complex) nilpotent orbital integrals converge. We are saved by the general fact:

 π extends to an open subgroup *H* of $GL_2(F)$ containing the centre *Z* of $GL_2(F)$.

When $char(F) \neq 2$, can take $H = SL_2(F)Z$ open of finite index in G, that index being $F^*/(F^*)^2$.

To analyse irreducible representations of $SL_2(F)$ we may replace $SL_2(F)$ by H

- 4 同 2 4 日 2 4 日 2 - 日

To analyse irreducible representations of $SL_2(F)$ we may replace $SL_2(F)$ by H

- which has only finitely many nilpotent orbits,
- the (complex) nilpotent orbital integrals converge,
- any irreducible smooth complex representation π of H has a local character expansion (Bertrand Lemaire).

To analyse irreducible representations of $SL_2(F)$ we may replace $SL_2(F)$ by H

- which has only finitely many nilpotent orbits,
- the (complex) nilpotent orbital integrals converge,
- any irreducible smooth complex representation π of H has a local character expansion (Bertrand Lemaire).
- There are virtual smooth \mathbb{C} -representations π_1, \ldots, π_N of H such any irreducible smooth \mathbb{C} -representation of H is equal to

$$\pi\sim c_{\pi}(0)\mathbf{1}+\sum_{i=1}^{\mathsf{N}}c_{\pi}(i)\pi_i, \ \ c_{\pi}(i)\in\mathbb{Z}$$

イロト 不得 とくほ とくほ とうほう

Assume R algebraically closed, $char(R) \neq p$. Write $H' = H_{det=1}$ for any subgroup H of $GL_2(F)$.

Assume R algebraically closed, $char(R) \neq p$. Write $H' = H_{det=1}$ for any subgroup H of $GL_2(F)$.

Using that all irreducible smooth *R*-representations Π of $G = GL_2(F)$ and the local Langlands *R*-correspondence for $GL_2(F)$ are known, we showed:

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Assume R algebraically closed, $char(R) \neq p$. Write $H' = H_{det=1}$ for any subgroup H of $GL_2(F)$.

Using that all irreducible smooth *R*-representations Π of $G = GL_2(F)$ and the local Langlands *R*-correspondence for $GL_2(F)$ are known, we showed:

• $\Pi|_{SL_2(F)}$ is semisimple with multiplicity one and length dividing 4. The irreducible components form *L*-packet $L(\Pi)$.

イロン 不同 とくほう イロン

Assume R algebraically closed, $char(R) \neq p$. Write $H' = H_{det=1}$ for any subgroup H of $GL_2(F)$.

Using that all irreducible smooth *R*-representations Π of $G = GL_2(F)$ and the local Langlands *R*-correspondence for $GL_2(F)$ are known, we showed:

- $\Pi|_{SL_2(F)}$ is semisimple with multiplicity one and length dividing 4. The irreducible components form *L*-packet $L(\Pi)$.
- *L*-packets of length 4 \Leftrightarrow biquadratic separable extensions of *F*. Unique *L*-packet of length 4 is *p* odd, finitely many if $F/\mathbb{Q}_2 \infty$ if char(*F*) = 2.

Assume R algebraically closed, $char(R) \neq p$. Write $H' = H_{det=1}$ for any subgroup H of $GL_2(F)$.

Using that all irreducible smooth *R*-representations Π of $G = GL_2(F)$ and the local Langlands *R*-correspondence for $GL_2(F)$ are known, we showed:

- $\Pi|_{SL_2(F)}$ is semisimple with multiplicity one and length dividing 4. The irreducible components form *L*-packet $L(\Pi)$.
- *L*-packets of length 4 \Leftrightarrow biquadratic separable extensions of *F*. Unique *L*-packet of length 4 is *p* odd, finitely many if $F/\mathbb{Q}_2 \infty$ if char(*F*) = 2.
- Classification of the irreducible smooth *R*-representations of $SL_2(F)$ and a local Langlands *R*-correspondence for $SL_2(F)$

• Given (π, V) in an *L*-packet $L(\Pi)$ of length $|L(\Pi)|$, there is an integer $c_{\pi}(0) \in \mathbb{Z}$ and an *L*-packet π_1, \ldots, π_4 such that

$$\pi = c_{\pi}(0) \mathbf{1} + \sum_{i=1}^{4/|L(\Pi)|} \pi_i$$

on some open pro-*p* subgroup of $SL_2(F)$.

• We have for large integers i >> 0, $|L(\Pi)| \dim V_i' = |L(\Pi)| \dim V_{i+1/2}^{l'_i+1/2} = -a_{\Pi} + 2q^i$.

イロト 不得 とくほ とくほ とうほう

• Given (π, V) in an *L*-packet $L(\Pi)$ of length $|L(\Pi)|$, there is an integer $c_{\pi}(0) \in \mathbb{Z}$ and an *L*-packet π_1, \ldots, π_4 such that

$$\pi = c_{\pi}(0) \mathbf{1} + \sum_{i=1}^{4/|L(\Pi)|} \pi_i$$

on some open pro-*p* subgroup of $SL_2(F)$.

• We have for large integers i >> 0, $|L(\Pi)| \dim V_i^{l'_i} = |L(\Pi)| \dim V_{i+1/2}^{l'_{i+1/2}} = -a_{\Pi} + 2q^i$. $|L(\Pi)| \dim V_i^{K'_i} = \begin{cases}
-a_{\Pi} + (q+1)q^{i-1} & \text{if } \Pi|_{GL_2(F)_{val(detg) \in 2\mathbb{Z}}} \\
-a_{\Pi} + 2bq^{i-1} & \text{otherwise}
\end{cases}$

- (同) (回) (回) - 回

• Given (π, V) in an *L*-packet $L(\Pi)$ of length $|L(\Pi)|$, there is an integer $c_{\pi}(0) \in \mathbb{Z}$ and an *L*-packet π_1, \ldots, π_4 such that

$$\pi = c_{\pi}(0) \mathbf{1} + \sum_{i=1}^{4/|L(\Pi)|} \pi_i$$

on some open pro-*p* subgroup of $SL_2(F)$.

• We have for large integers i >> 0, $|L(\Pi)| \dim V^{l'_i} = |L(\Pi)| \dim V^{l'_{i+1/2}} = -a_{\Pi} + 2q^i$. $|L(\Pi)| \dim V^{K'_i} =$ $\begin{cases} -a_{\Pi} + (q+1)q^{i-1} & \text{if } \Pi|_{GL_2(F)_{val(detg) \in 2\mathbb{Z}}} & \text{irreducible} \\ -a_{\Pi} + 2bq^{i-1} & \text{otherwise} \end{cases}$ with b = 1 or q depending on the parity of i and on the component of $\Pi|_{ZK_0SL_2(F)} = \Pi^+ \oplus \Pi^-$ containing π .

When p is odd, there is only one L-packet $L(\Pi)$ of length 4. We have $a_{\Pi} = -2$. For (π, V) in this L-packet,

dim
$$V^{I'_i}$$
 = dim $V^{I'_{i+1/2}}$ = $-1/2 + 2q^i$.

- 4 同 2 4 日 2 4 日 2 - 日

When p is odd, there is only one L-packet $L(\Pi)$ of length 4. We have $a_{\Pi} = -2$. For (π, V) in this L-packet,

dim
$$V^{I'_i}$$
 = dim $V^{I'_{i+1/2}}$ = $-1/2 + 2q^i$.

So if the asymptotics of the dimensions of fixed points by congruence $G_{x,r+i}$ subgroups of a parahoric subgroup are polynomial, then the coefficients of the polynom are rational numbers, not always integers. The asymptotics may depend on the parity of *i*.

What can be true ?

When char(F) = 0 or p large enough (p is good for G, or does not divide the order of the absolute Weyl group of G). There should be a finite number of virtual smooth R-representations π_i such that any irreducible smooth R-representation π of G coincides on some open pro-p subgroup of G with an integral linear combination of the π_i 's

$$\pi = \sum_i c_\pi(i) \pi_i, \ \ c_\pi(i) \in \mathbb{Z} \quad ext{on } \mathcal{G}_{d(\pi)+}$$

When char(F) = p is not large enough, the same should be true provided we consider representations with bounded depth.