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What are the “asymptotics” ?

Why are the “asymptotics” interesting ?
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Let F be a finite extension of Qp or Fp((t)), G a connected
reductive group over F , G = G (F ), R a field, π an irreducible
smooth representation of G on an R-vector space V .

You probably find, like me, that the classification of irreducible
smooth representations of G is very involved !

But their behaviour around the identity, that we call the
“asymptotics” of (π,V ), are expected to be more uniform if the
characteristic of the coefficient field R is not p.

“asymptotics” , “around the identity” , “more uniform” this is
vague !
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For each point x in the reduced Bruhat-Tits building B(G ) of G
we have the parahoric open compact subgroup Gx ,0 of G fixing x ,
and its Moy-Prasad filtration (Gx ,r )r>0.

The jumps where Gx ,r 6= Gx ,r+ = ∪s>rGx ,s are rational numbers
and the set of jumps is countable.

‘The depth r = d(π) of π is the smallest number such that
V Gx,r+ 6= 0 for some x .

”around the identity” means “on Gd(π)+ = ∪x∈B(G)Gx ,d(π)+”

Marie-France Vignéras Asymptotics of reductive p-adic groups



For each point x in the reduced Bruhat-Tits building B(G ) of G
we have the parahoric open compact subgroup Gx ,0 of G fixing x ,
and its Moy-Prasad filtration (Gx ,r )r>0.

The jumps where Gx ,r 6= Gx ,r+ = ∪s>rGx ,s are rational numbers
and the set of jumps is countable.

‘The depth r = d(π) of π is the smallest number such that
V Gx,r+ 6= 0 for some x .

”around the identity” means “on Gd(π)+ = ∪x∈B(G)Gx ,d(π)+”
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Marie-France Vignéras Asymptotics of reductive p-adic groups



For each point x in the reduced Bruhat-Tits building B(G ) of G
we have the parahoric open compact subgroup Gx ,0 of G fixing x ,
and its Moy-Prasad filtration (Gx ,r )r>0.

The jumps where Gx ,r 6= Gx ,r+ = ∪s>rGx ,s are rational numbers
and the set of jumps is countable.

‘The depth r = d(π) of π is the smallest number such that
V Gx,r+ 6= 0 for some x .

”around the identity” means “on Gd(π)+ = ∪x∈B(G)Gx ,d(π)+”
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Example:
“on Gx ,0+ for any x” ⇔ “on a pro-p Iwahori subgroup”.

because for any x , Gx ,0+ is contained in a pro-p Iwahori subgroup
and the pro-p Iwahori subgroups of G are conjugate.

First example Suppose that the dimension of π is finite. For
instance the trivial R-representation 1 of G . Then

π = dimπ 1 on Kerπ

and we prove: Gx ,d(π)+ is contained in Kerπ for any x
Hence

π = dimπ 1 on Gd(π)+.

This is what we mean by “more uniform” for a finite dimensional
smooth R-representation !
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We = Henniart V.

When G is compact modulo the center, any irreducible smooth
R-representation π of G is finite dimensional, the building of G is
a point x , and G has a unique parahoric subgroup Gx ,0. The
groups Gx ,r are normal in G .

Example: G = D∗ for a division central F -algebra of finite
dimension {Gx ,r , r > 0} = {Id + P i

D , i > 0 integer}

For G general, the proof is more involved.

When dimπ is infinite what means “more uniform” ?

That’s going to be the theme of my lecture !
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Note that π is semi-simple on any pro-p subgroup of G because
char(R) 6= p.

For two virtual R-representations π1, π2 of G , for two distributions
D1,D2 on G we will write π1 ∼ π2 or D1 ∼ D2 when they are
equal on some unprecised open pro-p subgroup of G

Example G = GLn(D) for a central division F -algebra D of finite
degre d2 = [D : F ].
For a partition λ = (λ1 ≥ λ2 ≥ . . .) of n we have the upper
triangular parabolic subgroup Pλ of G = GLn(D) with diagonal
blocks of size λ1, λ2, . . ..
P(n) = G , P(1,...,1) = B the upper triangular subgroup.

We think that

π =
∑
λ

cπ(λ) indGPλ1, cπ(λ) ∈ Z, on Gd(π)+.

We proved only ∼ but we prove it when p is large enough.
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Proof: Reduction to R = C using that any cuspidal irrreducible
representation of GLn(D) over Fac

` lifts to Qac
` (Minguez-Sécherre).

R = C follows from the local character expansion (Harmonic
analysis).

∼ is enough for the following application:

For any x ∈ B(G ), r ≥ 0, there is a unique polynomial
Qπ,x ,r (X ) ∈ Z[X ] such that

dimV Gx,r+i = Qπ,x ,r (qdi ), i >> 0 integer.

If dimπ =∞ the degree of Qπ,x ,r (X ) is d2
∑

i<j λiλj for some
partition λ of n.
0 iff dimV <∞ iff λ = n.
d(n − 1) iff λ = (n − 1, 1)
dn(n − 1)/2 iff (π,V ) is generic iff λ = (1, . . . , 1).
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Marie-France Vignéras Asymptotics of reductive p-adic groups



Proof: Reduction to R = C using that any cuspidal irrreducible
representation of GLn(D) over Fac

` lifts to Qac
` (Minguez-Sécherre).
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Particular case G = GL2(F )

The depth d(π) of π is an integer or an half-integer.

K0 = GL2(OF ) Moy-Prasad filtration (Ki = Id + M2(P i
F ))i≥1

I0 =

(
OF OF

PF OF

)∗
Iwahori, Moy-Prasad filtration

I1/2 = Id +

(
PF OF

PF PF

)
⊃ I1 ⊃ I3/2 ⊃ . . .

Ii = Id +

(
P i
F P i

F

P i+1
F P i

F

)
⊃ Ii+1/2 = Id +

(
P i+1
F P i

F

P i+1
F P i+1

F

)
⊃ . . .

i an integer

K0 ⊃ I0 ⊃ I1/2 ⊃ K1 ⊃ I1 ⊃ I3/2 ⊃ K2 ⊃ I2 ⊃ I2+1/2 ⊃ K3 ⊃ I3 ⊃

0 0 0 0 1/2 1 1 3/2 2
G0+ = I1/2, G(1/2)+ = K1, G1+ = I3/2, G(3/2)+ = K2, . . .
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Gd(π)+ =

{
Id(π)+1/2 if d(π) is an integer

Kd(π)+1/2 if d(π) is a half-integer

There is a unique non-negative integer aπ such that

π = −aπ1 + indGB1 on Gd(π)+

No restriction on p, char(F ), if one accepts a result that DeBacker
cites relying on a private communication with Moy).

aπ = 0 for a principal series indGBχ
aπ = 1 for the Steinberg representation St = indGB1/1 if q + 1 6= 0
in R.
aπ = 2 for π ⊂ indGB1/1 of codimension 1 if q + 1 = 0 in R.
aπ = dim JL(π) for a supercuspidal representation
JL(π) the R-representation of D∗ of dimension > 1 image of π by

Jacquet-Langlands, D the quaternion division F -algebra.

dimV Ii = dimV Ii+1/2 = −aπ + 2qi , dimVKi = −aπ + (q + 1)qi .
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Can this be generalized to any G ?

Are the asymptotics of the dimensions of fixed points by
congruence subgroups of Moy-Prasad sg always polynomial ?

For GLn(D) there were two main steps in the proof:

• R = C harmonic analysis

• Reduction modulo `, prime number ` 6= p.

Marie-France Vignéras Asymptotics of reductive p-adic groups



Can this be generalized to any G ?

Are the asymptotics of the dimensions of fixed points by
congruence subgroups of Moy-Prasad sg always polynomial ?

For GLn(D) there were two main steps in the proof:

• R = C harmonic analysis

• Reduction modulo `, prime number ` 6= p.
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Harmonic analysis (R = C, char(F ) = 0, any G )

(Harish-Chandra)
• The distribution character of π is represented by a
(*) locally integrable G -invariant function θπ(g) on G , locally
constant on Greg

tr(π(f )) =

∫
G
f (g)θπ(g) dg , f ∈ C∞c (G ).

• There are finitely many nilpotent orbits in Lie(G ). Nilpotent if
the closure of its G -orbit O contains 0. The nilpotent orbital
integrals µO converge.
• Homogeneity formula t ∈ F ∗, ϕ ∈ C∞c (Lie(G )),
ϕt(x) = ϕ(t−1x),

µO(ϕt2) = µO(ϕ)|t|dimF (O)
F

• One can choose an OF -lattice L in Lie(G ) on which the
exponential map is defined and such that K = exp(L) is a group.
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• (Harish-Chandra) The Fourier transforms µ̂O of nilpotent orbital
integrals in Lie(G ) give a finite basis I (G ) of the space of locally
integrable G -invariant functions of G , locally constant on Greg on
∪g∈GgKg−1

Local character expansion

tr(π) ∼
∑

i∈I (G) cπ(i) i

This implies that dimVKi ,Ki = exp(p2i
F L), i ≥ 0 integer,

eventually becomes polynomial

dimVKi = Pπ,L(qi ), Pπ,L ∈ Q[X ] for i >> 0.

With a suitable normalization of nilpotent orbital integrals:
• The numbers cπ(i) are rational (Sandeep Varma).
• If the nilpotent orbit giving i has maximal dimension among the
nilpotents orbits such that cπ(i) 6= 0, then cπ(i) is the dimension
of a space of (possibly degenerate) Whittaker functionals (attached
to i) on π (Moeglin-Waldspurger).
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Conjecture (Hales, Moy and Prasad) Vπ = ∪xGx ,d(π)+. Proved
for p >> 0 (de Backer 2002), or p odd if G = SL2(F ) (Nevins).
Claim all p for GL2(F )

Assume char(F ) = p The local character expansion is valid for
G = GLn(D), using the truncated exponential x 7→ 1 + x
(Bertrand Lemaire ).

For general G and p >> 0 the local character expansion is valid
(Waldspurger DeBacker).

Nilpotent orbital integrals are not known to converge.

When p is bad there may be infinitely many nilpotent orbital
integrals, or different numbers of unipotent orbits in G and
nilpotent orbits in Lie(G )∗ (even geometrically).
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When R = C the number of nilpotent orbits is not ususally the
same as the number of associated classes of parabolic subgroups so
such a simple answer for the asymptotics as for GLn(D) cannot
hold.

When char(R) = ` > 0, ` 6= p for the asymptotics of GLn(D) we
used that cuspidal Fac

` -representations of GL(n,D) can be lifted to
Qac
` -representations, so ultimately the results for R = C imply the

results for char(R) = `. For general G such a lifting result is not
known, even for supercuspidal Fac

` -representations of finite
reductive groups. It holds when ` is banal for G , i.e. does not
divide the pro-order of any compact subgroup
(Dat-Helm-Kurinczuk-Moss).

We looked at SL2(F ) to see what happens in that basic case.
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Marie-France Vignéras Asymptotics of reductive p-adic groups



SL2(F )
No restriction on F and p = 2

The nilpotent orbits of SL2(F ) are represented by the matrices(
0 x
0 0

)
of orbit determined by x(F ∗)2. So

1 + |F ∗/(F ∗)2| nilpotent orbits.

5 if p odd, 1 + 2e+2 if F/Q2, e ramification index, ∞ if F/F2((t)).

If F/F2((t)) it is not proved that the (complex) nilpotent orbital
integrals converge. We are saved by the general fact:

π extends to an open subgroup H of GL2(F ) containing the centre
Z of GL2(F ).

When char(F ) 6= 2, can take H = SL2(F )Z open of finite index in
G , that index being F ∗/(F ∗)2.
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To analyse irreducible representations of SL2(F ) we may replace
SL2(F ) by H

• which has only finitely many nilpotent orbits,
• the (complex) nilpotent orbital integrals converge,
• any irreducible smooth complex representation π of H has a local
character expansion (Bertrand Lemaire).
• There are virtual smooth C-representations π1, . . . , πN of H such
any irreducible smooth C-representation of H is equal to

π ∼ cπ(0)1 +
N∑
i=1

cπ(i)πi , cπ(i) ∈ Z
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Irreducible R-representations of SL2(F )
Assume R algebraically closed, char(R) 6= p. Write H ′ = Hdet=1 for any subgroup
H of GL2(F ).

Using that all irreducible smooth R-representations Π of
G = GL2(F ) and the local Langlands R-correspondence for GL2(F )
are known, we showed:
• Π|SL2(F ) is semisimple with multiplicity one and length dividing
4. The irreducible components form L-packet L(Π).
• L-packets of length 4 ⇔ biquadratic separable extensions of F .
Unique L-packet of length 4 is p odd, finitely many if F/Q2 ∞ if
char(F ) = 2.
• Classification of the irreducible smooth R-representations of
SL2(F ) and a local Langlands R-correspondence for SL2(F )
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• Given (π,V ) in an L-packet L(Π) of length |L(Π)|, there is an
integer cπ(0) ∈ Z and an L-packet π1, . . . , π4 such that

π = cπ(0) 1 +

4/|L(Π)|∑
i=1

πi

on some open pro-p subgroup of SL2(F ).

• We have for large integers i >> 0,

|L(Π)| dimV I ′i = |L(Π)| dimV
I ′
i+1/2 = −aΠ + 2qi .

|L(Π)| dimVK ′
i ={

−aΠ + (q + 1)qi−1 if Π|GL2(F )val(detg)∈2Z irreducible

−aΠ + 2bqi−1 otherwise
with b = 1 or q depending on the parity of i and on the
component of Π|ZK0SL2(F ) = Π+ ⊕ Π− containing π.
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When p is odd, there is only one L-packet L(Π) of length 4. We
have aΠ = −2. For (π,V )in this L-packet,

dimV I ′i = dimV
I ′
i+1/2 = −1/2 + 2qi .

So if the asymptotics of the dimensions of fixed points by
congruence Gx ,r+i subgroups of a parahoric subgroup are
polynomial, then the coefficients of the polynom are rational
numbers, not always integers. The asymptotics may depend on the
parity of i .
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What can be true ?

When char(F ) = 0 or p large enough (p is good for G , or does not
divide the order of the absolute Weyl group of G ).
There should be a finite number of virtual smooth
R-representations πi such that any irreducible smooth
R-representation π of G coincides on some open pro-p subgroup of
G with an integral linear combination of the πi ’s

π =
∑
i

cπ(i)πi , cπ(i) ∈ Z on Gd(π)+

When char(F ) = p is not large enough, the same should be true
provided we consider representations with bounded depth.
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