Representations of reductive *p*-adic groups

Marie-France Vignéras

Arizona Winter School 2025

・ 同 ト ・ ヨ ト ・ ヨ ト

What is a reductive *p*-adic group ?

Why are their representations useful ?

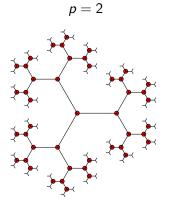
Why are their representations interesting ?

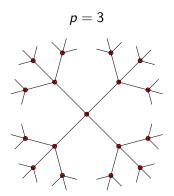
The *p*-adic group $GL_2(\mathbb{Q}_p)$ is an example of a reductive *p*-adic group

p a prime number

 $GL_2(\mathbb{Q}_p)$ has a countable basis of open compact subgroups $GL_2(\mathbb{Z}_p)) \supset \mathrm{Id} + pM_2(\mathbb{Z}_p) \supset \mathrm{Id} + p^2M_2(\mathbb{Z}_p)) \supset \ldots \supset \mathrm{Id} + p^iM_2(\mathbb{Z}_p)) \supset \ldots$ $GL_2(\mathbb{Q}_p)$ is locally a pro-*p* group

The p + 1-regular tree





The vertices are the homothety classes [L] of lattices $L = \mathbb{Z}_p e \oplus \mathbb{Z}_p f$ of \mathbb{Q}_p^2 . The edges [L] - [L'] for lattices such that $pL \subsetneq L' \subsetneq L$. The group $GL(2, \mathbb{Q}_p)$ acts naturally on the tree.

The maximal compact open subgroup $GL_2(\mathbb{Z}_p)$ fixes the vertex $[\mathbb{Z}_p \oplus \mathbb{Z}_p]$.

The lwahori group $I = \begin{pmatrix} \mathbb{Z}_p & \mathbb{Z}_p \\ p\mathbb{Z}_p & \mathbb{Z}_p \end{pmatrix}^*$ fixes each point in the edge $[\mathbb{Z}_p \oplus \mathbb{Z}_p] - [\mathbb{Z}_p \oplus p\mathbb{Z}_p].$

$$\begin{pmatrix} \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ p\mathbb{Z}_{p} & \mathbb{Z}_{p} \end{pmatrix}^{*} \supset \mathrm{Id} + \begin{pmatrix} p\mathbb{Z}_{p} & \mathbb{Z}_{p} \\ p\mathbb{Z}_{p} & p\mathbb{Z}_{p} \end{pmatrix} \supset \mathrm{Id} + p \begin{pmatrix} \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ p\mathbb{Z}_{p} & \mathbb{Z}_{p} \end{pmatrix} \supset \ldots$$
$$\supset \ldots \supset \mathrm{Id} + p^{i} \begin{pmatrix} \mathbb{Z}_{p} & \mathbb{Z}_{p} \\ p\mathbb{Z}_{p} & \mathbb{Z}_{p} \end{pmatrix} \supset \mathrm{Id} + p^{i} \begin{pmatrix} p\mathbb{Z}_{p} & \mathbb{Z}_{p} \\ p\mathbb{Z}_{p} & p\mathbb{Z}_{p} \end{pmatrix} \supset \ldots$$

They are the Moy-Prasad filtrations of $GL_2(\mathbb{Z}_p)$ and of *I*.

There are finite extensions F of \mathbb{Q}_p or of $\mathbb{F}_p((t))$, of any degree (it is not like \mathbb{R} or \mathbb{C}). Note $\operatorname{char}(F) = 0$ or p.

A reductive *p*-adic group is the group $\underline{G}(F)$ of *F*-rational points of a connected reductive *F*-group. For the topology induced by *F*, $\underline{G}(F)$ is locally a pro-*p* group.

 F^* , D^* for a quaternion F-algebra D, $GL_2(D)$. $GL_n(F)$, $SL_n(F)$,... for $n \ge 1$, symplectic groups, orthogonal groups, unitary groups, groups of exceptional types

イロト 不得 とうせい かほとう ほ

The motivation to study reductive *p*-adic groups is arithmetic

Langland's bridge

The local Langlands conjectures relate the absolute Galois group Gal_F of F with the reductive *p*-adic groups $\underline{G}(F)$.

The absolute Galois group Gal_F is the Galois group of a separable closure F^{sep}/F .

 Gal_F contains a lot of information on the arithmetic of F.

 Gal_F is a compact topological group equal to the projective limit of the Galois groups of the finite Galois sub-extensions F'/F. The ramification subgroups (upper numerotation) form a countable basis of open subgroups.

 Gal_F and $\underline{G}(F)$ are locally pro-*p* groups.

A generalisation of local class field theory

local class field theory : description of abelian extensions of F via 1-dimensional representations of the Weil group W_F , a cousin of Gal_F)

$$W_F^{ab}\simeq F^*$$

Local Langlands conjectures:
description of higher dimensional
representations of
$$W_F$$
 in terms
of representations of matrices.

/□ ▶ < 글 ▶ < 글

Robert P.Langlands 1936 -

Harmonic analysis to prove conjectures in Number Theory

More on the Langlands's bridge in Tasho Kaletha's course.

Marie-France Vignéras

Representations of *p*-adic groups

To study Gal_F one studies the representations of reductive p-adic groups where many tools are available.

You will learn those tools in the Arizona winter school 2025.

Tool 1: The Bruhat-Tits building and the Moy-Prasad filtrations of the parahoric subgroups

Alan Moy

Gopal Prasad 1945-

同 ト イヨ ト イヨ ト

More in Jessica Fintzen's course

Marie-France Vignéras

Representations of *p*-adic groups

It is time now to introduce representations !

Groups are invisible objects that "we see" only through their linear actions on spaces, called representations.

Let R be a field. An R-representation of a group G is an R-vector space V with a linear action of G

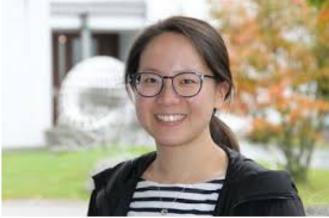
$$\pi: G \to \operatorname{Aut}_R(V).$$

The irreducible complex representations of the finite groups of Lie type $\underline{G}(\mathbb{F}_q)$, for instance $GL_2(\mathbb{F}_p)$, have finite dimension and can be constructed geometrically (Deligne and Lusztig).

イロン 不同 とくほう イロン

Tool 2: The irreducible complex representations of the finite groups of Lie type

More in Charlotte Chan's course.



・ロン ・部 と ・ ヨ と ・ ヨ と …

When G is locally a pro-p group $(Gal_F \text{ or a reductive } p\text{-adic}$ group) one supposes (π, V) smooth i.e. continuous: the fixator of any $v \in V$ is open in G

 $V = \bigcup_{K} V^{K}$, K compact open subgroup of G

The irreducible smooth R-representations of Gal_F are finite dimensional because Gal_F is compact. But

The irreducible smooth representations of a reductive *p*-adic group are rarely finite dimensional

Example: The trivial representation is the only finite dimensional irreducible smooth representations of $SL_n(\mathbb{Q}_p)$.

Admissible replaces finite dimension

 (π, V) is admissible if dim $V^K < \infty$ for any o.c.sg K of G

If $char(R) \neq p$ or $G = GL_2(\mathbb{Q}_p)$, irreducible \Rightarrow admissible

Tool 3: If $char(R) \neq p$, the Haar *R*-measure on *G*.

 $\operatorname{vol}(\operatorname{Id} + p^i M_2(\mathbb{Z}_p), dg) =$

 $\operatorname{vol}(\operatorname{GL}_2(\mathbb{Z}_p), dg)p^{-i+1}|\operatorname{GL}_2(\mathbb{F}_p|^{-1})$

Alfred Haar 1885-1933

A character for an infinite dimensional representation ?

The trace of a finite dimensional *R*-representation (π, V) of *G* is the function

$$\operatorname{tr}(\pi): G \to R, \qquad g \mapsto \operatorname{tr}(\pi(g)),$$

called the character of π . It carries a lot of information.

When (π, V) is infinite dimensional but admissible

$$V = \cup_{\mathcal{K}} V^{\mathcal{K}}, \text{ dim } V^{\mathcal{K}} < \infty$$

and there is a Haar R-measure dg on G, the linear map

$$\operatorname{tr}(\pi): C^{\infty}_{c}(G,R) \to R, \quad f \mapsto \operatorname{tr}(\int_{G} f(g)\pi(g) \, dg).$$

is called the distribution character of $\boldsymbol{\pi}$

 $C_c^{\infty}(G, R)$ is the space of compactly supported functions $f : G \to R$ bi-invariant by some K. So the endomorphism $\pi(fdg) = \int_G f(g)\pi(g)dg$ of V has image in V^K .

Harmonic analysis

If char(F) = 0 and $R = \mathbb{C}$, the distribution character is represented by a locally integrable *G*-invariant function $\theta_{\pi}(g)$ on *G*, locally constant on G_{reg}

$$\operatorname{tr}(\pi(\operatorname{\mathit{fdg}})) = \int_G f(g) heta_\pi(g) \, dg.$$

Harish-Chandra 1923-1983

The character of π is the locally constant function $\theta_{\pi}: G_{rs} \to \mathbb{C}$

イロン 不同 とくほう イロン

If π has infinite dimension, then θ_{π} is not locally constant near the identity. The local expansion of θ_{π} around the identity is another deep theorem leading to many questions with recent partial answers More in my second lecture !

Characters are an important guide towards a deeper understanding of the local Langlands correspondence.

Tool 4 : If $\operatorname{char}(F) = 0$, characters of admissible smooth \mathbb{C} -representations

You will learn more on characters in Tasho Kaletha's course.

Tool 5: Smooth parabolic induction and compact induction

The example of $G = GL_2(\mathbb{Q}_p)$

• **Smooth parabolic induction** : *T* diagonal group, *B* triangular group

 $T \leftarrow B \rightarrow G$

Start from a smooth *R*-representation (σ, W) of *T*, inflate to *B*, induce to get the smooth *R*-representation

$$\operatorname{ind}_{B,T}^{G}\sigma$$

of G by right translation on the space of functions

$$\{f: GL_2(\mathbb{Q}_p) \to W \mid f(bgk) = \tilde{\sigma}(b)(f(g)) \mid b \in B, g \in G, k \in K_f\}$$

for some open compact subgroup K_f of G.

• Compact induction

$$K = \mathbb{Q}_p^* \operatorname{GL}_2(\mathbb{Z}_p) \ \ ext{or} \ \ \mathbb{Q}_p^* \langle I, \begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix}
angle$$

(representing the conjugacy classes of open compact mod center sg of G containing the center)

Start from a smooth *R*-representation (σ, W) of *K* and compactly induce to *G* to get the representation of *G*

$\mathrm{ind}_K^G \sigma$

by right translation on the space of functions $\{f : GL_2(\mathbb{Q}_p) \to W, f(kg) = \sigma(k)(f(g)), k \in K, g \in G\},\$ supported on a finite union of classes *Kh*

Families of irreducible representations

One family Irreducible subquotients of $\operatorname{ind}_{B,T}^{G} \chi$ for the smooth characters $\chi : T \to R^*$.

Supercuspidal: irreducible smooth not a subquotient of a parabolically induced

This ordering of irreducible smooth *R*-representations of $GL_2(\mathbb{Q}_p)$ generalises to any reductive *p*-adic group *G*

A lasting conjecture proved in many cases If $\operatorname{char}(R) \neq p$, the supercuspidal *R*-representations are compactly induced representations $\operatorname{ind}_{K}^{G}(\sigma)$ from irreducible smooth *R*-representations σ of *K* open subgroup containing the center, compact mod center.

Roger Howe 1945-

 $G = GL_2(F)$

(人間) (人) (人) (人) (人) (人)

Philip Kutzko 1946- J.K. Yu

More in Jessica Fintzen and in Charlotte Chan course.

Assume char(R) = p

Irrreducible does not imply admissible, no Haar *R*-measure on *G*. $\operatorname{ind}_{K}^{G} \sigma$ has infinite length or is 0.

Parabolic induction is simpler ! Supercuspidal *R*-representations of $GL_2(\mathbb{Q}_p)$ are classified.

Christophe Breuil

Laure Barthel

Ron Livne

There is an endomorphism T of cokernel $\operatorname{ind}_{K}^{G}\operatorname{Sym}^{k}(\mathbb{F}_{p}^{2})/(T)$ irreducible supercuspidal, $0 \leq k \leq p = 1$.

Marie-France Vignéras

Representations of *p*-adic groups

But the supercuspidal R-representations of a general G remain totally mysterious. The mathematicians try to understand them since 25 years.

New tools are needed when char(R) = p

More on in Herzig's course !

Marie-France Vignéras

Representations of *p*-adic groups

Tool 6 : Hecke algebras

For our open compact subgroup K of G, the free abelian group $\mathbb{Z}[K \setminus G/K]$ carries a structure of an associative ring, called a Hecke ring

 $\mathbb{Z}[K \backslash G/K] \simeq \operatorname{End}_{G} \operatorname{ind}_{K}^{G} 1$

For any smooth *R*-representation of (π, V) ,

$$V^{\mathcal{K}} \simeq \operatorname{Hom}_{\mathcal{K}}(1, V) \simeq \operatorname{Hom}_{\mathcal{G}}(\operatorname{ind}_{\mathcal{K}}^{\mathcal{G}}1, V)$$

is a $R[K \setminus G/K]$ -module.

When K is an open compact subgroup of G of pro-ordrer invertible R (hence $char(R) \neq p$), the map $V \rightarrow V^{K}$ is a bijection between

- the irreducible smooth *R*-representations (π, V) of *G* with $V^{K} \neq 0$
- the irreducible $R[K \setminus G/K]$ -modules

What are the properties of the algebras $R[K \setminus G/K]$? Is it easy to classify their irreducible modules ?

Finiteness Theorem 2024

 $\mathbb{Z}[1/p][K \setminus G/K]$ is a finitely generated module over its center, and the center is a finitely generated $\mathbb{Z}[1/p]$ -algebra.

Jean-Francois Dat

David Helm

Rob Kurinczuk

Gil Moss

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

using the excursions operators of Fargues-Scholze. It is very possible that inverting p is not necessary.

When K = I is an Iwahori subgroup, $\mathbb{Z}[I \setminus G/I]$ satisfies the finiteness theorem, it is an affine Hecke ring, has been well studied, and plays an important role in the theory of smooth representations of G.

When K is a special parahoric subgroup, $\mathbb{Z}[K \setminus G/K]$ is commutative finitely generated (the Satake isomorphism over \mathbb{Z}).

Langlands interpreted the Satake isomorphism over \mathbb{C} and in a particular case, as a parametrization of irreducible smooth \mathbb{C} -representations of G with a non-zero K-invariant vectors by semisimple conjugacy classes in a complex group "dual" to G. He used the parametrization to define (partial) *L*-functions for automorphic representations of adelic reductive groups, and with the dual group he formulated a conjectural classification of all irreducible smooth \mathbb{C} -representations of G (the local Langlands correspondence).