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0. Introduction/disclaimer

These are a set of exercises written for the 2025 Arizona Winter School about Representations
of p-adic Groups. The presentation is intended to highlight the similarities and differences when
working with finite groups of Lie type and p-adic groups, as well as what happens when we consider
different coefficient fields.

Be advised that the exercises are not written in a linear order! There are many backwards and
forwards references. Feel free to skip around to whatever topic seems interesting. There are various
hints in the footnotes, and problems that are more difficult or tangiential to the main themes are
marked with a (∗).

1. Representation theory of finite groups

Suppose G is a finite group and C is an algebraically closed field of arbitrary characteristic which
serves as the coefficient field. (Many arguments carry over to the case where C is not algebraically
closed.) We stress that char(C) is arbitrary, unless otherwise specified.

We use the notation (π, V ) (or sometimes just V ) to denote representations of G: V is a C-vector
space and π : G −→ GL(V ) is a homomorphism. Upon choosing a basis for V , we may realize π as
landing in GLn(C) for some n. We write g · v for π(g)v.

Note: many “standard” results and constructions (Schur’s lemma, Maschke’s theorem, etc.) are
discussed in Section 4 in the more general context of smooth representations of profinite groups. If
you get stuck, try looking there for ideas!

Exercise 1.1. Prove that a representation (π, V ) is the same thing a left C[G]-module structure on
V , where C[G] denotes the group algebra of G over C.

Exercise 1.2 (Frobenius reciprocity). Prove the two versions of Frobenius reciprocity1: suppose
H is a subgroup of G, W a representation of H, and V a representation of G. Then we have
isomorphisms of C-vector spaces

1Hint: for both versions, use an appropriate version of Tensor-Hom adjunction.
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(a) HomG(C[G]⊗C[H] W,V ) ∼= HomH(W,V |H);
(b) HomG(V,HomC[H](C[G],W )) ∼= HomH(V |H ,W ).

(In the first (resp., second) of these isomorphisms, we view C[G] as a (C[G], C[H])-bimodule (resp.,
a (C[H], C[G])-bimodule).)

Exercise 1.3. Let H ≤ G be a subgroup of G, and let (τ,W ) denote a representation of H.

(a) Prove that we have an isomorphism of G-representations

C[G]⊗C[H] W ∼= HomC[H](C[G],W ),

which is moreover natural in W .
(b) Show that the left C[G]-module C[G] is both projective and injective as a G-representation.

Deduce that the same is true for its contragredient representation C[G]∨.
(c) Suppose (π, V ) is a finite-dimensional G-representation. Show that V is projective over C[G] if

and only if it is injective over C[G].2

Thus, the above two exercises show that for finite groups, we can take IndGH(W ) to be either the
“tensor version” or the “Hom version,” and Frobenius reciprocity works “on both sides.”

Exercise 1.4. Show that the 1-dimensional representations ofG correspond bijectively to 1-dimensional
representations of the abelianization Gab := G/[G,G], where [G,G] denotes the subgroup generated
by all commutators [g, h] := ghg−1h−1, g, h ∈ G.

Exercise 1.5.

(a) Suppose G = S3. Classify all irreducible representations of G over C. (Split the calculation
according to prime factors of |G|, i.e., treat the cases char(C) = 2, char(C) = 3, and char(C) ̸=
2, 3 separately.)

(b) Suppose G = S4. Classify all irreducible representations of G over C.
(c) Suppose G = S5. Classify all irreducible representations of G over C.

Try to do this “by hand” from first principles, i.e., no character theory: find vector spaces on which
G acts, and decompose them (a good place to start is the natural representation of Sn on Cn). Then
prove that your putative list of irreducibles is complete.

Exercise 1.6. Suppose char(C) = p and |G| = pk. Verify directly that any homomorphism

χ : G −→ C×

must be trivial. Thus the only one-dimensional representation of G is the trivial character.

Exercise 1.7. Let G = Z/pZ = ⟨g⟩, and suppose char(C) = p. Let V denote the representation
defined by homomorphism

π : G −→ GL2(C)

gk 7−→
(
1 k
0 1

)
.

Prove that the G-stable subspace W = span{e1} ⊂ V admits no G-stable complement. Thus, the
representation V is not semisimple.

Exercise 1.8 (Mackey formula). Let H,K be two subgroups of a finite group G, and let (τ,W )
denote a representation of H. The Mackey formula says that we have an isomorphism of K-
representations

IndGH(W )|K ∼=
⊕

g∈H\G/K

IndKK∩g−1Hg(W
g|K∩g−1Hg),

2Hint: dualize.
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where (τ g,W g) denotes the representation of g−1Hg given by τ g(h′) = τ(gh′g−1) for h′ ∈ g−1Hg.
The goal of this exercise will be to prove this decomposition. (For the purposes of this exercise, we
will think of IndGH(W ) as the space of functions f : G −→W satisfying the appropriate equivariance
condition.)

(a) Given g ∈ H\G/K, let IndHgKH (W ) denotes the sub-vector space of IndGH(W ) of functions

f : G −→ W with support contained in the double coset HgK. Show that IndHgKH (W ) is a

K-subrepsentation of IndGH(W )|K . (That is, show that the subspace is stable by the K-action.)
(b) Show that we have an isomorphism of K-representations

IndGH(W )|K ∼=
⊕

g∈H\G/K

IndHgKH (W ).

(c) Show that we have an isomorphism of K-representations

IndHgKH (W ) ∼= IndKK∩g−1Hg(W
g|K∩g−1Hg).

3

Exercise 1.9 (Regular representation). In this exercise we will determine the structure of the regular
representation, i.e., the group algebra C[G] with G acting by left multiplication, using Exercise 4.10.

(a) Suppose (τ,W ) is a finite-dimensional injective representation of G. Show that

W ∼=
⊕

U∈Irr(G)

injG(U)⊕nU

for some nU ≥ 0 (depending on W ).4

(b) By the previous part and Exercise 1.3(b), we can write C[G] ∼=
⊕

U∈Irr(G) injG(U)⊕nU for some

non-negative integers nU . Show that nU = dimC(HomG(U,C[G])).
5

(c) Conclude that

C[G] ∼=
⊕

U∈Irr(G)

injG(U)⊕ dimC(U)

and

|G| =
∑

U∈Irr(G)

dimC(U) dimC(injG(U)).

(d) Suppose G = S3. Use the previous part and Exercise 1.5 to determine the structure of injective
envelopes of all irreducibles when char(C) = 2 and char(C) = 3.

Next, let us suppose that C = C. Recall that in this case, any representation (π, V ) of G has a
character χπ, which is a class function χπ : G −→ C defined by

χπ(g) := Tr(π(g)).

Recall that we have:

• χπ⊕π′ = χπ + χπ′ ;
• χπ⊗π′ = χπ · χπ′ ;
• χπ∨ = χπ;
• χHom(π,π′) = χπ · χπ′ .

3Hint: for f ∈ IndHgK
H (W ), define a function f ′ by f ′(k) = f(gk) for k ∈ K. Show that f ′ ∈

IndK
K∩g−1Hg(W g|K∩g−1Hg) and that f 7−→ f ′ is the desired K-equivariant isomorphism.
4Hint: use Exercise 4.10, properties (∗3) and (∗4).
5Hint: use Exercise 4.10, property (∗6).
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For the last point, recall that given two representations (π, V ), (π′, V ′), we let g ∈ G act on the
vector space Hom(V, V ′) by (g · f)(v) = g · (f(g−1 · v)).

If f, f ′ : G −→ C are two functions, we define their inner product by

⟨f, f ′⟩G :=
1

|G|
∑
g∈G

f(g)f ′(g).

For a reference, see [Ser77, Part I].

Exercise 1.10. Suppose (π, V ), (π′, V ′) are two finite-dimensional representations of G over C.
(a) Show that

dimC(V
G) =

1

|G|
∑
g∈G

χπ(g) = ⟨1G,χπ⟩G,

where 1G denotes the trivial representation of G.6

(b) Show that

⟨χπ,χπ′⟩G = dimC(HomG(V, V
′)).7

(c) Show that if V and V ′ are irreducible and inequivalent, then ⟨χπ,χπ′⟩G = 0.
(d) Show that V is irreducible if and only if ⟨χπ,χπ⟩G = 1.8

Exercise 1.11 (Heisenberg representation). Suppose p is prime. Let G be a finite p-group with
center Z ∼= Fp, and such that V := G/Z is an abelian group of exponent p. Fix a non-trivial character
χ : Z ↪−→ C×.

(a) Define a function ⟨−,−⟩ : V × V −→ C× by

⟨x, y⟩ = χ(xyx−1y−1),

where x, y ∈ G are lifts of x, y ∈ V. Verify the following properties:
• ⟨x1 · x2, y⟩ = ⟨x1, y⟩ · ⟨x2, y⟩,
• ⟨x, y1 · y2⟩ = ⟨x, y1⟩ · ⟨x, y2⟩,
• ⟨x, x⟩ = 1,
• For every x ̸= 1, there exists y ∈ V such that ⟨x, y⟩ ≠ 1.

Therefore, if we choose an isomorphism ι : µp(C)
∼−→ Fp, we see that ι ◦ ⟨−,−⟩ : V × V −→ Fp

defines a symplectic form on the Fp-vector space V. In particular, dimFp(V) is even, say 2d.

(b) Recall that a subspace H ⊂ V is called isotropic if ι ◦ ⟨h, h′⟩ = 0 for all h, h
′ ∈ H. Prove that

if H is an isotropic subspace, then dimFp(H) ≤ d, and show furthermore that there exists a
subspace achieving this maximum.

(c) Suppose H is a maximal isotropic subspace, and let H denote the preimage of H in G. Show
that H is abelian, and that there exists a character χH : H −→ C× such that χH |Z = χ.

(d) Show that if χH,1 and χH,2 are two characters of H extending χ as above, then χH,1 and χH,2
are G-conjugate.9

(e) Show that {g ∈ G : χgH = χH} = H.

(f) Consider now the G-representation IndGH(χH). Prove that IndGH(χH) is irreducible.
10

(g) Prove that IndGH(χH)|Z ∼= χ⊕pd = χ⊕|V|1/2 .

6Hint: define a := 1
|G|

∑
g∈G g ∈ C[G]. Show that the action of a on V is a projection, and then compute its trace

in two ways.
7Hint: write HomG(V, V ′) = Hom(V, V ′)G and use the previous part.
8Hint: use Exercises 4.7 and 4.12.
9Hint: use the fact that any linear map H −→ Fp is of the form ι ◦ ⟨−, x⟩ for a uniquely determined x ∈ V/H.
10Hint: use Frobenius reciprocity and the Mackey formula.
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(h) Prove that, up to isomorphism, IndGH(χH) is the unique irreducible G-representation on which
Z acts by χ.11

(i)∗ Calculate the character table of G.

Remark. The result of (h) is known as the Stone–von Neumann Theorem, and the represen-
tation IndGH(χH) is known as the Heisenberg representation. See [Bum97, Exers. 4.1.4 – 4.1.8]
for a more general treatment.

2. Finite groups of Lie type – characteristic 0 coefficients

In this section and the next, we introduce the following notation: we fix a prime number p, and let
G denote the group GL2(Fp). You should remind yourself why the group G has order (p2−1)(p2−p).

We have the following subgroups of G:

B =

(
∗ ∗
0 ∗

)
, T =

(
∗ 0
0 ∗

)
, U =

(
1 ∗
0 1

)
.

Here, ∗ indicates an arbitrary entry of Fp, subject to the condition that the resulting matrix is
invertible. Thus, an element of B is of the form

(
a b
0 d

)
with a, d ∈ F×

p , b ∈ Fp. We also define Z to

be the center of G; thus, we have Z = {( a 0
0 a ) : a ∈ F×

p }.

Exercise 2.1. Calculate the conjugacy classes in G.12 In particular:

(a) Compute the number of conjugacy classes.
(b) For each conjugacy class C, calculate its size.
(c) For each conjugacy class C, find a representative and calculate its order in G.
(d) Verify the class equation.
(e) Compute the number of irreducible representations of G over C.

In the next set of exercises, we will determine all irreducible representations of G = GL2(Fp) over
C.

Exercise 2.2. Let ψ : F×
p −→ C× denote a character (that is, a homomorphism).

(a) Show that as ψ ranges over characters F×
p −→ C×, the homomorphisms ψ ◦ det : G −→ C× give

p− 1 inequivalent, 1-dimensional representations of G.
(b) Show that when p > 2, this gives all 1-dimensional representations of G.13

(c) What happens for p = 2?

Now fix two characters χ1, χ2 : F×
p −→ C×, and let χ := χ1 ⊠χ2 : B −→ C× denote the character

given by

(χ1 ⊠ χ2)

((
a b
0 d

))
= χ1(a)χ2(d).

We then consider the representation IndGB(χ1 ⊠ χ2). (Recall that G acts by right translation of
functions.)

Exercise 2.3 (Principal series representations). Let χ1, χ2, ψ1, ψ2 : F×
p −→ C× denote characters.

(a) Calculate the dimension of IndGB(χ1 ⊠ χ2).
(b) Calculate the central character of IndGB(χ1 ⊠ χ2) (cf. Exercise 4.13).

11Hint: if V is such an irreducible representation, then V |H is a sum of characters, all of which extend χ, and all
of which are G-conjugate.

12Hint: rational canonical form/Jordan normal form may be helpful here.
13Hint: use Exercise 1.4.
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(c) Consider the space

HomG

(
IndGB(χ1 ⊠ χ2), Ind

G
B(ψ1 ⊠ ψ2)

)
.

Show that this space is nonzero if and only if {χ1, χ2} = {ψ1, ψ2}.14

(d) Show that the spaces

HomG

(
IndGB(χ1 ⊠ χ2), Ind

G
B(χ1 ⊠ χ2)

)
and HomG

(
IndGB(χ1 ⊠ χ2), Ind

G
B(χ2 ⊠ χ1)

)
both have dimension 1 if χ1 ̸= χ2 and have dimension 2 otherwise.

(e) Deduce that when χ1 ̸= χ2, the representation IndGB(χ1 ⊠χ2) is irreducible, and we have an iso-
morphism IndGB(χ1 ⊠χ2) ∼= IndGB(χ2 ⊠χ1). Also deduce that when χ1 = χ2, then IndGB(χ1 ⊠χ2)
is a direct sum of two inequivalent irreducible representations. (In particular, the semisimplifi-
cation does not change when the characters are interchanged.)

Thus, unordered pairs of distinct characters {χ1, χ2} give rise to pairwise inequivalent irreducible
representation IndGB(χ1⊠χ2). These are known as principal series representations. We therefore

obtain (p− 1)(p− 2)/2 =
(
p−1

2

)
representations in this way.

In fact, it is also easy to describe the reducible case. Suppose χ1 = χ2 =: χ, and note that we
have

IndGB(χ⊠ χ) ∼= IndGB(1B)⊗ χ ◦ det,
where 1B denotes the trivial character of B. The constant functions in IndGB(1B) give a copy of the
trivial G-representation 1G, and we let

StGB := IndGB(1B)/1G

denote the Steinberg representation. (Note that since we work over C, we have IndGB(1B)
∼=

1G ⊕ StGB.)

Exercise 2.4.

(a) Show that the representations

χ ◦ det, IndGB(χ1 ⊠ χ2), StGB ⊗ χ ◦ det
as χ, χ1, χ2, (χ1 ̸= χ2) range over characters of F×

p , are pairwise non-isomorphic (up to exchang-
ing χ1 and χ2).

(b) Let 1U denote the trivial character of U . Determine the structure of the B-representation
IndBU (1U ).

(c) Suppose (π, V ) is an irreducible representation of G. Prove that the following are equivalent:15

(i) V is isomorphic to a representation from part (a);
(ii) V U ̸= 0;
(iii) VU ̸= 0.

The representations of G satisfying VU = 0 (or, equivalently, V U = 0) are called cuspidal
representations. By the above exercise, we are left with classifying the cuspidal representations of
GL2(Fp).

Exercise 2.5 (Cuspidal representations). Let Fp2 denote the quadratic extension of Fp, and identify

F×
p2

with a subgroup of GL2(Fp). (For example, we have Fp2 ∼= F⊕2
p as Fp-vector spaces, and

multiplication by F×
p2

defines an Fp-linear map.) Fix a character θ : F×
p2
−→ C× satisfying θp ̸= θ

(these characters are called regular), and a character ψ : U −→ C× satisfying ψ ̸= 1. We first
consider the representations

IndGZU (θ ⊠ ψ) and IndGF×
p2
(θ).

14Hint: use Frobenius reciprocity (Exercise 1.2) and the Mackey formula (Exercise 1.8).
15Hint: note that IndG

U = IndG
B ◦ IndB

U and use the previous part.
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of G.

(a) Prove that if ψ′ is another character of U satisfying ψ′ ̸= 1, then we have IndGZU (θ ⊠ ψ) ∼=
IndGZU (θ ⊠ ψ′).16

(b) Calculate
⟨χIndG

ZU (θ⊠ψ),χIndG
ZU (θ⊠ψ)⟩G.

It may be useful to use Frobenius reciprocity and the formula for the character of an induced
representation (see [Ser77, Part I, Thm. 12]). Also, recall that if α : A −→ C× is a nontrivial
character of an abelian group A, then

∑
a∈A α(a) = 0.

(c) Calculate
⟨χIndG

F×
p2

(θ),χIndG
ZU (θ⊠ψ)⟩G and ⟨χIndG

F×
p2

(θ),χIndG

F×
p2

(θ)⟩G.

For this, use that if a, b ∈ F×
p2
⊂ G are two elements which do not lie in Z, then a and b are

G-conjugate if and only if they have the same characteristic polynomial, if and only if b ∈ {a, ap}.
Now consider the virtual representation (πθ, Vθ) := IndGZU (θ ⊠ ψ) − IndGF×

p2
(θ). Recall that this is

a formal Z-linear combination of irreducible representations, with character χπθ = χIndG
ZU (θ⊠ψ) −

χIndG

F×
p2

(θ). By part (a) above, up to isomorphism Vθ is independent of the choice of ψ.

(d) Show that ⟨χπθ ,χπθ⟩G = 1 and χπθ(1) = p−1. Deduce from this that Vθ is a genuine irreducible
representation of G.

(e) Verify the following character values of χπθ :

χπθ(z) = (p− 1)θ(z) if z ∈ Z,
χπθ(zu) = −θ(z) if z ∈ Z, u ∈ U ∖ {1},
χπθ(a) = −θ(a)− θ(ap) if a ∈ F×

p2
∖ Z,

χπθ(g) = 0 if g is not conjugate to an element of ZU ∪ F×
p2
.

Use the above to show that if θ, θ′ are two regular characters, then Vθ ∼= Vθ′ if and only if
θ′ ∈ {θ, θp}.

(f) Show that
∑

u∈U χπθ(u) = 0, and deduce that Vθ is cuspidal. (In fact, when p > 2, cuspidality
follows from dimension considerations.)

(g) Consider the representations

χ ◦ det, IndGB(χ1 ⊠ χ2), StGB ⊗ χ ◦ det, Vθ,

where χ, χ1, χ2, (χ1 ̸= χ2) range over characters of F×
p , where θ is a regular character of F×

p2
, and

where we identify IndGB(χ1 ⊠ χ2) ∼= IndGB(χ2 ⊠ χ1) and Vθ ∼= Vθp . Show that this list constitutes
all (isomorphism classes of) irreducible representations of G over C.17

Important Remark. Suppose Fq is a finite extension of Fp. Then the exercises above work in
exactly the same way for the group GL2(Fq); it suffices to “replace p with q everywhere.”

Exercise 2.6.

(a) Recall that the group S3 is isomorphic to GL2(F2). Match the irreducibles from Exercise 1.5(a)
with the irreducibles from Exercise 2.5(g).

(b) Repeat the above using the exceptional isomorphism S4
∼= PGL2(F3) and Exercise 1.5(b).

(c) Repeat the above using the exceptional isomorphism S5
∼= PGL2(F5) and Exercise 1.5(c).

(d)∗ Try the same thing with other exceptional isomorphisms, e.g., for alternating groups. See
Wikipedia.

16Hint: first show that any non-trivial character ψ′ is of the from ψ′(( 1 x
0 1 )) = ψ(( 1 ax

0 1 )) for some a ∈ F×
p . Then

show f 7−→ f ′ where f ′(g) = f(( a 0
0 1 ) g) gives the required isomorphism.

17Hint: the number of irreducible complex representations of a finite group is equal to the number of conjugacy
classes.

https://en.wikipedia.org/wiki/Exceptional_isomorphism
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Exercise 2.7 (Deligne–Lusztig representations). Here is another construction of cuspidal represen-
tations of G. Consider the affine variety V over Fp given by the equation∣∣∣∣X Xp

Y Y p

∣∣∣∣p−1

= (XY p −XpY )p−1 = 1.

This is a variant of the famous Drinfeld curve.

(a) Show that V decomposes into irreducible components as V =
⊔
a∈F×

p
Va, where Va is defined by

the equation XY p −XpY = a.
(b) Show that V is smooth.
(c) Show that the group G acts on V via

(
X
Y

)
7−→ g

(
X
Y

)
, where g ∈ G.

(d) Show that the group F×
p2

acts on V via
(
X
Y

)
7−→

(
λX
λY

)
, where λ ∈ F×

p2
. Moreover, show that this

action commutes with the action of G.
(e) Show that the map V −→ P1 given by

(
X
Y

)
7−→ [X : Y ] defines a G-equivariant isomorphism of

varieties V/F×
p2

∼−→ P1 ∖ P1(Fp).
(f) Let a ∈ F×

p . Show that the maps Va −→ A1 given by
(
X
Y

)
7−→ Y define an F×

p2
-equivariant

isomorphism of varieties V/U
∼−→
⊔
a∈F×

p
A1 ∖ {0}. The action of λ ∈ F×

p2
on the right-hand side

sends Z in the a-component to λZ in the aNFp2/Fp
(λ)-component.

Let ℓ denote a prime different from p. We can associate to V its compactly supported, ℓ-adic étale
cohomology groups H i

c(V,Qℓ). (See [Bon11, App. A] or [DM91, §10] for a quick overview.) These
are finite-dimensional Qℓ-vector spaces, which, by functoriality, obtain commuting actions of G and
F×
p2
.

(g) Show that H i
c(V,Qℓ) = 0 if i = 0 or i > 2.18

(h) Show that as a representation of G× F×
p2
, we have

H2
c (V,Qℓ) ∼=

⊕
χ:F×

p →Q×
ℓ

χ ◦ det⊠χ ◦NFp2/Fp
.19

Let us now define H∗
c (V,Qℓ) :=

∑
i≥0(−1)iH i

c(V,Qℓ), which is a virtual representation of G × F×
p2
.

By part (g), we have

H∗
c (V,Qℓ) = −H1

c (V,Qℓ) +H2
c (V,Qℓ).

Since F×
p2

is abelian, any finite-dimensional representation is semisimple. Given a character θ :

F×
p2
−→ Q×

ℓ , we define V ′
θ := H∗

c (V,Qℓ)[θ] to be the alternating sum of the θ-isotypic components of

the H i
c(V,Qℓ). This gives a virtual representation of G.

(i) Suppose θ is regular. Show that V ′
θ = −H1

c (V,Qℓ)[θ].

(j) Suppose that θ = 1F×
p2

is the trivial character. Using the fact that H i
c(V,Qℓ)

F×
p2 = H i

c(V/F×
p2
,Qℓ)

([Bon11, Eq. A.2.3]), the excision long exact sequence ([Bon11, Thm. A.2.1(d)]) and part (e),
show that H1

c (V,Qℓ)[1F×
p2
] ∼= StGB, and conclude that V ′

1F×
p2

∼= −StGB + 1G. Similarly, if θ is of the

form χ ◦NFp2/Fp
for some character χ of F×

p , we have V ′
χ◦NF

p2
/Fp
∼= (−StGB + 1G)⊗ χ ◦ det.

(k) For (g, λ) ∈ G× F×
p2
, we define the trace of (g, λ) by

TrV(g, λ) :=
∑
i≥0

(−1)iTr((g, λ)|H i
c(V,Qℓ)).

18Hint: see [Bon11, Thm. A.2.1(b)].
19Hint: see [Bon11, Thm. A.2.1(c)].
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The fixed-point formula of Deligne–Lusztig [DL76, Thm. 3.2] states that if s and u are two
commuting elements with order prime to p, respectively a power of p, then

TrV(su) = TrVs(u).

Show that if λ ̸= 1, then TrV(1, λ) = 0. Use this to deduce that as a virtual representation of
F×
p2
, H∗

c (V,Qℓ) is a multiple of the regular representation Qℓ[F×
p2
].

(l) Let θ denote a regular character. Use the previous part to deduce that

dimQℓ
(H1

c (V,Qℓ)[θ]) = dimQℓ
(−V ′

θ) = dimQℓ
(−V ′

1F×
p2

) = p− 1.

(m) Finally, we verify thatH1
c (V,Qℓ)[θ] is cuspidal by showing it does not contain the trivial character

of U . Using the fact that H i
c(V,Qℓ)

U ∼= H i
c(V/U,Qℓ), the excision long exact sequence, and part

(f), show that we have

H1
c (V,Qℓ)

U ∼=
⊕

χ:F×
p →Q×

ℓ

χ ◦NFp2/Fp

as F×
p2
-representations. Conclude that H1

c (V,Qℓ)[θ]
U = 0, which gives the desired cuspidality.

(Note that by using dimension counting, we also deduce irreducibility.)

Remark. It is also possible to construct the cuspidal representations of G by means of the Weil
representation (since GL2

∼= GSp2). See [Bum97, §4.1] for an exposition.

Exercise 2.8 (Steinberg representation in characteristic ℓ). Let P1(Fp) denote the projective line
over Fp, endowed with an action of G by Möbius transformations: if g =

(
a b
c d

)
∈ G and [X : Y ] ∈

P1(Fp), we define g[X : Y ] = [aX + bY : cX + dY ]. Let V := C(P1(Fp),C) denote the space of
C-valued functions, and endow V with a linear G-action via (g · f)([X : Y ]) = f(g−1[X : Y ]) for
g ∈ G, f ∈ V .

(a) Show that V ∼= IndGB(1B).
(b) Show that the subspace of constant functions gives the trivial subrepresentation 1G ⊂ V . Thus,

the Steinberg representation StGB may be identifed as C(P1(Fp),C)/{constant functions}.
(c) Suppose now that ℓ is a prime number dividing p + 1. (Thus ℓ divides |G|, and Maschke’s

theorem does not apply.) Let Vℓ := C(P1(Fp),Fℓ), and define a map

Σ : Vℓ −→ Fℓ
f 7−→

∑
v∈P1(Fp)

f(v)

Show that the map Σ is surjective and G-equivariant, if we endow Fℓ with the trivial G action.
(d) Show that the subspace of constant functions lies in the kernel of Σ, so that Σ factors as

Vℓ 1G

StGB

Σ

Deduce that the Steinberg representation is not irreducible in characteristic ℓ dividing p+ 1.
(e)∗ Show that 0 ⊂ 1G ⊂ ker(Σ) ⊂ Vℓ is the unique composition series of Vℓ.

20

Exercise 2.9 (Whittaker model). Suppose C is an algebraically closed field satisfying char(C) ̸= p,
and fix a non-trivial character ψ : U −→ C×. We examine the Gelfand–Graev representation
IndGU (ψ).

(a) Show that if ψ′ is any other non-trivial character of U , then IndGU (ψ
′) ∼= IndGU (ψ).

20Hint: use Exercise 2.9(e).
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(b) Show that IndGU (ψ) is an injective object in C[G]−Mod, and therefore that V 7−→ HomG(V, Ind
G
U (ψ))

is an exact functor. (The dual of this functor is often called the twisted Jacquet module.)
(c) Suppose (π, V ) is an irreducible representation of G over C.

(i) Show that V = χ◦det for some character χ : F×
p −→ C× if and only if V |U ∼= 1⊕nU for some

n ≥ 0.
(ii) Show that V |U ∼= 1⊕nU if and only if HomG(V, Ind

G
U (ψ)) = 0.21

Thus, HomG(V, Ind
G
U (ψ)) = 0 if and only if V ∼= χ ◦ det.

(d) Let χ1, χ2 : F×
p −→ C× be two characters. Calculate

dimC

(
HomG(Ind

G
B(χ1 ⊠ χ2), Ind

G
U (ψ))

)
and dimC

(
HomG(Ind

G
B(χ1 ⊠ χ2), Ind

G
U (1U ))

)
.22

(e) Using parts (b) and (d), conclude that IndGB(χ1⊠χ2) has length at most 3 as a G-representation.

Remark. In fact, the Gelfand–Graev representation IndGU (ψ) satisfies

dimC

(
HomG(V, Ind

G
U (ψ))

)
≤ 1

for all irreducible representations V . This holds more generally for connected reductive groups over
finite fields; see [DL76, §10] and [DM91, Ch. 14] for the case C = C. The case char(C) ̸= p then
follows from properties of the cde triangle (cf. [Ser77, Ch. 15]).

Exercise 2.10 (Finite Hecke algebras). Let C = C and consider the algebra EndG(Ind
G
B(1B)). (This

appears as a finite-dimensional subalgebra of the Iwahori–Hecke algebra; see Exercise 6.12.)

(a) Show that we may identify EndG(Ind
G
B(1B)) with H(G,B, 1B) = IndGB(1B)

B, the B-bi-invariant
functions on G. Show also that the composition product on EndG(Ind

G
B(1B)) corresponds to the

convolution product on IndGB(1B)
B.

(b) Write down a basis for IndGB(1B)
B, and compute all possible products of the basis elements.

(This yields a presentation of the algebra EndG(Ind
G
B(1B)).)

23

(c) Suppose (π, V ) is a representation of G. Derive the formula for the right action of IndGB(1B)
B

on a vector v ∈ V B.24

(d) Calculate the right action of IndGB(1B)
B on V B, where (π, V ) is the trivial representation 1G,

the Steinberg representation StGB, and the principal series IndGB(1B).
(e)∗ Repeat the above exercise with B replaced by U .

Remark. In the previous exercise, the algebra EndG(Ind
G
B(1B)) was commutative. This is a low-

dimensional coincidence; the analogously defined algebras for GLn(Fp) are non-commutative for

n ≥ 3. Similarly, the algebra EndG(Ind
G
U (1U )) of part (e)

∗ is not commutative.

3. Finite groups of Lie type – characteristic p coefficients

We maintain the notation of the previous section, so that G = GL2(Fp), B is the Borel subgroup
of upper triangular matrices, etc. In this section, we focus on the case of representations in “natural”
or “defining” characteristic, namely char(C) = p. For concreteness, we take C = Fp. Keep in mind

that the category of G-representations over Fp is not semisimple!

Exercise 3.1. This exercise will give the classification of mod p representations of G = GL2(Fp).
For 0 ≤ r ≤ p− 1 and 0 ≤ s < p− 1, define

Vr,s := Symr(F⊕2
p )⊗ dets.

21Hint: use part (a).
22Hint: use Exercise 1.8 and the fact that any representation of U over C is semisimple.
23Hint: use the Bruhat decomposition.
24Hint: translate both v and f ∈ IndG

B(1B)B into the corresponding Hom spaces using Frobenius reciprocity.



AWS EXERCISES - REPRESENTATIONS AND CHARACTERS OF p-ADIC GROUPS 11

Recall that we may view Vr,s as the space Fp[X,Y ]r of homogeneous polynomials of degree r, with
action given by (

a b
c d

)
·XiY r−i = (aX + cY )i(bX + dY )r−i(ad− bc)s.

(a) Prove that V U
r,s = span{Xr}.

(b) Show that the subrepresentation generated by Xr is equal to all of Vr,s.
25

(c) Use the previous two points to show that Vr,s is irreducible as a G-representation.26

(d) Prove that Vr,s ∼= Vr′,s′ if and only if (r, s) = (r′, s′).

(e) Prove that any irreducible G-representation is isomorphic to one and only one Vr,s.
27

Important Remark. Suppose f ≥ 2. Then it is not the case that the irreducible representations
of GL2(Fpf ) are obtained in the same way as those for GL2(Fp) by “replacing p by pf everywhere.”

To see this, notice that the subspace span{Xp, Y p} of Symp(F⊕2
p ) is stable by the action of GL2(Fpf ),

and therefore Symp(F⊕2
p ) is not irreducible.

The classification looks as follows. Fix an inclusion Fpf ⊂ Fp, and for 0 ≤ i ≤ f − 1 and 0 ≤ r, we
let Symr(F⊕2

p )(p
i) denote the vector space Symr(F⊕2

p ) on which the matrix
(
a b
c d

)
∈ GL2(Fpf ) acts

by
(
ap

i
bp

i

cp
i
dp

i

)
. Then any irreducible representation of GL2(Fpf ) is of the form

Symr0(F⊕2
p )⊗ Symr1(F⊕2

p )(p) ⊗ . . .⊗ Symrf−1(F⊕2
p )(p

f−1) ⊗ dets,

where 0 ≤ r0, r1, . . . , rf−1 ≤ p− 1 and 0 ≤ s < pf − 1. Moreover, these representations are pairwise
non-isomorphic. These statements may be proved in a similar manner as in Exercise 3.1, and may
be seen as a consequence of Steinberg’s tensor product theorem [Jan03, Part II, Cor. 3.17].

Exercise 3.2 (Principal series in characteristic p). In this exercise we determine the structure of
principal series representations in characteristic p.

Fix 0 ≤ r ≤ p − 1 and 0 ≤ s < p − 1, and let Vr,s = Symr(F⊕2
p ) ⊗ dets be the irreducible

representation of G from the previous exercise.

(a) Use Exercise 3.1(a) to calculate the action of T on V U
r,s.

(b) Determine the space of coinvariants (Vr,s)U and calculate the action of T on this space.

Now suppose χ : B −→ F×
p is a character given by χ

((
a b
0 d

))
= aidj , where we take 0 ≤ i, j < p− 1,

and consider the principal series representation IndGB(χ). Suppose first that i ̸= j, and let [i − j]
denote the unique integer satisfying 0 < [i− j] < p− 1 and [i− j] ≡ i− j (mod p− 1).

(c) Show that we have an injection Vp−1−[i−j],i ↪−→ IndGB(χ) and a surjection IndGB(χ) −↠ V[i−j],j .
28

(d) Show that we have a non-split short exact sequence

0 −→ Vp−1−[i−j],i −→ IndGB(χ) −→ V[i−j],j −→ 0.29

(e) Let χs : B −→ F×
p denote the character χs(

(
a b
0 d

)
) = ajdi. Show that IndGB(χ

s) and IndGB(χ)

have the same Jordan–Hölder factors but IndGB(χ
s) ̸∼= IndGB(χ).

Suppose now that i = j. Twisting by a character, we can assume i = j = 0. Thus, we consider the
representation IndGB(1B).

25Hint: use the action of ( 1 0
∗ 1 ) and a Vandermonde determinant.

26Hint: suppose V ′ is a nontrivial subrepresentation of Vr,s, and use the p-groups lemma.
27Hint: the number of irreducible representations of a finite group in characteristic p is equal to the number of

p-regular conjugacy classes (i.e., those which consist of elements of order prime to p). Alternatively, use the results of
Exercise 3.2.

28Hint: use the previous two parts and Frobenius reciprocity.
29Hint: count dimensions.
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(f) Show that we have injections 1G = V0,0 ↪−→ IndGB(1B) and Vp−1,0 ↪−→ IndGB(1B).

(g) Deduce that IndGB(1B)
∼= 1G ⊕ Vp−1,0 and that StGB

∼= Vp−1,0.

Remark. The above exercise shows that, contrary to the case of characteristic 0 coefficients, princi-
pal series in characteristic p are always reducible. (This also follows for dimension reasons.) We also
point out that the short exact sequence of the previous exercise no longer holds for GL2(Fpf ); for
“generic” χ, the principal series IndGB(χ) has length 2f . For a summary of these results, see [BP12,
§2].

Exercise 3.3 (Injectivity of StGB). In this exercise, we will show that the Steinberg representation
StGB and its twists are the only irreducible representations of G which are injective in characterstic
p.

(a) Suppose first that H is a finite group and P is a Sylow p-subgroup of H. Let (π, V ) be a
representation of H over Fp. Show that V is projective as an H-representation if and only if
V |P is projective as a P -representation.30

(b) In the setting of the previous part, show that if (π, V ) is a projective H-representation, then
dimFp

(V ) is a multiple of |P |. More precisely, show that dimFp
(V ) = |P | · dimFp

(V P ).31

(c) Now suppose (π, V ) is an irreducible representation of G = GL2(Fp) which is not isomorphic to

a twist of StGB. Show that V is not projective as a G-representation.32

(d) Let U− := ( 1 0
∗ 1 ) denote the subgroup of lower triangular matrices. Fix a nonzero vector v ∈

(StGB)
U , and consider the map

Fp[U−] −→ StGB|U−∑
u∈U−

cuu 7−→
∑
u∈U−

cuu · v.

Show that the map is an isomorphism of U−-representations, and deduce that StGB is projective
as a G-representation.33

(e) Prove that StGB is injective as a G-representation.34

Remark. It is true more generally that if G′ is the group of Fq-points of a connected semisimple
simply connected group, then the Steinberg representation is the only irreducible G′-representation
which is injective (equivalently, projective). See [Hum06, §§9.1 – 9.3].

Exercise 3.4 (Injective envelopes of Serre weights). Let Vr,s be an irreducible representation of G,
and suppose 0 < r < p− 1. In particular, we assume p ≥ 3.

(a) Define a character χ : B −→ F×
p by χ(

(
a b
0 d

)
) = asdr+s. Show that socG(Ind

G
B(χ)) = Vr,s, and

deduce that we have an injection IndGB(χ) ↪−→ injG(Vr,s).
(b) Show that dimFp

(injG(V0,s)) ≥ p and dimFp
(injG(Vr,s)) ≥ 2p.35

(c) Use the previous part and Exercise 1.9(c) to show that we actually have equalities dimFp
(injG(V0,s)) =

p and dimFp
(injG(Vr,s)) = 2p.

(d) Show that cosocG(Ind
G
B(χ

s)) = Vr,s, and deduce that we have a surjection injG(Vr,s) −↠
IndGB(χ

s).36

30Hint: for the “if” direction, suppose W −↠ V is an H-equivariant surjection, and let σ0 : V |P −→ W |P denote
a P -equivariant section. Show that σ(v) := 1

|H/P |
∑

h∈H/P h · σ0(h−1 · v) is an H-equivariant section.
31Hint: use the previous part and that Fp[P ] is a local ring.
32Hint: there are several ways to see this, using either the current exercise or Exercise 3.2.
33Hint: proceed as in Exercise 3.1(b) and use part (a).
34Hint: use Exercise 1.3(c).
35Hint: use Exercise 3.3(b).
36Hint: note that injG(Vr,s) is also the projective cover of Vr,s, cf. [Ser77, Exer. 14.6].
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(e) Suppose r = p−2. Use the previous parts to show that the submodule structure on injG(Vp−2,s)
is given by the diagram

Vp−2,s ←− V1,p−2+s ←− Vp−2,s.

To proceed further, we need the following fact: supposing 0 ≤ r < p−2, there exists a representation
Vc of dimension p− 1 which fits into a non-split short exact sequence

0 −→ Vr,s −→ Vc −→ Vp−3−r,r+s+1 −→ 0.

(The representation Vc arises as the “mod p reduction” of a cuspidal representation Vθ in character-
istic 0 (more precisely, a lattice therein). Determining its composition factors involves a calculation
with Brauer characters; see [Dia07].)

(f) Use the above fact to show that when 0 < r < p − 2, the submodule structure on injG(Vr,s) is
given by the diagram

Vp−1−r,r+s

Vr,s Vr,s

Vp−3−r,r+s+1

Show also that the submodule structure on injG(V0,s) is given by the diagram

V0,s ←− Vp−3,s+1 ←− V0,s.

Remark. When f ≥ 2, the precise submodule structure of injective envelopes of irreducible GL2(Fpf )-
representations is more involved combinatorially. See [BP12, §§2 – 4].

Exercise 3.5.

(a) Recall that the group S3 is isomorphic to GL2(F2). Match the irreducibles from Exercise 1.5(a)
over F2 with the irreducibles from Exercise 3.1.

(b) Repeat the above using the exceptional isomorphism S4
∼= PGL2(F3) and Exercise 1.5(b) (with

irreducible representations over F3).
(c) Repeat the above using the exceptional isomorphism S5

∼= PGL2(F5) and Exercise 1.5(c) (with
irreducible representations over F5).

(d)∗ Try the same thing with other exceptional isomorphisms, e.g., for alternating groups. See
Wikipedia.

Exercise 3.6 (Additional reducibilities). Let G′ = SLp(Fp), and let V = slp(Fp) denote the space

of traceless p × p matrices with entries in Fp. We endow V with an action of G′ by conjugation:
if g ∈ G′ and X ∈ V , we set g · X := gXg−1. The representation V is usually called the adjoint
representation.

(a) Show that the subspace of scalar matrices in V is stable under the action of G′ and isomorphic
to the trivial representation 1G′ .

(b) Show that the short exact sequence of G′-representations

0 −→ 1G′ −→ V −→ V/1G′ −→ 0

does not split.
(c) Show that V/1G′ is irreducible.

Remark. We recall that when we work with complex coefficients, the adjoint representation of
SLn(C) on sln(C) is irreducible. Thus the additional reducibility of the previous exercise is a special
feature of characteristic p, and is a consequence of the Linkage Principle (see [Jan03, Part II, Ch.
6]).

https://en.wikipedia.org/wiki/Exceptional_isomorphism
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4. Representations of (locally) profinite groups

We continue to assume C an algebraically closed coefficient field of arbitrary characteristic. These
exercises deal with locally profinite groups G (such as GLn(Qp)) and profinite groups K (such as
GLn(Zp)). Keep these examples in mind to make things more concrete!

Exercise 4.1. Suppose G is a locally profinite group and let (π, V ) denote an abstract representation
of G over C (i.e., a C[G]-module). Recall that we say V is smooth if for every v ∈ V , there exists
a compact open subgroup K ⊂ G (which depends on v) such that k · v = v for every k ∈ K. Prove
that the following are equivalent:

(a) The representation V is smooth.
(b) For every v ∈ V , the subgroup StabG(v) ⊂ G is open.
(c) For every v ∈ V , the map

G −→ V

g 7−→ g · v
is locally constant.

(d) We have

V =
⋃
K⊂G

compact open

V K ,

where V K := {v ∈ V : k · v = v ∀k ∈ K} denotes the subspace of vectors fixed by K.
(e) The action map

G× V −→ V

(g, v) 7−→ g · v
is continuous, where V is given the discrete topology.

Exercise 4.2. Suppose G is a locally profinite group and let (π, V ) denote an abstract representation
of G over C (i.e., a C[G]-module). Define

V∞ :=
⋃
K⊂G

compact open

V K .

The space V∞ is often called the subspace of smooth vectors of V , or the smoothification of
V .

(a) Show that V∞ is stable by the action of G.
(b) Show that V∞ is indeed a smooth representation of G.
(c) Show that if

0 −→ V ′ −→ V −→ V ′′ −→ 0

is an exact sequence of C[G]-modules, then

0 −→ (V ′)∞ −→ V∞ −→ (V ′′)∞

is an exact sequence of smooth G-representations.
(d) Consider the short exact sequence of C[G]-modules

0 −→ ker(ev) −→ C[G]
ev−→ C −→ 0,

where ev : C[G] −→ C is given by
∑

i cigi 7−→
∑

i ci. Show that

0 −→ ker(ev)∞ −→ C[G]∞
ev−→ C

is not right exact in general.37

37Hint: explicitly compute C[G]∞ for a p-adic reductive group, e.g., GL2(Qp).
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(e)∗ Let C[G]−Mod denote the category of left C[G]-modules, and let RepC(G) denote the category of
smooth G-representations over C. Show that the smoothification functor (−)∞ : C[G]−Mod −→
RepC(G) is right adjoint to the forgetful functor RepC(G) −→ C[G] −Mod. Deduce that the
category RepC(G) has enough injectives.

Exercise 4.3. Let G denote a locally profinite group, and suppose (π, V ) is a finite-dimensional
smooth representation of G over C. Show that the kernel of π : G −→ GL(V ) is open.

Exercise 4.4. Suppose K is a profinite group. Prove the following statements:

(a) If J ⊂ K is an open subgroup, then J is closed and of finite index in K.
(b) Suppose J ⊂ K is a closed subgroup. Prove that J is open in K if and only if it is of finite

index.
(c) If J ⊂ K is an open subgroup, then there exists an open normal subgroup J ′ ◁ K such that

J ′ ⊂ J . Can you explicitly construct J ′ from J and K?

Remark. We have the following generalization of (b): if K is a profinite group which is (topologi-
cally) finitely generated, then any finite-index subgroup J is automatically open. Note that we are
not requiring J to be closed in the hypotheses! This is due to Nikolov–Segal [NS07]. On the other
hand, the absolute Galois group Gal(Q/Q) is not finitely generated, and contains many non-open
finite index subgroups; see [Mil22, §7].

Exercise 4.5.

(a) Suppose K is a profinite group, and suppose (π, V ) is a smooth irreducible representation of K.
Show that V is finite-dimensional.38

(b) Suppose G is a locally profinite group for which G/Z is compact (where Z denotes the center
of G), and suppose (π, V ) is a smooth irreducible representation of G. Show that V is finite-
dimensional.39

(c) Suppose G is a locally profinite group, and K ⊂ G is a compact open subgroup for which G/K
is countable. (An example is K = GLn(Zp) ⊂ G = GLn(Qp).) Suppose (π, V ) is a smooth
irreducible representation of G. Show that dimC(V ) is at most countable.

Exercise 4.6. Recall that a smooth representation (π, V ) of a locally profinite group G is said to
be admissible if V K is finite-dimensional for all compact open subgroups K ⊂ G.
(a) Fix a compact open subgroup K. Prove that V is admissible is and only if HomK(U, V |K) is

finite-dimensional for all irreducible K-representations U .
(b) Show that if char(C) = p and K is an open pro-p subgroup of G, then V is admissible if and

only if V K is finite-dimensional.

Exercise 4.7 (Maschke’s theorem). Let K denote a profinite group, and suppose char(C) does not
divide the pro-order of K. Let µ : K −→ R≥0 denote the Haar measure giving measure 1 to K
(which exists by the assumption on char(C)). Let (π, V ) denote a smooth representation of K, and
let W ⊂ V denote a subrepresentation. Choose a vector space decomposition V = W ⊕ U ′, and let
f ′ : V −→W denote the projection (a linear map equal to the identity on W and sending U ′ to 0).

(a) Define f : V −→W by

f(v) =

∫
K
k · f ′(k−1 · v) dµ(k).

Prove that f is K-equivariant, and equal to the identity on W .
(b) Deduce that V =W ⊕ ker(f) is a decomposition into K-representations.

38Hint: by irreducibility, we have V = ⟨K · v⟩ = ⟨(K/StabK(v)) · v⟩.
39Hint: reduce to the case where G is discrete and G/Z is finite, and use that the restriction V |Z is semisimple.
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Remark. The above exercise shows that under the assumptions of the exercise, the category of
smoothK-representations is semisimple: any smoothK-representation is a direct sum of irreducibles.
Note that when char(C) divides the pro-order of K, this result breaks down; see Exercise 1.7.

Exercise 4.8 (Completed group rings). LetK be a profinite group, and writeK = lim←−N◁K open
K/N .

In this exercise, we will investigate the completed group ring

CJKK := lim←−
N◁K open

C[K/N ].

Start with K = Zp = lim←−n Z/p
nZ.

(a) Prove that we have an isomorphism of rings C[Z/pnZ] ∼= C[Y ]/(Y pn − 1).
(b) Suppose char(C) = p. Using the substitution X = Y − 1, prove that C[Z/pnZ] ∼= C[X]/(Xpn).

Deduce that CJKK ∼= CJXK, a power series ring in one variable. In particular, CJKK is noether-
ian.

(c) Suppose char(C) ̸= p. Prove that we have an isomorphism of rings C[Z/pnZ] ∼=
∏pn

j=1C, and

describe the transition maps C[Z/pn+1Z] −→ C[Z/pnZ]. Deduce that CJKK ∼=
∏∞
j=1C, and

that CJKK is not noetherian.

Suppose now that K =
∏∞
k=1 Z/pZ = lim←−n

∏n
k=1 Z/pZ.

(d) Prove that we have a ring isomorphism C[
∏n
k=1 Z/pZ] ∼= C[X1, X2, . . . , Xn]/(X

p
1 − 1, Xp

2 −
1, . . . , Xp

n − 1).
(e) Deduce that CJKK ∼= CJX1, X2, . . .K/(X

p
1 − 1, Xp

2 − 1, . . .), and that CJKK is not noetherian.

Exercise 4.9 (Socles (from F. Herzig’s lecture)). Let K denote a profinite group, and let (τ,W )
denote a smooth representation over C. Recall that the socle of W is the maximal semisimple
subrepresentation of W . We denote this subrepresentation by socK(W ). By Exercise 4.7, if char(C)
does not divide the pro-order of K, then socK(W ) =W .

(a) Show that if W ̸= 0, then socK(W ) ̸= 0.40

(b) Show that the evaluation map⊕
V ∈Irr(K)

HomK(V,W )⊗C V −→ socK(W )

is an isomorphism. Deduce that the functor W 7−→ socK(W ) is left-exact.
(c) Suppose char(C) = p, and J ◁ K is an open, normal, pro-p subgroup such that |K/J | is prime

to p. Show that socK(W ) =W J .41

Exercise 4.10 (Injective envelopes (from F. Herzig’s lecture)). Let K denote a profinite group, and
let (τ,W ) denote a smooth representation over C. Recall that an injective envelope of W is an
injection j : W ↪−→ I, where I is a smooth representation satisfying the following “minimality”
property: any subrepresentation U ⊂ I satisfies U ∩ j(W ) ̸= 0. Injective envelopes exist and
are unique up to (non-unique) isomorphism. We denote a choice of injective envelope by W ↪−→
injK(W ).

Prove the following:

(a) If char(C) does not divide the pro-order of K, show that injK(W ) ∼=W .42

(b) If char(C) = p and K is pro-p, show that 1K ↪−→ C∞(K,C) is an injective envelope of the
trivial representation.

(∗1) If K ′ ⊂ K is open, then injK(W )|K′ is injective.
(∗2) If J ◁ K is a closed normal subgroup, then injK(W )J ∼= injK/J(W

J).

40Hint: reduce to the case of K finite and W finite-dimensional.
41Hint: use Exercise 4.7 and the p-groups lemma.
42Hint: use Exercise 4.7.
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(∗3) We have injK(W ) ∼= injK(socK(W )) and socK(W ) ∼= socK(injK(W )).
(∗4) We have injK(W1 ⊕W2) ∼= injK(W1)⊕ injK(W2).
(∗5) If W is finite-dimensional, injK(W ) is admissible.
(∗6) If W is irreducible and (π, V ) is any finite-length smooth representation of K, then

dimC(HomK(V, injK(W ))) = [V :W ],

where the latter denotes the number of times W appears in the Jordan–Hölder series of V .

Exercise 4.11. LetK is a profinite group, and suppose we are give a short exact sequence of smooth
K-representations:

0 −→ V ′ −→ V −→ V ′′ −→ 0.

Taking K-invariants is always left-exact, so we obtain

0 −→ (V ′)K −→ V K −→ (V ′′)K .

(a) Suppose char(C) does not divide the pro-order of K. Prove that the above sequence is right
exact, that is, that V K −→ (V ′′)K is surjective. Thus, taking K-invariants is an exact functor.43

(b) Suppose char(C) does divide the pro-order of K. Give an example to show that V K −→ (V ′′)K

may fail to be exact.44

(c) Suppose K is pro-p and char(C) ̸= p. Prove that a quotient of an admissible K-representation
over C is admissible.

Exercise 4.12 (Schur’s lemma). Let G be a locally profinite group, and suppose (π, V ) is an irre-
ducible representation. Schur’s lemma states that under some extra hypotheses, we have HomG(V, V ) =
C (where C denotes the scalar endomorphisms c · idV , c ∈ C). We prove two versions of this lemma
below.

(a) Suppose in addition that V is admissible. Prove that HomG(V, V ) = C using the following
outline.
(i) Suppose f ∈ HomG(V, V ) is nonzero, and choose a compact open subgroup K such that

V K ̸= 0. Show that f induces a linear map f : V K −→ V K between finite-dimensional
vector spaces.

(ii) Let λ ∈ C be an eigenvalue of f on V K (recall that C is algebraically closed). Show that
f − λ · idV vanishes on all of V .

(b) Suppose now that the field C is uncountable, and that there exists a compact open subgroup K
such that G/K is countable. Prove that HomG(V, V ) = C using the following outline.
(i) Fix a nonzero vector v0 ∈ V . Show that the map HomG(V, V ) −→ V given by f 7−→ f(v0)

is injective. Deduce that HomG(V, V ) is a division algebra over C of countable dimension.45

(ii) Suppose f ∈ HomG(V, V ) is not of the form c · idV , so that f is transcendental over C.
Prove that for each c ∈ C, the map f − c · idV is invertible, and that the uncountable set

{(f − c · idV )−1}c∈C
is linearly independent over C. Use this to arrive at a contradiction.

Remark. Part (b) is sometimes called Dixmier’s lemma. The result and proof hold more generally
when the dimension of V over C is strictly smaller than the cardinality of C (see [Bou62, §3, no. 2,
Thm. 1]).

Remark. Note that when G is a finite group, admissibility is automatically satisfied, and part (a)
is the usual version of Schur’s lemma.

43Hint: take any v′′ ∈ (V ′′)K ⊂ V ′′, and choose a lift v ∈ V . Then check that v1 :=
∫
K
k · v dµ(k) is a K-invariant

preimage of v′′.
44Hint: Exercise 1.7.
45Hint: use Exercise 4.5(c).
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Remark. Here is an instance of the failure of Schur’s lemma. Let G = GL2(F ), where F is a
non-archimedean local field whose residue field is strictly larger than Fp. Then the article [Le24]

constructs an irreducible smooth representation (π, V ) of G over Fp such that HomG(V, V ) = Fp(X)
(see Theorem 3.2 and Remark 3.3 in op. cit.). Such a representation cannot be admissible (by part
(a)).

Exercise 4.13 (Central characters). Let G be a locally profinite group, and let Z ⊂ G denote its
center. Suppose (π, V ) is a smooth irreducible representation of G, and suppose HomG(V, V ) = C
(for example, if we are in the situation of Exercise 4.12). Prove that there exists a character
ωπ : Z −→ C× such that z · v = ωπ(z)v for all z ∈ Z, v ∈ V . (The map ωπ is called the central
character of V .)46

5. Representations of p-adic groups

Throughout, F denotes a non-archimedean local field, i.e., a finite extension of Qp or a local
function field Fpf ((t)). We let OF ⊃ pF ∋ ϖ denote the ring of integers, maximal ideal, and a choice
of uniformizer in F . We let kF := OF /pF denote the residue field of OF , whose size we denote by q.

We also let C denote an algebraically closed coefficient field of arbitrary characteristic, unless
otherwise specified. In this section we focus on representations of groups of the form G = G(F ),
where G is a connected reductive group defined over F (by abuse of terminology, we call these
p-adic reductive groups). Examples of such G include GLn(F ),SL2(F ), Sp2n(F ),E8(F ), etc.

Exercise 5.1. Suppose G = GLn(F ), and suppose (π, V ) is a smooth, irreducible, finite-dimensional
representation of G.

(a) For 1 ≤ i, j ≤ n with i ̸= j, let Ui,j denote the subgroup consisting of 1s on the diagonal, an
arbitrary element of F in the (i, j)-entry, and 0s elsewhere. Show that ker(π) contains an open
subgroup of Ui,j .

47

(b) Show that ker(π) contains all of Ui,j .
(c) Show that ker(π) contains SLn(F ).
(d) Deduce that π factors through the determinant map det : G −→ F×, and therefore V ∼= χ ◦ det

for some smooth character χ.

Thus, the only finite-dimensional, smooth, irreducible representations ofG are in fact one-dimensional.

(e)∗ Show more generally that if G is split, semisimple and simply connected, then the only finite-
dimensional, smooth, irreducible representation of G is the trivial representation.

Exercise 5.2 (Extensions). Suppose G = GLn(F ). Consider the smooth two-dimensional represen-
tation (π, V ) of G given by

π : G −→ GL2(C)

g 7−→
(
1 val(det(g))
0 1

)
where val : F× −→ Z is the normalized valuation of F .

(a) Show that V defines a nonsplit extension of 1G by 1G.
(b) Show that any two-dimensional representation of SLn(F ) is isomorphic to 1⊕2

SLn(F ).

Exercise 5.3. Recall that for F/Qp a finite extension and G = GLn(F ), any quotient of an ad-

missible G-representation over Fp will also be admissible. The purpose of this exercise is to show
that this no longer holds when F is a local function field. (By contrast, when the coefficient field
is of characteristic ℓ ̸= p, then this result holds regardless of char(F ); see Exercise 4.11(c).) For
simplicity, we take F = Fp((t)).

46Hint: the map v 7−→ z · v is G-equivariant.
47Hint: use Exercise 4.3.
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(a) Let I denote a countable set, and consider the profinite group H :=
∏
i∈I Zp. Set

V := C∞

(∏
i∈I

Z/pZ, Fp

)
,

the space of locally constant, Fp-valued functions. Let H act on this space by right translation:
if h ∈ H, f ∈ V , we have

(h · f)(x) = f(x+ h),

where h denotes the image of h in
∏
i∈I Z/pZ. Prove that V is a smooth H-representation over

Fp.
(b) We define an action of GL1(F ) = F× = tZ × F×

p × 1 + pF on V as follows. First, prove that the
map

α :
∏

i≥1, p∤i

Zp −→ 1 + pF = 1 + tFp[[t]]

(xi)i≥1, p∤i 7−→
∏
i

(1 + ti)xi

is an isomorphism of topological groups.48 We then define an action of tna(1 + z) ∈ tZ × F×
p ×

1 + pF = F× on f ∈ V by

(tna(1 + z)) · f := α−1(1 + z) · f.

(c) Prove that V 1+pF is one-dimensional, spanned by the constant functions. Consequently V is an
admissible F×-representation.

(d) Let V ′ := V/V 1+pF , which is a smooth F×-representation. Prove that (V ′)1+pF is infinite-
dimensional. Consequently, V ′ is not admissible.49

Exercise 5.4. Suppose G = GLn(F ), P ⊂ G is a parabolic subgroup, and let (τ,W ) be a smooth
P -representation. Show that W is admissible if and only if IndGP (W ) is admissible.50

Exercise 5.5 (Jacquet modules). Suppose G = GL2(F ), and let B, T, U , etc., denote the subgroups
of G defined analogously to those in Section 2. Fix two smooth characters χ1, χ2 : F× −→ C×, and
let χ := χ1 ⊠ χ2 : B −→ C× denote the associated character of B.

The goal will be to compute the Jacquet module (i.e., the U -coinvariants) of the induced repre-
sentation IndGB(χ). We begin with some preparation.

(a) Show that the map ε : IndGB(χ) −→ χ given by f 7−→ f(1) is B-equivariant.
(b) Let s := ( 0 1

1 0 ). Show that if f ∈ ker(ε), then there exists a compact open subgroup U0 ⊂ U such
that supp(f) ⊂ BsU0.

51

(c) Show that the map f 7−→ ϕf , where ϕf (u) = f(su), defines an isomorphism ker(ε)
∼−→

C∞
c (U,C). Use this isomorphism to describe the B-action on C∞

c (U,C).

We now examine the short exact sequence of smooth B-representations

0 −→ C∞
c (U,C) −→ IndGB(χ) −→ χ −→ 0.

(d) Suppose first that char(C) = p. Using the fact that U does not possess a C-valued Haar measure,
show that C∞

c (U,C)U = 0. Deduce that IndGB(χ)U
∼= χ as T -representations.

48See [Neu99, Ch. 2, Prop. 5.7].
49Hint: any linear map ℓ ∈ Hom(

∏
i≥1, p∤i Z/pZ, Fp) which is contained in V gives an element of (V ′)1+pF .

50Hint: use the Mackey decomposition [Yam22].
51Hint: use smoothness of f and the identity ( 1 0

x 1 ) =
(
1 x−1

0 1

) (
−x−1 0

0 x

)
s
(
1 x−1

0 1

)
.
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(e) Suppose now that char(C) ̸= p. In this case, the functor of U -coinvariants is exact, and we
obtain a short exact sequence of T -representations

0 −→ C∞
c (U,C)U −→ IndGB(χ)U −→ χ −→ 0.

Fix a Haar measure µ on U . Show that the map

C∞
c (U,C) −→ C

ϕ 7−→
∫
U
ϕ(u) dµ(u)

induces a C-linear isomorphism C∞
c (U,C)U

∼−→ C. Using this, show that the action of T
on C∞

c (U,C)U is given by the character χsδB, where χ
s := χ2 ⊠ χ1 and where δB(

(
a 0
0 d

)
) =

q−val(ad−1).

Remark. Suppose char(C) ̸= p and fix a square root of p in C. We can then define the normal-

ized parabolic induction n-IndGB(W ) := IndGB(W ⊗ δ
1/2
B ) and the normalized Jacquet module

rGB(V ) := VU ⊗ δ−1/2
B . (When C = C, the normalized induction functor preserves unitary represen-

tations.) The above exercise then shows that we have a short exact sequence of T -representations

0 −→ χs −→ rGB(n-Ind
G
B(χ)) −→ χ −→ 0.

We therefore obtain nicer combinatorics.

Remark. One may proceed in an analogous manner for the group GLn(F ) to compute rGLn
Bn

(n-IndGLn
Bn

(χ))
over a field of characteristic different from p. The upshot is the following: the Tn-representation
rGLn
Bn

(n-IndGLn
Bn

(χ)) has a filtration whose ith graded piece is equal to
⊕

w∈Sn
ℓ(w)≥n(n−1)/2−i

χw, where

χw is the w-conjugate of χ. This decomposition is known as the Bernstein–Zelevinsky geomet-
rical lemma, and holds more generally for other p-adic reductive groups G, and for computing
rGP ′(n-Ind

G
P (W )), where P, P ′ are two parabolic subgroups. See [BZ77, Thm. 5.2] and [Vig96, Ch.

II, §2.18].

Remark. Suppose char(C) = p. Is there a way to recover the mod p analogues of the “missing”
characters χsδB? This is possible, but in order to do this one needs to work in the derived category
of smooth representations, and appropriately derive the functor V 7−→ VU . For the construction see
[Hey23], and for an analogue of the geometrical lemma see [Hey24].

Exercise 5.6. Let G = GLn(F ), fix smooth characters χ1, . . . , χn : F× −→ C×, and set χ :=
χ1 ⊠ . . . ⊠ χn : T −→ C×. Suppose χi = χi+1 for some i. Prove that IndGB(χ) is reducible as a
G-representation.52

Exercise 5.7. Let G = GL2(F ) and recall that StGB is defined by the short exact sequence

0 −→ 1G −→ IndGB(1T ) −→ StGB −→ 0.

This exercise will give another proof of the irreducibility of StGB when char(C) = p. Let I1 :=(
1+pF OF
pF 1+pF

)
denote the pro-p Iwahori subgroup of G.

(a) Prove that IndGB(1T )
I1 is spanned by two functions f1, fs, where supp(fv) = BvI1 and fv(v

′) =
δv,v′ for v, v

′ ∈ {1, s}. (Recall that s = ( 0 1
1 0 ).)

(b) Show that f1 generates IndGB(1T ) as a G-representation. Conclude that f1 generates StGB as a

G-representation, where f ∈ StGB denotes the image of f ∈ IndGB(1T ).

52Hint: use transitivity of parabolic induction.



AWS EXERCISES - REPRESENTATIONS AND CHARACTERS OF p-ADIC GROUPS 21

(c) Choose a nonzero f ∈ (StGB)
I1 where f ∈ IndGB(1T ) (such an f exists by the pro-p-groups lemma).

Explain why there exists a function a : I1 −→ C such that

f(gi)− f(g) = a(i)

for all i ∈ I1, g ∈ G.
(d) We now determine the possibilities for the function a. Using judicious choices of g, show that

a(i) = 0 in each of the following cases:
• i ∈ I1 ∩ U
• i ∈ I1 ∩ U−

• i ∈ I1 ∩ T
(e) Show that f(gi) = f(g) for all i ∈ I1, g ∈ G. Explain why this shows that the induced map

IndGB(1T )
I1 −→ (StGB)

I1 is surjective and dimC((St
G
B)

I1) = 1.53

(f) Suppose V ′ ⊂ StGB is a nonzero G-subrepresentation. Show that that f1 ∈ V ′, and therefore that
V ′ must be all of StGB.

54

Exercise 5.8. Suppose G = GLn(F ) and K = GLn(O). Fix smooth characters χ1, . . . , χn : F× −→
C×.

(a) Find conditions on the χi so that IndGB(χ1 ⊠ . . .⊠ χn)
K ̸= 0.

(b) Prove that if IndGB(χ1 ⊠ . . .⊠χn)
K ̸= 0, then dimC(Ind

G
B(χ1 ⊠ . . .⊠χn)

K) = 1. (A basis for this
nonzero space is often called a spherical vector.)

(c) Let P = MN ⊂ G denote a standard parabolic subgroup, and let StGP denote the generalized
Steinberg representation:

StGP := IndGP (1M )
/ ∑
P⊊P ′⊂G

IndGP ′(1M ′).

Suppose C = C. Prove that (StGP )
K ̸= 0 if and only if P = G.

Exercise 5.9 (From J. Fintzen’s lecture). Suppose G is a p-adic reductive group, and let K denote a
open, compact-mod-center subgroup of G containing the center Z of G. Suppose (ρ,W ) is a smooth
representation of K. Recall that we say g ∈ G intertwines (ρ,W ) if

HomK∩gKg−1(gρ|K∩gKg−1 , ρ|K∩gKg−1) ̸= 0,

where gρ(k) := ρ(g−1kg).

(a) Show that g intertwines (ρ,W ) if and only if gk intertwines (ρ,W ) for all k ∈ K, if and only if
kg intertwines (ρ,W ) for all k ∈ K.

(b) Suppose (ρ,W ) is an irreducible cuspidal representation of GLn(kF ) over C, which we inflate
to a representation of GLn(OF ) and extend to ZGLn(OF ) by letting ϖ1n act by a scalar. We
continue to denote the resulting representation of ZGLn(OF ) by (ρ,W ). Show that g ∈ GLn(F )
intertwines (ρ,W ) if and only if g ∈ ZGLn(OF ).55

Exercise 5.10 (From J. Fintzen’s lecture). Suppose G is a p-adic reductive group, and let K be a
compact-mod-center open subgroup of G. Suppose (τ,W ) is an irreducible representation of K over
C, and suppose the compact induction c-indGK(W ) is irreducible.

(a) Show that c-indGK(W ) is supercuspidal by using matrix coefficients.56

(b) Suppose thatG = GLn(F ),K = ZGLn(OF ), and (τ,W ) is an irreducible cuspidal representation
of GLn(kF ), inflated and extended to ZGLn(OF ). (Recall that an irreducible representation
(τ,W ) of GLn(kF ) over C is said to be cuspidal if WN = 0 (equivalently, WN = 0) for all

53Hint: use the Iwahori decomposition.
54Hint: use the p-groups lemma.
55Hint: the method of Exercise 6.7 may help.
56Hint: use the fact that (c-indG

K(W ))∨ ∼= IndG
K(W∨) and matrix coefficients coming from W .
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unipotent radicals N of parabolic subgroups of GLn(kF ).) By Exercise 5.9(b) and Lemma

3.2.3 of J. Fintzen’s notes, the representation c-ind
GLn(F )
ZGLn(OF )(W ) is irreducible. Using Jacquet

modules, show that c-ind
GLn(F )
ZGLn(OF )(W ) is supercuspidal.57

Exercise 5.11 (Depth zero representations). Suppose that G = GLn(F ), K = GLn(OF ), and
(τ,W ) is an irreducible cuspidal representation of GLn(kF ) over C, inflated and extended to KZ.
By Exercise 5.10(b), the representation c-indGKZ(W ) is irreducible and supercuspidal.

(a) Compute the restriction c-indGKZ(W )|K .
(b) LetK1 := 1+ϖMn(OF ) denote the first congruence subgroup ofK. Show that c-indGKZ(W )K1 ̸=

0, and conclude that c-indGKZ(W ) has depth zero.

Exercise 5.12 (Positive depth representations). Suppose p > 2, G = SL2(F ), let Z ∼= µ2 denote
the center, and let I1 denote the pro-p Iwahori subgroup consisting of matrices of the form(

1 +ϖa b
ϖc 1 +ϖd

)
,

where a, b, c, d ∈ OF , and where matrices are assumed to have determinant 1. Choose a nontrivial
additive character ψ : kF −→ C×, and consider the representation of ZI1 given by

ψ

(
±
(
1 +ϖa b
ϖc 1 +ϖd

))
= ψ(b+ c).

(a) Show that g ∈ SL2(F ) intertwines ψ if and only if g ∈ ZI1. Deduce that c-indGZI1(ψ) is irreducible
and supercuspidal.

(b) Show that c-indGZI1(ψ)
K1 = 0, where K1 is defined as in Exercise 5.11(b).

(c) Let I2 denote the subgroup of I1 consisting of matrices of the form
(

1+ϖa ϖb
ϖ2c 1+ϖd

)
with a, b, c, d ∈

OF . Show that c-indGZI1(ψ)
I2 ̸= 0.58

Remark. The representation c-indGZI1(ψ) is an example of a simple supercuspidal represen-
tation, defined by Gross–Reeder [GR10, §9.3]. The representation constructed above has depth
1/2.

Exercise 5.13 (Smooth + irreducible =⇒ admissible). In this exercise we show that any smooth,
irreducible representation of G = GL2(F ) over C is admissible. (The argument applies with minor
modification to other groups.) We let K = GL2(OF ), and let B denote the upper-triangular Borel
subgroup of G, written as B = TU , where T denotes the diagonal matrices and U is the unipotent
radical.

Suppose (π, V ) is a smooth irreducible representation of G. We assume first that the Jacquet
module VU is nonzero.

(a) Show that V |B is finitely generated as a B-representation. Conclude that the Jacquet module
VU is finitely generated as a T -representation.59

(b) Using Zorn’s lemma, show that the T -representation VU admits an irreducible (and hence one-
dimensional) quotient χ.

(c) Show that we have an injection V ↪−→ IndGB(χ), and consequently that V is admissible.

Suppose now that VU = 0.

57Hint: first calculate the restriction of c-ind
GLn(F )

ZGLn(OF )(W ) to a standard parabolic subgroup P = MN using the

Mackey decomposition. Then calculate HomM (c-ind
GLn(F )

ZGLn(OF )(W )N , X) for any X.
58Hint: calculate the restriction c-indG

ZI1(ψ)|I1 first.
59Hint: use the Iwasawa decomposition and the fact that StabG(v) ∩K is of finite index in K.
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(d) Let v ∈ V, v∨ ∈ V ∨ be a pair of nonzero vectors (where V ∨ denotes the smooth dual). Show
that ⟨v∨, (ϖn 0

0 1 ) · v⟩ = 0 for n≫ 0.60

(e) Consider the function fv∨,v : G −→ C given by fv∨,v(g) = ⟨v∨, g · v⟩. Show that supp(fv∨,v) is
contained in a finite union of (KZ,K)-double cosets, and consequently that fv∨,v has compact
support modulo Z.

(f) Suppose by contradiction that V is not admissible, and choose a compact open subgroup K ′

such that V K′
is infinite-dimensional. Explain why V K′

is of countable dimension and (V ∨)K
′

is of uncountable dimension.61

(g) Let C(π) denote the vector space of functions of of the form fv∨,v, where v ∈ V, v∨ ∈ V ∨. Fix

a nonzero v ∈ V K′
, and define a map F : (V ∨)K

′ −→ C(π) by F(v∨) = fv∨,v. Show that F is
injective.

(h) Use part (e) to show that the dimension of im(F) is at most countable, and arrive at a contra-
diction.

(i)∗ Sketch this argument for GLn(F ) (or more generally for any p-adic reductive group of your
choice).

Remark. The implication “smooth + irreducible =⇒ admissible” also holds when char(C) is positive
and distinct from p; see [Vig96, Ch. II, §2.8]. On the other hand, when char(C) = p, there exist
examples of smooth irreducible representations of GL2(F ) which are not admissible; see [GLS23]
and F. Herzig’s notes, Section 3.5.

Remark. If the group G is not assumed to be reductive, then the implication “smooth + irreducible
=⇒ admissible” may fail (even over C). For an example when G = ( ∗ ∗

0 1 ) is the mirabolic subgroup
of GL2(F ), see [BH06, §8].

Exercise 5.14. Suppose G is a p-adic reductive group, and (π, V ) a smooth representation of G
over C. Recall that V is said to be finitely generated if there is a finite collection of vectors
v1, . . . , vn such that span{g · vi : 1 ≤ i ≤ n, g ∈ G} = V .

(a) Show that if V is of finite length, then it is finitely generated and admissible.62

(b) Suppose conversely that V is finitely generated and admissible. Show that there exists a compact
open subgroupK such that V is generated (as aG-representation) by the finite-dimensional space
V K .63

(c) By shrinking K if necessary, we may assume it admits an Iwahori factorization. Using finite-
dimensionality of V K and the second remark following Exercise 6.2, prove that V is of finite
length.

Exercise 5.15 (Supersingular representations in characteristic p). Suppose G = GL2(Qp) and

C = Fp. Let Z denote the center of G, and let K = GL2(Zp). Fix 0 ≤ r ≤ p− 1, and consider the

compactly induced representation c-indGKZ(Vr,0) = c-indGKZ(Sym
r(F⊕2

p )), where we let K act on Vr,0

by inflation from GL2(Fp), and where
(
p 0
0 p

)
acts trivially.

(a) Using the method of Exercise 6.7, show that EndG(c-ind
G
KZ(Vr,0))

∼= Fp[T ] for some endomor-
phism T , whose associated function ϕ : G −→ EndFp

(Vr,0) is supported on KZ
(
p 0
0 1

)
KZ. (The

operator T is the representation-theoretic analog of the Tp operator in the theory of modular
forms.)

60Hint: since VU = 0, there exists a compact open subgroup U0 such that
∫
U0
u · v dµ(u) = 0.

61Hint: since any smooth representation of K′ is semisimple, we have (V ∨)K
′

= (VK′)∨ = (V K′
)∨.

62Hint: use Exercises 4.11 and 5.13.
63Hint: consider the common stabilizer of a generating set.
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It is known that the endomorphism T is not surjective. We set π(r) := coker(T ) = c-indGKZ(Vr,0)/im(T ).
Breuil [Bre03] proved that

π(r)I1 = Fp1⊗Xr ⊕ Fp
(

1 0
0 p

)
⊗ Y r,

where we identify c-indGKZ(−) ∼= Fp[G] ⊗Fp[KZ] −, and where the bar denotes the image under the

quotient map c-indGKZ(Vr,0) −↠ π(r). Further, I1 denotes the “upper triangular” pro-p Iwahori
subgroup, as in Exercise 5.12.

(b) Prove that the G-representation generated by 1⊗Xr is equal to all of π(r).
(c) Calculate the right action of 1

I1
(

0 1
p 0

)
I1
,1

I1
(

0 1
−1 0

)
I1

and 1
I1
(
a 0
0 d

)
I1

(a, d ∈ Z×
p ) on π(r)

I1 . (These

elements give a generating set for H(G, I1, 1I1).)
(d) Use the previous parts to show that π(r) is irreducible.
(e) Show that π(r) is not isomorphic to a subquotient of a principal series representation.64

Remark. Up to twisting by a character of G, the representations π(r) constitute all smooth,
irreducible supersingular representations of GL2(Qp) over Fp. See [BL94], [Bre03] and [Ber12].

Remark. On the other hand, when considering the group GL2(F ) for F a finite nontrivial exten-
sion of Qp, or F a local function field, the classification of irreducible, admissible, supersingular

representations over Fp is unknown. See [Bre03, Rmk. 4.2.6] and [BP12].

Exercise 5.16 (Projectivity of supercuspidals). Suppose G = PGL2(F ), and C = C. Suppose
(π, V ) is a smooth, irreducible, supercuspidal representation of G. In this exercise, we will show
that V is a projective (and injective) object in the category of smooth G-representations over C.

Our main tool will be Schur’s orthogonality relation: if v1, v2 ∈ V and v∨1 , v
∨
2 ∈ V ∨, then we

have

(1)

∫
G
⟨v∨1 , g−1 · v1⟩⟨v∨2 , g · v2⟩ dµ(g) = dπ⟨v∨1 , v2⟩⟨v∨2 , v1⟩,

where dπ is a positive real number depending only on (π, V ) and µ. Note that supercuspidality of V
implies that the matrix coefficients appearing are compactly supported, and therefore the integral
makes sense.

(a) Let (σ, U) be a smooth G-representation, and suppose we are given a G-equivariant surjection
γ : U −↠ V . Choose u ∈ U such that γ(u) ̸= 0, and define U ′ := σ(H)u = {σ(f)u : f ∈ H} ⊂ U
(using the notation of the next section). Show that U ′ is stable by G, and the restriction of γ
to U ′ is surjective.

(b) Show that the map

Γ : H −→ V

f 7−→ σ(f)(γ(u))

is G-equivariant and surjective (where we equip H with its left translation action).
(c) Show that if Γ splits, then γ splits.
(d) Choose a vector v∨1 ∈ V ∨ such that ⟨v∨1 , γ(u)⟩ = d−1

π . Show that for every v ∈ V , the function
ϕv : G −→ C given by ϕv(g) = ⟨v∨1 , g−1 · v⟩ lies in H.

(e) Show that the map

∆ : V −→ H
v 7−→ ϕv

is G-equivariant.
(f) Show that ⟨v∨2 ,Γ ◦∆(v2)⟩ = ⟨v∨2 , v2⟩, and conclude that ∆ gives a splitting for Γ. Deduce that

V is a projective object in the category of smooth G-representations.65

64Hint: use Exercise 6.13.
65Hint: use the orthogonality relation (1).
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(g) Show that V is also an injective object in the category of smooth G-representations.

Remark. The above exercise generalizes as follows: suppose G is a general p-adic reductive group,
and fix a smooth character χ : Z −→ C× of its center. If (π, V ) is a supercuspidal representation
with central character χ, then it is both an injective and projective object in the category of smooth
G-representations on which Z acts by χ. See [Cas, Thm. 5.4.1].

Remark. The analogous statement no longer holds when C = Fp. Namely, when G = GL2(Qp) with
p ≥ 5, Paškūnas [Pas10, Thm. 10.13] has shown that if (π, V ) is a smooth, irreducible, supersingular
representation, then Ext1G,ωπ

(V, V ) ̸= 0, where Ext1G,ωπ
denotes the Ext group in the category of

smooth representations with central character ωπ.

Exercise 5.17 (Bernstein decomposition). Suppose G = F× and C = C. We will examine the
category RepC(F

×) of smooth representations of F×. We fix a Haar measure on F× such that O×
F

has measure 1.

(a) For each character χ : O×
F −→ C×, define a function eχ ∈ H by

eχ(x) =

{
χ(x)−1 if x ∈ O×

F ,

0 otherwise.

Prove that the functions eχ satisfy the following properties:
• eχ ∗ eχ′ = 0 if χ ̸= χ′;
• eχ ∗ eχ = eχ;

(b) Suppose now that (π, V ) is a smooth representation of F×. Show that if v ∈ V satisfies x · v =
χ(x)v for all x ∈ O×

F , then π(eχ)v = v. Show moreover that if v ∈ V is arbitrary and x ∈ O×
F ,

then x · π(eχ)v = χ(x)π(eχ)v.
(c) Show that any v ∈ V can be written as v =

∑
χ∈S π(eχ)v for a finite set of characters S. Deduce

that V decomposes into F×-subrepresentations V ∼=
⊕

χ:O×
F →C× π(eχ)V .66

The above shows that the category of smooth representations decomposes as

RepC(F
×) ∼=

∏
χ:O×

F →C×

RepχC(F
×),

where RepχC(F
×) denotes the full subcategory of F×-representations on which O×

F acts by χ.

(d) Explain why RepχC(F
×) ∼= RepC(F

×)[F×,ψ], where ψ : F× −→ C× denotes any character whose

restriction to O×
F is equal to χ, and where [F×, ψ] dentes the inertial equivalence class (i.e., the

orbit of (F×, ψ) under unramified twists of ψ).
(e) Show that H(F×,O×

F , χ)
∼= C[t, t−1].

(f) Explain why we obtain a functor

RepχC(F
×) −→ H(F×,O×

F , χ)−Mod ∼= C[t, t−1]−Mod

(π, V ) 7−→ π(eχ)V.

(g) Prove that the above functor is an equivalence of categories.

Remark. The above exercise shows that (O×
F , χ) is an [F×, ψ]-type for any ψ satisfying ψ|O×

F
= χ.

6. Hecke algebras

We now discuss several flavors of Hecke algebras.
Suppose first that C = C and that G is locally profinite and unimodular (this condition means

that the left and right Haar measures agree, and will be satisfied for p-adic reductive groups). The

66Hint: any vector v is fixed by 1 + piF for some i. Show that if χ is not trivial on 1 + piF , then π(eχ)v = 0.



26 KAROL KOZIO L

“big” Hecke algebra H is defined as C∞
c (G,C), equipped with a convolution product relative to a

fixed choice of Haar measure µ on G: we have

(f1 ∗ f2)(g) =

∫
G
f1(h)f2(h

−1g) dµ(h)

for f1, f2 ∈ H. Note that we have H =
⋃

K⊂G
compact open

eK ∗ H ∗ eK , where eK := µ(K)−1
1K . (The

subalgebra eK ∗ H ∗ eK is isomorphic to the algebra H(G,K, 1K) defined below.)
Given a smooth representation (π, V ) of G, we obtain an action of H on V via

(2) π(f)v =

∫
G
f(g)g · v dµ(g)

for f ∈ H, v ∈ V . We note that this action turns V into a smooth H-module, meaning that for
every v ∈ V there exists a compact open subgroup Kv such that π(eKv)v = v.

Exercise 6.1. Suppose G is a locally profinite unimodular group, and define an action of g ∈ G on
H via the right translation action: (g · f)(g′) = f(g′g).

(a) Show that this turns H into a smooth G-representation.
(b) Do the same for the left translation action: (g · f)(g′) = f(g−1g′).
(c) Show that these two actions commute.

Exercise 6.2. Suppose (π, V ) is a smooth, irreducible representation of a locally profinite unimod-
ular group G. Fix a compact open subgroup K ⊂ G, and suppose V K ̸= 0.

(a) Prove that π(eK) : V −→ V is a projection operator with image V K .
(b) Show that under the action of H defined in equation (2), the space V K becomes a module over

eK ∗ H ∗ eK , on which π(eK) acts by the identity.
(c) Suppose M ⊂ V K is a nonzero subspace stable by eK ∗ H ∗ eK . Show that the space V ′ :=

π(H)M := span{π(f)m : f ∈ H,m ∈M} is stable by G, and therefore V ′ = V .
(d) Show that π(eK)V ′ = π(eK ∗ H ∗ eK)M , and conclude that M = V K .

Therefore, we see that if (π, V ) is irreducible, then for any choice of compact open subgroup K ⊂ G,
the space V K is either 0 or a simple eK ∗ H ∗ eK-module.

Remark. With more work, one can upgrade the conclusion of the above exercise as follows: the map
V 7−→ V K induces a bijection between isomorphism classes of smooth irreducible representations V
satisfying V K ̸= 0 and isomorphism classes of simple eK ∗ H ∗ eK-modules.

Remark. In the context of p-adic reductive groups, the conclusion of the above exercise can be
further strengthened. Suppose G is a p-adic reductive group, and K is a compact open subgroup
admitting an Iwahori factorization. Then the map V 7−→ V K induces an equivalence of categories
between the category of smooth representations generated by their K-fixed vectors, and the category
of eK ∗ H ∗ eK-modules. See [Ber84, Cor. 3.9(ii)].

Suppose now that G is locally profinite (not necessarily unimodular) and that C is arbitrary. Let
H denote an open subgroup, and (τ,W ) a finite-dimensional smooth representation of H over C.
Recall that we may identify EndG(c-ind

G
H(W )) with the space

H(G,H, τ) :=
{
ϕ : G −→ EndC(W ) :

⋄ ϕ(hgh′) = τ(h) ◦ ϕ(g) ◦ τ(h′) ∀h, h′ ∈ H, g ∈ G
⋄ H\supp(ϕ)/H is finite

}
.

This space is equipped with the convolution product of functions: if ϕ1, ϕ2 ∈ H(G,H, τ), then we
set

(ϕ1 ∗ ϕ2)(g) =
∑

H\G∋γ

ϕ1(gγ
−1) ◦ ϕ2(γ).

Under the linear isomorphism EndG(c-ind
G
H(W )) ∼= H(G,H, τ), composition on the left-hand side

corresponds to convolution on the right-hand side. (For details, see [BL94, §2.2].)
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Suppose further that we are given a smooth G-representation (π, V ) over C. There is a natural
right action of EndG(c-ind

G
H(W )) on HomG(c-ind

G
H(W ), V ) by composition. Then via Frobenius

reciprocity, the Hecke algebra H(G,H, τ) acts on the right on the multiplicity space HomH(W,V |H).
Explicitly, this action is given as follows: if f ∈ HomH(W,V |H) and ϕ ∈ H(G,H, τ), then the right
action of ϕ on f is given by

(3) (f · ϕ)(w) =
∑

H\G∋γ

γ−1 · f(ϕ(γ)w)

where w ∈ W . In particular, when (τ,W ) is the trivial representation 1H , the algebra H(G,H, 1H)
consists of the H-bi-invariant functions on G which are supported on finitely many H double cosets.
The algebra H(G,H, 1H) then acts on v ∈ V H on the right via

(4) v · 1HgH =
∑

H\HgH∋γ

γ−1 · v =
∑

h∈H/(H∩g−1Hg)

hg−1 · v.

Exercise 6.3. Verify Equations (3) and (4).

Exercise 6.4 (Left vs. right actions). Suppose G is locally profinite and unimodular, and that
C = C. Fix a compact open subgroup K.

(a) Show that the algebras eK ∗ H ∗ eK and H(G,K, 1K) are isomorphic. (The isomorphism will
depend on the choice of Haar measure µ.)

(b) Normalize the Haar measure µ so that µ(K) = 1. Let (π, V ) denote a smooth representation of
G. On the one hand, we have a left action of eK ∗H ∗ eK on V K coming from Equation (2). On
the other hand, we have a right action of H(G,K, 1K) on V K coming from Equation (4). Prove
that

v · 1KgK = π(1Kg−1K)v,

where v ∈ V K , g ∈ G. Therefore, the two actions “agree,” up to applying the anti-automorphism
g 7−→ g−1 (which converts left H-modules to right H-modules).

Exercise 6.5. Let G = GL2(F ),K = GL2(OF ) and 1K the trivial representation of K over C.

(a) Show that we have a decomposition of cosets

K

(
1 0
0 ϖ

)
K = K

(
ϖ 0
0 1

)
⊔

⊔
a∈OF /pF

K

(
1 0
0 ϖ

)(
1 a
0 1

)
.67

(b) Let χ1, χ2 : F× −→ C× be two unramified characters (i.e., χ1(O×
F ) = χ2(O×

F ) = 1), and let

f ∈ IndGB(χ1 ⊠ χ2)
K denote a spherical vector (see Exercise 5.8(b)). Calculate the following:

• f · 1
K( 1 0

0 ϖ )K
• f · 1

K(ϖ 0
0 ϖ )K

Note that these calculations suffice to compute the action of the entire Hecke algebraH(G,K, 1K).68

Exercise 6.6 (Gelfand pairs). Suppose G is a locally profinite group and K is a compact open sub-
group. In this exercise we will determine a sufficient condition for the Hecke algebra EndG(c-ind

G
K(1K))

to be commutative. We abbreviate HK := H(G,K, 1K).
We suppose that G possesses an anti-involution ι, that is, a bijection ι : G −→ G satisfying

ι(gh) = ι(h)ι(g) and ι2 = 1. We assume moreover that ι(K) = K.

(a) Given ϕ ∈ HK , define ϕι ∈ HK by ϕι(g) := ϕ(ι(g)). Prove that (ϕ1 ∗ ϕ2)
ι = ϕι2 ∗ ϕι1.

(b) Suppose in addition that ι(KgK) = KgK (that is, we have equality as sets, not elementwise).
Prove that ϕι = ϕ for all ϕ ∈ HK .

67Hint: use the Bruhat decomposition for K and the Iwahori decomposition.
68Hint: we know that f · 1KgK lands back in the one-dimensional space IndG

B(χ1 ⊠ χ2)K , and is therefore a scalar
multiple of f . It therefore suffices to evaluate f · 1KgK at 1 to determine this scalar.
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(c) Conclude that HK is commutative.
(d) Show that the above setup applies to (G,K) = (GL2(Fp), B) (cf. Exercise 2.10) and (G,K) =

(GLn(F ),GLn(OF )).69

Remark. Pairs (G,K) possessing an anti-involution ι as above are known as Gelfand pairs. The
representation theory of G and K then has many favorable properties; see [Gro91].

Exercise 6.7. Suppose (τ,W ) is an irreducible cuspidal representation of GL2(kF ) over C, which
we inflate to a representation of K = GL2(OF ) and extend to KZ by letting (ϖ 0

0 ϖ ) act by a scalar.
We continue to denote the resulting representation of KZ by (τ,W ), and examine the representation
of G = GL2(F ) given by c-indGKZ(W ).

(a) Suppose ϕ ∈ H(G,KZ, τ). Show that ϕ is determined by its values on the elements ( 1 0
0 ϖn ) for

n ≥ 0.
(b) Suppose n ≥ 1. Show that the endomorphism ϕ(( 1 0

0 ϖn )) : W −→ W has image contained in

WU∩K . Deduce that ϕ(( 1 0
0 ϖn )) = 0.

(c) Show that ϕ(( 1 0
0 1 )) = c · idW for some c ∈ C. Conclude that EndG(c-ind

G
KZ(W )) = C.70

(d) Repeat the above exercise for G = GLn(F ).
(e) Repeat the above exercise for an irreducible representation (τ,W ) of GLn(kF ) over Fp. What

breaks down in the argument?

Exercise 6.8 (From J. Fintzen’s lecture). Suppose G is a p-adic reductive group, K a compact-
mod-center open subgroup of G, and (ρ,W ) a smooth representation of K. Recall that the support
of H(G,K, ρ) is the set of all g ∈ G for which there exists ϕ ∈ H(G,K, ρ) satisfying ϕ(g) ̸= 0.

Show that g ∈ Supp(H(G,K, ρ)) if and only if g intertwines (ρ,W ) (cf. Exercise 5.9).

Exercise 6.9 (Satake transform I). Let G = GL2(F ), and let C = C. Further, we letK = GL2(OF ),
and B = TU the upper triangular Borel subgroup. The Satake transform/map is an C-algebra
homomorphism S : H(G,K, 1K) −→ H(T, T ∩K, 1T∩K) defined by the formula

S(ϕ)(t) = δB(t)
1/2

∫
U
ϕ(tu) dµ(u),

where δB is as in Exercise 5.5(e). Here we normalize Haar measures as follows: the Haar measure
on G (resp., T , resp., U) gives K (resp., T ∩K, resp., U ∩K) measure 1.

(a) Show that S is well-defined, that is, check that S(ϕ) is invariant by T ∩K on both sides, and
finitely supported modulo T ∩K.

(b) Show that S(ϕ)(t) may be rewritten as

S(ϕ)(t) = δB(t)
−1/2

∫
U
ϕ(ut) dµ(u).

(c) Let ϕ = 1
K(ϖ 0

0 1 )K
and suppose t =

(
ϖc 0
0 ϖd

)
(c, d ∈ Z). Show that S(1

K(ϖ 0
0 1 )K

)(
(
ϖc 0
0 ϖd

)
) ̸= 0

implies

K

(
ϖ 0
0 1

)
K ∩

(
ϖc 0
0 ϖd

)
U ̸= ∅,

which in turn implies (c, d) = (1, 0) or (0, 1).

(d) Calculate S(1
K(ϖ 0

0 1 )K
) = q1/2

(
1

(T∩K)(ϖ 0
0 1 )

+ 1
(T∩K)( 1 0

0 ϖ )

)
.71

(e) Proceed similarly to show that S(1
K(ϖ 0

0 ϖ )K) = 1
(T∩K)(ϖ 0

0 ϖ ).

69Hint: for the latter, use the transpose and the Cartan decomposition.
70Hint: Schur’s lemma.
71Hint: for t = ( 1 0

0 ϖ ), use the original definition. For t = ( ϖ 0
0 1 ), use part (b).
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(f)∗ More generally, show that if a > b, then we have

S(1
K
(
ϖa 0
0 ϖb

)
K
) = q(a−b)/2

(
1

(T∩K)
(
ϖa 0
0 ϖb

) + 1
(T∩K)

(
ϖb 0
0 ϖa

))
+(q(a−b)/2 − q(a−b)/2−1)

a−b−1∑
k=1

1
(T∩K)

(
ϖa−k 0

0 ϖb+k

).
(g) Use the previous part to show that the image of S lands in the S2-invariant functions of H(T, T ∩

K, 1T∩K). (Here, S2 acts on the torus T by permuting entries, and this induces an action on

functions on T .) Conclude that S induces an isomorphism S : H(G,K, 1K)
∼−→ H(T, T ∩

K, 1T∩K)S2 .72

(h) Use the above formulas to calculate 1
K(ϖ 0

0 1 )K
∗ 1

K(ϖ 0
0 1 )K

.73

Remark. The Satake isomorphism S : H(G,K, 1K)
∼−→ H(T, T ∩K, 1T∩K)W holds more generally

for split connected reductive groups G, where W denotes the Weyl group of G. (In fact, we can
even assume G is unramified, that is, quasi-split and split over an unramified extension of F .) The
proof that S is an algebra homomorphism works in a manner similar to the GL2(F ) case, while the
W -invariance of im(S) in the general case uses clever integration tricks due to Harish-Chandra. For
more details and nice properties of S, see [Car79, §IV] and [Gro98].

Exercise 6.10 (Satake transform II). We keep the notation of the Exercise 6.9., so thatG = GL2(F ),
etc.. Define an algebra homomorphism Sun : H(G,K, 1K) −→ H(T, T ∩K, 1T∩K) by

Sun(ϕ)(t) =

∫
U
ϕ(tu) dµ(u),

which we refer to as the unnormalized Satake map.

(a) Show that Sun(ϕ)(t) =
∑

u∈U/(U∩K) ϕ(tu).

(b) Explain why the map Sun gives an algebra homomorphism over any coefficient field C (or, more
generally, over any coefficient ring R).

(c) Suppose now that char(C) is arbitrary, and define Sun using the sum from part (a). Show that
Sun(1K(ϖ 0

0 1 )K
) = q1

(T∩K)(ϖ 0
0 1 )

+ 1
(T∩K)( 1 0

0 ϖ ) and Sun(1K(ϖ 0
0 ϖ )K) = 1

(T∩K)(ϖ 0
0 ϖ ).

74

(d) More generally, show that if a > b, then we have

Sun(1K
(
ϖa 0
0 ϖb

)
K
) = qa−b1

(T∩K)
(
ϖa 0
0 ϖb

) + 1
(T∩K)

(
ϖb 0
0 ϖa

)

+
a−b−1∑
k=1

(qa−b−k − qa−b−k−1)1
(T∩K)

(
ϖa−k 0

0 ϖb+k

).
(e) Suppose further that char(C) = p. Show that we have

Sun(1
K
(
ϖb+1 0

0 ϖb

)
K
) = Sun(1

K
(
ϖb 0
0 ϖb+1

)
K
) = 1

(T∩K)
(
ϖb 0
0 ϖb+1

)
and, if a− b ≥ 2, we have

Sun(1K
(
ϖa 0
0 ϖb

)
K
) = Sun(1K

(
ϖb 0
0 ϖa

)
K
) = 1

(T∩K)
(
ϖb 0
0 ϖa

) − 1
(T∩K)

(
ϖb+1 0

0 ϖa−1

).
(f) Use the previous part to show that when char(C) = p, Sun induces an isomorphism Sun :

H(G,K, 1K)
∼−→ H−(T, T ∩ K, 1T∩K), where H−(T, T ∩ K, 1T∩K) consists of those functions

supported on the monoid T− = {
(
a 0
0 d

)
∈ T : a−1d ∈ O}.

72Hint: choose a “simple” basis of H(T, T ∩K, 1T∩K)S2 , and show that the matrix of S (for an appropriate ordering
of bases) is upper-triangular with non-zero entries along the diagonal.

73Hint: use that S is an algebra homomorphism.
74Hint: use Exercise 6.9(d) and (e).
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Exercise 6.11 (Satake transform III). Maintain the notation of the previous two exercises, and
suppose C = Fp. We now take (τ,W ) to be the K = GL2(OF )-representation equal to the inflation
of the Steinberg representation of GL2(kF ), so that

W ∼= Symp−1(F⊕2
p )⊗ (Symp−1)(F⊕2

p )(p) ⊗ . . .⊗ (Symp−1)(F⊕2
p )(p

f−1).

Note that WU∩K and WU−∩K are both one-dimensional, with trivial action of T ∩K. The Satake
homomorphism S : H(G,K, τ) −→ H(T, T ∩K, 1T∩K) is given by

(S(ϕ))(t)(w) =
∑

u∈U/(U∩K)

ϕ(tu)(w)

for t ∈ T,w ∈WU∩K .

(a) Let (a, b) ∈ Z2 with a ≤ b. Prove that up to scaling there exists a unique nonzero function
T(a,b) ∈ H(G,K, τ) with support K

(
ϖa 0
0 ϖb

)
K, and describe T(a,b)(

(
ϖa 0
0 ϖb

)
) ∈ EndFp

(W ).75

(b) Show that K
(
ϖa 0
0 ϖb

)
K ∩

(
ϖc 0
0 ϖd

)
U ̸= ∅ implies (c, d) = (a+ k, b− k) for some k ≥ 0.76

(c) Using the previous part, show that

S(T(a,b)) = 1
(T∩K)

(
ϖa 0
0 ϖb

).
(d) Repeat the above calculations for (τ,W ) an irreducible representation of GL2(kF ) over Fp,

inflated to K, and satisfying dimFp
(W ) > 1. In this case, the target of S will be H(T, T ∩K,χ),

where χ : T ∩K −→ C× denotes the action of T ∩K on WU∩K .

Remark. The Satake transform over characteristic p coefficient fields was defined by Herzig [Her11b]
and further generalized by Henniart–Vignéras [HV15]. An explicit computation of the (inverse)
Satake transform is given in [AHV22, Thm. 1.1] (see also [Her11a, Thm. 5.1]).

Exercise 6.12 (Iwahori–Hecke algebras). Suppose G = GL2(F ), and let I =

(
O×

F OF

pF O×
F

)
denote the

“upper triangular” Iwahori subgroup. We let T denote the diagonal torus in G, and N its normalizer.

(a) Show that

G =
⊔

w∈N/(T∩I)

IwI =
⊔
a,b∈Z

I

(
ϖa 0
0 ϖb

)
I ⊔

⊔
a,b∈Z

I

(
0 ϖa

ϖb 0

)
I.

(b) Define s :=
(

0 1
−1 0

)
and ω := ( 0 1

ϖ 0 ). Show that each coset as above admits a representative of

the form ωℓ(ωs)mωn, where ℓ ∈ {0, 1},m ∈ Z≥0, n ∈ Z.
(c) We consider the two elements of H(G, I, 1I) (over C) given by 1IsI and 1IωI . Show that, for

any g ∈ G, we have77

• 12
IsI := 1IsI ∗ 1IsI = (q − 1)1IsI + q1I ,

• 1IgI ∗ 1IωI = 1IgωI ,
• 1IωI ∗ 1IgI = 1IωgI ,
• 1mIωsI = 1I(ωs)mI ,
• 1Iω2I is central in H(G, I, 1I).

(d) Deduce that H(G, I, 1I) is generated as an algebra by 1IsI and 1IωI .

Remark. Suppose G is the group of F -points of a split, semisimple, simply connected algebraic
group, and I is an Iwahori subgroup of G. Then the algebraH(G, I, 1I) admits a description in terms
of the affine Weyl group of G: H(G, I, 1I) is generated by 1IsiI , where the si are simple affine

75Hint: use the strategy of Exercise 6.7.
76Hint: this was shown in the course of Exercise 6.9. The identity ( 1 x

0 1 ) =
(

1 0
x−1 1

) (
x 0
0 x−1

) (
0 1
−1 0

) (
1 0

x−1 0

)
may

also be useful.
77Hint: for s, inflate the Bruhat decomposition from GL2(kF ); for ω; use that ω normalizes I.
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reflections. These generators satisfy braid relations determined by the affine Dynkin diagram of
G, and quadratic relations of the form

1
2
IsiI = (q − 1)1IsiI + q1I .

Thus, H(G, I, 1I) is a q-deformation of the group algebra of affine Weyl group of G over C, and
is generally not commutative. For more details, including the case when G is not assumed to be
semisimple, see [Vig16].

Exercise 6.13. Suppose G = GL2(F ), and I1 is the “upper triangular” pro-p Iwahori subgroup.
Analogously to Exercise 6.12, the Hecke algebra H(G, I1, 1I1) over C is generated by the elements

(5) 1
I1
(

0 1
−1 0

)
I1
, 1

I1( 0 1
ϖ 0 )I1

, and 1
I1
(
a 0
0 d

)
I1
,

where a, d ∈ O×
F .

Suppose χ1, χ2 : F× −→ C× are two smooth characters which are tamely ramified (i.e., χ1(1 +
pF ) = χ2(1 + pF ) = 1). We consider the principal series representation IndGB(χ1 ⊠ χ2).

(a) Prove that IndGB(χ1 ⊠ χ2)
I1 is spanned by two functions f1, fs, where supp(fv) = BvI1 and

fv(v
′) = δv,v′ for v, v

′ ∈ {1, s}.
(b) Calculate fv · ϕ for v ∈ {1, s} and ϕ as in (5).78 (Since (5) is a generating set, this gives the

structure of IndGB(χ1 ⊠ χ2)
I1 as a H(G, I1, 1I1)-module.)

(c) Describe the structure of 1I1G and (StGB)
I1 as modules over H(G, I1, 1I1).

79

7. Characters

In this section we work with the coefficient field C = C and assume char(F ) = 0. Suppose G is a
p-adic reductive group, and let (π, V ) denote a smooth, admissible representation of G.

Since V is admissible, the linear operator π(f) has finite rank, so it makes sense to define Tr(π(f)).
Letting Grss denote the open dense subset of regular semisimple elements, there exists a unique,
locally constant, conjugation-invariant function θπ on Grss satisfying

Tr(π(f)) =

∫
G
f(g)θπ(g) dµ(g).

We refer to θπ as the character of (π, V ).

Exercise 7.1. Suppose χ : G −→ C× is a one-dimensional smooth representation. Show that the
character θχ is equal to the function χ.

Exercise 7.2. Let K ⊂ G denote a compact open subgroup. Show that
∫
K θπ(k) dµ(k) =

µ(K) dimC(V
K).

We consider the following special case: suppose that G is semisimple (for example, G = SLn(F )),
and let (π, V ) be an irreducible supercuspidal representation of the form V = c-indGJ (W ), where J
is a compact open subgroup of G and (τ,W ) is an irreducible representation of J . Define χ̇τ by

χ̇τ (g) =

{
χτ (g) if g ∈ J ,
0 if g ∈ G∖ J .

Then, for g ∈ Grss we have

θπ(g) =
∑

x∈J\G/J

∑
J\JxJ∋y

χ̇τ (ygy
−1)

(see [Sal88, Thm. 1.9]; here we normalize the Haar measure on G so that µ(J) = 1).

78Hint: use Equation (4).
79Hint: this should not require extra calculation; use the previous part.
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Exercise 7.3. Suppose p > 2, G = SL2(F ), and let (τ,W ) denote an irreducible cuspidal represen-
tation of SL2(kF ), inflated K = SL2(OF ). We consider the supercuspidal representation c-indGK(W ).

(a) For every n ≥ 0, calculate a set of coset representatives for K\K
(
ϖn 0
0 ϖ−n

)
K.

(b) We will compute the values of θπ on regular (semisimple) elements of the diagonal torus T .
Fix t =

(
a 0
0 a−1

)
∈ T, a ̸= ±1. Show that if a ̸∈ ±1 + pF , then χ̇τ (yty

−1) = 0, where

K\K
(
ϖn 0
0 ϖ−n

)
K ∋ y.80

(c) Since θπ(
(−1 0

0 −1

)
g) = ωτ (−1)θπ(g), it suffices to compute θπ(

(
a 0
0 a−1

)
) for a ∈ 1 + pF . Evaluate

the sum
∑

K\K
(
ϖn 0
0 ϖ−n

)
K∋y χ̇τ (yty

−1) and conclude the calculation. (Your answer will depend

on the depth of t.)
(d)∗ Proceed as above to calculate θπ(t

′), there t′ lies in a non-split torus.

Exercise 7.4. Suppose p > 2, G = SL2(F ), and let (π, V ) denote the irreducible, supercuspidal
representation c-indGZI1(ψ) constructed in Exercise 5.12. We will compute some values of θπ.

(a) Calculate convenient set of coset representatives for ZI1\G/ZI1, and for each coset representative
w, calculate ZI1\ZI1wZI1.

81

(b) As with the previous exercise, we focus on computing θπ on regular (semisimple) elements of T .

Fix t =
(
a 0
0 a−1

)
∈ T, a ̸= ±1. Show that if a ̸∈ ±1 + pF , then ψ̇(yty

−1) = 0.
(c) Suppose a ∈ 1 + pF . For each of the convenient coset representatives from part (a), evaluate∑

ZI1\ZI1wZI1∋y ψ̇(yty
−1), and finally compute θπ(t).

82

(d)∗ Proceed as above to calculate θπ(t
′), where t′ lies in a non-split torus.

Remark. When G = SL2(F ) and p > 2, the characters θπ for supercuspidal representations have
been completely worked out in [ADSS11], expanding on work of Sally–Shalika.

Exercise 7.5 (Jacquet–Langlands correspondence). Suppose p > 2. Let G = GL2(F ) and consider
D×, where D is a division algebra with center F of dimension 4 over F .

(a) Suppose d ∈ D×∖F×. Show that the minimal polynomial of d is quadratic and irreducible over
F .83

(b) An element g ∈ G is called elliptic if its characteristic polynomial is irreducible over F . Show
that if g is elliptic, there exists gD ∈ D× with the same minimal polynomial as g.

(c) Let StGB denote the Steinberg representation of G, and let θStGB
denote its character. Likewise,

let 1D× denote the trivial representation of D×, and θ1D× its character. Show that if g ∈ G is

elliptic and gD ∈ D× has the same minimal polynomial as g, then we have

θStGB
(g) = −θ1D× (gD).

(d)∗ Suppose now that E/F is an unramified quadratic extension, and χ : E× −→ C× is a character
which is trivial on 1 + pE and which satisfies χσ ̸= χ, where σ is a generator of Gal(E/F ). We
construct two representations as follows:
• Let Vχ0 denote the cuspidal representation of GL2(kF ) associated to the character χ0 :

k×E −→ C× (obtained as the mod ϖ reduction of the restriction of χ to O×
E), and let Ṽχ0 de-

note the representation of ZGL2(OF ) obtained by making (ϖ 0
0 ϖ ) act by χ(ϖ). We then ob-

tain the irreducible, supercuspidal representation (π, V ) of G by taking c-indGZGL2(OF )(Ṽχ0).

• The group E× embeds as a subgroup of D×. We obtain a one-dimensional representation of
E×(1+pD) = O×

Dϖ
Z by making 1+pD act trivially on χ. We then obtain the representation

(π′, V ′) of D× by taking c-indD
×

E×(1+pD)(χ).

80Hint: the character table of SL2(kF ) may be useful here.
81Hint: use the affine Bruhat decomposition.
82Hint: it may help to split the calculation into cases where (1) w is diagonal; (2) w is anti-diagonal.
83Hint: it may help to read about the reduced norm and trace on D.
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Suppose g ∈ G is elliptic and gD ∈ D× has the same minimal polynomial as g. Show that we
have

θπ(g) = −θπ′(gD).

Remark. The above exercise is an instance of the Jacquet–Langlands correspondence. In
the context above, the correspondence states that we have a unique bijection between isomorphism
classes of smooth, irreducible, essentially square-integrable representations π of GL2(F ) and isomor-
phism classes of smooth, irreducible representations π′ of D× which matches θπ and −θπ′ on elliptic
elements. For the general case, see [DKV84].
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[HV15] Guy Henniart and Marie-France Vignéras, A Satake isomorphism for representations modulo p of reductive

groups over local fields, J. Reine Angew. Math. 701 (2015), 33–75. MR 3331726
[Jan03] Jens Carsten Jantzen, Representations of algebraic groups, second ed., Mathematical Surveys and Mono-

graphs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
[Le24] Daniel Le, Irreducible smooth representations in defining characteristic without central character, 2024,

arXiv:2407.01766.
[Mil22] J. S. Milne, Fields and Galois theory, Kea Books, Ann Arbor, MI, [2022] ©2022, available at

https://www.jmilne.org/math/CourseNotes/FT.pdf. MR 4506896
[Neu99] Jürgen Neukirch, Algebraic number theory, Grundlehren der mathematischen Wissenschaften [Fundamental

Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, 1999, Translated from the 1992
German original and with a note by Norbert Schappacher, With a foreword by G. Harder. MR 1697859

[NS07] Nikolay Nikolov and Dan Segal, On finitely generated profinite groups. I. Strong completeness and uniform
bounds, Ann. of Math. (2) 165 (2007), no. 1, 171–238. MR 2276769

[Pas10] Vytautas Paskunas, Extensions for supersingular representations of GL2(Qp), Astérisque (2010), no. 331,
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