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In these lecture notes we use the following notation.
F/Qp is a finite extension with ring of integers OF , uniformizer $, residue field

kF of degree f over Fp, q = |kF | = pf . Let ordp : F× � Z denote the p-adic

valuation of F . The Artin map F× → Gal(F/F )ab of local class field theory is
normalized so that it sends uniformizers to geometric Frobenius elements.
C denotes a field of characteristic p (coefficient field). It will be algebraically

closed in sections 2 and 3.
Acknowledgments: I would like to thank the organizers for inviting me to give

this lecture series at the Arizona Winter School 2025. I thank Hymn Chan, Mathilde
Gerbelli-Gauthier, Yongquan Hu, Karol Kozio l, Heejong Lee, Stefano Morra, Chol
Park, and Yitong Wang for helpful comments.
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1. Introduction

1.1. p-adic groups. Suppose that G = GLn(F ). Then G is naturally a topological

group, by giving it the subspace topology inside Mn(F ) ∼= Fn
2

. In particular, this
topology is Hausdorff and totally disconnected. More precisely, a fundamental
system of neighbourhoods of the identity is given by the open subgroups Km =
1 +$mMn(OF ) for m ≥ 1.

Lemma 1.1. The groups Km are pro-p.

Proof. First note that Km
∼= Mn(OF ) ∼= On

2

F (as topological spaces, not groups) is
compact. As Km is compact, Hausdorff, and totally disconnected, it is profinite (cf.
§A.1). As the sequence (Ks)s≥m forms a fundamental system of neighbourhoods
of the identity, it suffices to show that the index (Km : Ks) is a p-power for any
s ≥ m. By multiplicativity of indices this reduces to showing that (Ks : Ks+1) is
a power of p for s ≥ m. But as groups, Ks/Ks+1

∼= Mn(kF ) via the map sending

1+psA ∈ Ks to the reduction of A modulo $, and therefore (Ks : Ks+1) = qn
2

. �

We give three more examples of compact open (hence profinite) subgroups of
G = GLn(F ):

(i) The subgroup K := GLn(OF ) is a maximal compact subgroup of G, and
it is the unique such up to conjugation [Her12b, Ex. 1].

(ii) The Iwahori subgroup I := {g ∈ K : g is upper-triangular mod $}.
(iii) The pro-p Iwahori subgroup

I1 := {g ∈ K : g is unipotent upper-triangular mod $}.
Note that I1 is pro-p by Lemma 1.1, since I1/K1 is of order qn(n−1)/2. In
fact, I1/K1 is a Sylow subgroup of K/K1

∼= GLn(kF ), so I1 is a pro-p
Sylow subgroup of K.

More generally we are interested in G = G(F ), where G is a connected reductive
algebraic group over F (e.g. a classical group, such as orthogonal, symplectic or
unitary). For the purpose of smooth representation theory we can even consider
any topological group G that is locally profinite (i.e. has an open subgroup that is
profinite), but in practice we mainly care about closed subgroups of GLn(F ).

1.2. Smooth and admissible representations of G. We want to study repre-
sentations of a locally profinite group G over a field C of characteristic p. Since G
is a topological group we do not want to allow all representations.

Definition 1.2. A representation V ofG is smooth if any of the following equivalent
conditions hold:

• the action map G × V → V is continuous, where V is given the discrete
topology;

• the stabilizer of any vector of V in G is open;
• V =

⋃
U V

U , where U runs through all (compact) open subgroups U of G.

Here, V U := {v ∈ V : uv = v ∀u ∈ U} denotes the subspace of U -invariants.

Exercise 1.3. Check that the above conditions are equivalent.

Importantly, observe that the vector space V underlying a smooth representation
is discrete (or, if you prefer, carries no topology), so the notions of sub/quotient/irreducible
representation are the same as for abstract representations.
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Note that for any representation V of G we can functorially associate a smooth
representation V∞ :=

⋃
U V

U , which may be zero even if V is nonzero. (The
functor V 7→ V∞ is the right adjoint of the forgetful functor.)

The following finiteness condition is very useful:

Definition 1.4. A smooth representation V of G is admissible if dimC V
U < ∞

for all (compact) open subgroups U .

Example 1.5. Here are basic examples of smooth representations.

(i) Suppose that H is finite (with the discrete topology). Then any H-
representation is smooth, and it is admissible if and only if it is finite-
dimensional.

(ii) Suppose that H is any profinite group. Then the space C∞(H,C) of con-
tinuous, equivalently locally constant, functions H → C is an admissible
smooth representation of H, where H acts by right translation. (Smooth-
ness follows from compactness and admissibility since H/U is finite for all
open subgroups U , again by compactness.)

It is clear that any subrepresentation of an admissible representation is admissi-
ble. This is also true for quotient representations, at least if G is a closed subgroup
of GLn(F ), but it is far less obvious (see Cor. 1.32 below).

So far, these definitions work over any field, and are the same as in the other
courses. Here are some peculiarities that arise over a field of characteristic p.

Lemma 1.6 (“p-group lemma”). Suppose that V is a nonzero smooth representa-
tion of a pro-p group H over a field C of characteristic p. Then H fixes a nonzero
vector of V , i.e. V H 6= 0.

Proof. There are several possible proofs. Here is one: by considering V as Fp-
vector space we may assume that C = Fp (the conclusion does not change!). Fix
any nonzero vector x ∈ V . By smoothness, x is fixed by an open normal subgroup
N C H. Then the subspace W := Fp[H]x = Fp[H/N ]x is a finite-dimensional
subrepresentation, so we may replace V by W and H by H/N and assume that
dimFp V < ∞ and that H is a finite p-group. Finally we can use a counting
argument: by the orbit–stabilizer theorem, the cardinality of any H-orbit on V is
a power of p; since |V | is a power of p, we deduce that |V H | ≡ 0 mod p, hence
V H 6= 0. �

Remark 1.7. In particular, if V is a semisimple representation of a pro-p group H,
then H acts trivially on V ! This reflects the fact that we are dealing with modular
representation theory, where Maschke’s theorem breaks down completely.

Exercise 1.8. Continue Example 1.5, taking H = Zp and V = C∞(Zp, C). For

n ≥ 0 let Vn be the subspace spanned by all functions
(
x
k

)
: Zp → Zp � Fp ↪→ C,

0 ≤ k < n. Show that Vn is the unique subrepresentation of V that is of dimension
n, and show that any proper subrepresentation of V is of the form Vn for some
n ≥ 0. (Perhaps the easiest proof uses the duality in §1.27.)

Later we will need the notion of a socle of a representation.

Definition 1.9. If π is any smooth representation of a profinite group H, the H-
socle socH π is the maximal semisimple subrepresentation of π, or equivalently the
sum of all irreducible subrepresentations of π.
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Exercise 1.10. If π 6= 0, then socH π 6= 0. Also, if f : π → π′ is a homomorphism
of smooth H-representations, then f |socH π injective implies that f is injective.

On the other hand, π need not have any irreducible quotients, see Exercise 1.8.

Exercise 1.11. Suppose that H is a profinite group with open normal subgroup N
such that N is pro-p and H/N is (finite) of order prime to p. Show that socH π =
πN .

1.3. There is no C-valued Haar measure. In the complex smooth representa-
tion theory of G, the Haar measure of G plays a fundamental role (see for example
Tasho’s lectures). Unfortunately there is no good analog of Haar measure µ with
values in a field of characteristic p.

Suppose in this section that G is locally pro-p and does not carry the discrete
topology. The basic observation is that if H is a non-discrete pro-p group and µ
a C-valued translation-invariant measure on H, then H has an open subgroup H ′

with index (H : H ′) = pm for some m > 0, so µ(H) =
∑
h∈H/H′ µ(hH ′) = (H :

H ′)µ(H ′), by translation invariance, which equals zero as p = 0 in C. But perhaps
it is easiest to give a rigorous statement in the spirit of integration. Let C∞c (G,C)
denote the vector space of compactly supported locally constant functions G→ C,
on which G acts on the left by right translation on the domain (G).

Lemma 1.12. Any left G-invariant linear functional
∫

: C∞c (G,C)→ C is zero.

Proof. As above we deduce that
∫

(1H) = 0 for any open pro-p subgroup H (as
G, hence H, is non-discrete by assumption). Suppose now that f : G → C is any
locally constant function of compact support. By compactness we see that there
exists a compact open subgroup H such that f(gh) = f(g) for all g ∈ G and all

h ∈ H. Hence f =
∑N
i=1 λi1giH for some λi ∈ C and gi ∈ G, and hence

∫
(f) = 0

by left translation invariance. �

1.4. Induced representations. This is exactly the same as over C, so we will
keep the discussion short.

Suppose that H ≤ G is any closed subgroup (note that this implies that H\G is
Hausdorff with the quotient topology) and let σ be a smooth H-representation.

We can form several kinds of induced representations.

(i) The abstractly induced representation is ◦IndGH σ := {f : G→ σ : f(hg) =
hf(g)}, with G acting by right translation: (gf)(γ) = f(γg) (just like in
the representation theory of finite groups).

(ii) The smoothly induced representation IndGH σ := (◦IndGH σ)∞. Concretely,

IndGH σ consists of all f ∈ ◦IndGH σ such that there is an open subgroup
U ≤ G such that f(gu) = f(g) for all u ∈ U and g ∈ G.

(iii) The compactly induced representation c-IndGH σ is the G-subrepresentation

of IndGH σ consisting of all f such that the image of supp(f) in H\G is

compact. (This is a subrepresentation of IndGH σ since the action of G
translates the support of functions.)

Here, for f ∈ IndGH σ we define the support of f as supp(f) = {g ∈ G | f(g) 6= 0};
it is a union of right cosets of H. By the smoothness condition in the definition of
IndGH σ, f is locally constant and hence supp(f) is open and closed, which implies
that the image of supp(f) in H\G is also open and closed.
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Thus we have subrepresentations

c-IndGH σ ⊆ IndGH σ ⊆ ◦IndGH σ.

Remark 1.13.

(i) If σ = 1H , the trivial 1-dimensional representation, then IndGH 1H is the
space of uniformly locally constant functions f : H\G→ C.

(ii) If H\G is compact, then IndGH σ = c-IndGH σ.

(iii) The functors IndGH and c-IndGH are left exact.

In contrast to complex representation theory, IndGH is not always exact. However,

we will see important examples when IndGH and c-IndGH are exact in the remainder
of this section.

Proposition 1.14 (Frobenius Reciprocity). Suppose that π is a smooth G-representation
and σ a smooth H-representation. We have natural isomorphisms:

(i) HomG(π, IndGH σ) ∼= HomH(π|H , σ).

(ii) HomG(c-IndGH σ, π) ∼= HomH(σ, π|H) if H is open in G. Moreover, the

functor c-IndGH is exact in this case.

Useful notation: if g ∈ G and x ∈ σ we let [g, x] ∈ c-IndGH σ denote the function
supported on Hg−1, sending g−1 to x. Note that [gh, x] = [g, hx] for h ∈ H and
γ[g, x] = [γg, x] for γ ∈ G.

Remark 1.15. Note that the isomorphism in (i) is realized by composition with the

map IndGH σ → σ, which is evaluation at 1. The isomorphism in (ii) is realized by

composition with the map σ → c-IndGH σ, which sends x ∈ σ to the function [1, x].
(It’s a good exercise to write down explicit formulas for the inverse isomorphism in
each case.)

Remark 1.16. One way to prove (ii) is to note that c-IndGH σ
∼= C[G] ⊗C[H] σ, the

isomorphism being given by g ⊗ x 7→ [g, x]. The exactness follows from the fact
that C[G] is free over C[H] (generated as a left module by a set of representatives
of H\G).

Remark 1.17. There is a useful Mackey formula for (c-IndGH σ)|H′ if at least one of

the closed subgroups H, H ′ is open and for (IndGH σ)|H′ if H ′ is open, cf. [Yam].

An important special case of induction is parabolic induction. In this case,
G = GLn(F ) (or another reductive group) and H (the F -points of) a parabolic
subgroup. Importantly, the quotient H\G is compact in the quotient topology if
H is a parabolic subgroup.

Concretely, if G = GLn(F ), then a standard parabolic subgroup P = Pn1,...,nr

consists of all upper block triangular matrices1 in G with square blocks of sizes n1,
. . . , nr (for some fixed integers ni ≥ 1 such that n =

∑
i ni). Let P := tP denote

its transpose and let M = Mn1,...,nr := P ∩ P (a standard Levi subgroup2). Note

that we have a surjective homomorphism P �M (resp. P �M) that restricts to
the identity on M and sends other matrix entries to zero, and we denote its kernel
by N = Nn1,...,nr (resp. N = tN), the unipotent radical of P (resp. P ). Then

we have semidirect product decompositions P = M n N , P = M n N . We write

1https://en.wikipedia.org/wiki/Triangular_matrix#Upper_block_triangular.
2Unfortunately this is non-standard terminology. . .

https://en.wikipedia.org/wiki/Triangular_matrix#Upper_block_triangular
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B := P1,...,1 (a Borel subgroup) and T := M1,...,1 (a maximal torus), U := N1,...,1.
Here is a picture for n = 3 and n1 = 2, n2 = 1:
(1.1)

P =

∗ ∗ ∗∗ ∗ ∗
0 0 ∗

 , M =

∗ ∗ 0
∗ ∗ 0
0 0 ∗

 , N =

1 0 ∗
0 1 ∗
0 0 1

 , P =

∗ ∗ 0
∗ ∗ 0
∗ ∗ ∗

 ,

B =

∗ ∗ ∗0 ∗ ∗
0 0 ∗

 , T =

∗ 0 0
0 ∗ 0
0 0 ∗

 , U =

1 ∗ ∗
0 1 ∗
0 0 1

 .

Finally, a parabolic subgroup is a subgroup conjugate to a (in fact, unique) standard
parabolic subgroup.

Remark 1.18. The subset NP = NMN ⊆ G is open.

Proposition 1.19.

(i) Assume that H\G is compact and that the projection map π : G → H\G
admits a continuous section.3 Then the functor IndGH is exact.

(ii) If G = GLn(F ) and P is a parabolic subgroup, then the functor IndGP is
exact.

Proof. (i) Compactness of H\G ensures that IndGH σ consists of all locally constant

functions in ◦IndGH σ. Let s : H\G→ G denote a continuous section of π. Define a

map IndGH σ → C∞(H\G, σ) by f 7→ (g 7→ f(s(g))) and a map the other way by

ϕ 7→ ϕ = (g = hs(g) 7→ hϕ(g)) ∀h ∈ H, g ∈ H\G.
The first map is well defined as f is locally constant. To check that the second map
is well defined, write hϕ(g) = gs(π(g))−1ϕ(π(g)) and note this is locally constant in
g, as gs(π(g))−1 is continuous, σ is smooth and ϕ is locally constant. Then check
that these maps are inverses to one another and define a natural isomorphism
of functors IndGH

∼= C∞(H\G,−) (the spaces C∞(H\G, σ) have a left action of G

coming from the right action on H\G). As IndGH is left exact, it suffices to show that
it preserves surjections, i.e. if σ � τ is any surjection of smooth G-representations,
then C∞(H\G, σ) � C∞(H\G, τ). Forget G-actions and choose any vector space
section α : τ → σ, which is automatically continuous in the discrete topology. Then
g 7→ α(ϕ(g)) is a preimage of ϕ.

(ii) Write P = MN , which we may suppose to be standard. By (i) we need
to construct a continuous section s : P\G → G. By Remark 1.18 the image of
N ↪→ P\G is open, hence the image Ω of the compact open subgroup N ∩ K is
open and closed, so we can define a continuous section on Ω. By translation we
may define a continuous section on Ωg for any g ∈ G; these sets form an open cover
of P\G. Since P\G is compact we can take a finite subcover {Ωgi}1≤i≤r. Now

chop these up into 2r disjoint open and closed subsets
(⋂

i∈I Ωgi
)
∩
(⋂

i∈Ic(Ωgi)
c
)

(for I ⊆ {1, . . . , r}) on which a continuous section exists, and then glue to get a
continuous section on all of P\G. �

Remark 1.20. In fact, the functor c-IndGH is always exact, since c-IndGH
∼= C∞c (H\G,−)

by [AHV19, Lemma 2.4].

Here is another useful property, cf. [Her12b, Ex. 15]:

3In fact the second assumption is automatic, see [AHV19, Lemma 2.3].
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Proposition 1.21 (Transitivity of parabolic induction). Suppose that Q = LN ′ ⊆
P = MN are standard parabolic subgroups, so L ⊆ M . For σ a smooth L-
representation we have a natural isomorphism

IndGP (IndMQ∩M σ) ∼= IndGQ σ.

(Note that Q ∩ M is a parabolic subgroup of M with Levi L and unipotent
radical N ′ ∩M .)

We now give a basic application of induced representation to admissibility. This
result is very far from true over C!

Lemma 1.22. Suppose that H is any open pro-p subgroup of G. Then V is ad-
missible if and only if dimC V

H <∞.

Proof. For the “if” direction, it suffices to show that dimC V
H′ < ∞ for all (com-

pact) open subgroups H ′ ≤ H. By Frobenius reciprocity we have

(1.2) V H
′

= HomH′(1, V ) = HomH(c-IndHH′ 1, V ).

We prove by induction that for any finite-dimensional smooth representation W of
H we have

(1.3) dimC HomH(W,V ) ≤ (dimCW )(dimC V
H).

(For the induction step: if W 6= 0, then 0 → 1 → W → W ′ → 0 by Lemma 1.6
and so 0→ HomH(W ′, V )→ HomH(W,V )→ HomH(1, V ) = V H is exact.) So we
conclude by (1.2) and (1.3) that

dimC V
H′ ≤ (H : H ′)(dimC V

H) <∞. �

1.5. Duality. References: [Vig12], [Hen09], [Eme10], [Koh17].
There are at least two dualities one can consider on a smooth G-representation

V :

(i) smooth duality HomC(V,C)∞ (defined in §1.2),
(ii) the naive duality V ∨ := HomC(V,C),

where G acts by (g · f)(x) = f(g−1x) for f ∈ HomC(V,C), g ∈ G, x ∈ V .
For now we focus on the second kind, and we forget about G-actions for the

moment.

1.5.1. Step 1. Vector spaces. We cannot hope to recover V from the abstract vector
space V ∨ (for example, V ∨∨ is much bigger than V if V is of infinite dimension),
but we can give V ∨ a natural topology and then recover V as the continuous dual
of V ∨, as we now explain.

Since V is the union (or direct limit) of all its finite-dimensional subspaces we ob-

tain that V ∨ = HomC(V,C)
∼−→ lim←−W HomC(W,C), where the index runs through

all finite-dimensional subspaces W ⊆ V . We then give V ∨ the inverse limit topol-
ogy, where each HomC(W,C) carries the discrete topology. Concretely, the basic
open neighbourhoods of 0 ∈ V ∨ consist of the annihilator subspaces W⊥ for W ⊆ V
finite-dimensional. Thus V ∨ is pseudocompact, which is defined to mean a topolog-
ical vector space that is isomorphic to an inverse limit of finite-dimensional vector
spaces (with inverse limit topology).

Exercise 1.23. Show that the double duality map V → HomC(V ∨, C), x 7→ (f 7→
f(x)) induces a vector space isomorphism V

∼−→ Homcts
C (V ∨, C), where the right-

hand side denotes continuous linear maps.
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Exercise 1.24. If V =
⊕

i∈I C, show that V ∨ ∼=
∏
i∈I C (topological isomorphism).

Proposition 1.25. The functor V 7→ V ∨ induces an equivalence of categories
between C-vector spaces and pseudocompact C-vector spaces. A quasi-inverse is
given by M 7→ Homcts

C (M,C).

(This is not too hard, based on the exercises above.)

Remark 1.26. If C = Fp, then V 7→ V ∨ is the same as classical Pontryagin duality.
Let S1 := {z ∈ C× : |z| = 1} and choose a group isomorphism Fp ∼= µp(C) (the
group of p-th roots of unity). Then note that HomC(V,C) = Hom(V, S1), where the
right-hand side denotes group homomorphisms. Pontryagin duality is a perfect du-
ality A 7→ Homcts(A,S1) on locally compact abelian groups, giving Homcts(A,S1)
the so-called compact open topology, which coincides with the topology of V ∨ de-
fined above if A = V (discrete). In this case, V ∨ is literally compact, even profinite.

1.5.2. Step 2. Representations of compact groups. If V is a smooth representation
of a profinite group H, then it is not hard to check that the induced action of H
on V ∨ is continuous, i.e. the action map H × V ∨ → V ∨ is continuous.

We can do better: since H is profinite, it has lots of normal compact open
subgroups and we can define the completed group algebra

CJHK := lim←−
NCH

C[H/N ],

where the limit runs over all normal compact open subgroups N . This is a topolog-
ical ring with the inverse limit topology, where all C[H/N ] are discrete (so CJHK
is pseudocompact as topological vector space).

As V = lim−→N
V N is smooth, it becomes a CJHK-module, by letting CJHK act

on V N via the projection CJHK� C[H/N ]. Moreover the action CJHK× V → V
is continuous. (It extends the action of the usual group ring C[H] on V .) As a
consequence, V ∨ is a module over CJHK, extending the above action of C[H] on
V ∨.

Exercise 1.27. The action map CJHK× V ∨ → V ∨ is continuous.

From above one then deduces with a bit of work:

Proposition 1.28. The functor V 7→ V ∨ induces an equivalence of categories
between smooth representations of H and pseudocompact C-vector spaces M to-
gether with a continuous action CJHK × M → M . A quasi-inverse is given by
M 7→ Homcts

C (M,C).

Exercise 1.29. Going back to Example 1.5, show that C∞(H,C)∨ ∼= CJHK. (It
might be easier to compute the quasi-inverse.)

1.5.3. Application to admissibility. Suppose that G is a closed subgroup of GLn(F ).

Proposition 1.30. Suppose that V is a smooth G-representation and suppose H is
a compact open subgroup of G. Then V is admissible if and only if V ∨ is a finitely
generated CJHK-module.

Sketch. First one reduces to the case where H is pro-p (by passing to an open
subgroup H ′ of H, so CJHK is a finitely generated CJH ′K-module). Then CJHK is



10 FLORIAN HERZIG

a local ring, as mentioned below, and note that its maximal ideal mH is also the
augmentation ideal: mH = ker(CJHK→ C). Then

V is admissible ⇐⇒ dimC V
H <∞ ⇐⇒ dimC(V ∨)H <∞

⇐⇒ dimC V
∨/mHV

∨ <∞ ⇐⇒ V ∨ is f.g. as CJHK-module.

Here, (−)H denotes the H-coinvariants. The first equivalence is Lemma 1.22, the
second and third hold because (V H)∨ ∼= (V ∨)H ∼= V ∨/mHV

∨, the fourth because
of a topological version of Nakayama’s lemma, noting that V ∨ is complete in the
mH -adic topology (cf. [Mat89, Thm. 8.4] in the commutative setting). �

Fact 1.31. The ring CJHK is noetherian.

(This was first proved by Lazard, but see [DdSMS99, §7] if C = Fp. The main
idea is to reduce to an open subgroup that is “uniform” pro-p and then show that
the associated graded ring with respect to the unique maximal ideal of CJHK is
noetherian; more precisely, it is a polynomial ring in finitely many variables over
C. Note that CJHK is local, as H is pro-p and C of characteristic p. This is related
to Lemma 1.6!)

Corollary 1.32. The quotient of an admissible G-representation V is admissible.

Proof. Fix any pro-p subgroup H of G. If V � W is a quotient representation,
then W∨ ↪→ V ∨ is a (closed) CJHK-submodule. The result follows from Prop. 1.30
together with Fact 1.31. �

Remark 1.33. This result fails if F is of characteristic p, even if G = F×, cf.
[AHV19, Ex. 4.4]. (Here is why this should not be so surprising: by above the
result is equivalent to CJHK being noetherian for one/any compact open subgroup
H. But O×F is no longer topologically finitely generated when charF = p.)

Remark 1.34. In fact, from Fact 1.31 we deduce by duality that the category of
admissible smooth G-representation is artinian (any descending chain stabilizes).
For example, any nonzero admissible G-representation contains an irreducible sub-
representation.
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2. Hecke algebras and classification

Useful references: [Her12a] (together with exercises [Her12b]), [Her15], and [Bre07]
(for §2.8).

In this section we will explain how irreducible admissible representations can
be classified in terms of supersingular representations of smaller groups. This was
first done for GL2 by Barthel–Livné. To define the notion of a supersingular (or
supercuspidal) representation, we will need to talk about Serre weights, Hecke alge-
bras, and a mod-p analogue of the Satake isomorphism. Surprisingly, supersingular
representations have only been classified for the group GL2(Qp) and some closely
related groups (apart from the trivial case where the group is a torus).

We will suppose in this section (at least starting in §2.4) that C is algebraically
closed. It will be convenient to fix an embedding κ0 : kF → C, and let κi :=

κ0 ◦ (x 7→ xp
i

) for i ∈ Z/fZ.
In this section we focus on G = GLn(F ), though we also need to consider Levi

subgroups, which are products of general linear groups. Recall that K = GLn(OF ).

2.1. Serre weights. The first observation is that any nonzero smooth representa-
tion contains an irreducible representation ofK (by smoothness, anyK-representation
generated by one element is finite-dimensional). In stark contrast to complex rep-
resentations, there are only finitely many irreducible K-representations up to iso-
morphism:

Lemma 2.1. If V is any irreducible representation of K, then K1 acts trivially,
i.e. V is an irreducible representation of the finite group K/K1

∼= GLn(kF ).

Proof. Note that V K1 is a subrepresentation of V , as K1 C K. But V K1 6= 0 by
Lemma 1.6, so V K1 = V . �

An irreducible representation of K, or equivalently of GLn(kF ) is called a Serre
weight (of G). (The terminology comes from §4.6.)

Example 2.2. If n = 1, then a Serre weight is nothing but a 1-dimensional repre-
sentation k×F → C×, and there are q − 1 of them.

If n = 2, then the Serre weights can be described as follows (cf. [Her12b, Ex. 4]):
for any a = (ai)i, b = (bi)i ∈ Zf such that 0 ≤ ai − bi ≤ p− 1 for all i, define

F (a, b) :=

f−1⊗
i=0

[
(Symai−bi(k2

F )⊗ detbi)⊗kF ,κi C
]
,

where GL2(kF ) acts by left multiplication on k2
F (the standard representation).

Thus dimC F (a, b) =
∏f−1
i=0 (ai − bi + 1). In §3 we will use the short-hand notation

(a0, . . . , af−1) := F (a, 0).
To make this more concrete, let us use κ0 to identify kF with a subfield of C.

We can think of Symn(k2
F ) as homogeneous polynomials f in two variables X, Y ,

with (
( α β
γ δ

)
f)(X,Y ) = f(αX + γY, βX + δY ). Let di := ai− bi ∈ {0, 1, . . . , p− 1},

d :=
∑f−1
i=0 dip

i, and b :=
∑f−1
i=0 bip

i. Then the natural map

(2.1)

F (a, b)→ Symd(C2)⊗ detb

⊗i(fi ⊗ λi) 7→
∏
i

(fp
i

i λi)
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is an injection with image spanned by the monomials XcY d−c, c =
∑f−1
i=0 cip

i,
0 ≤ ci ≤ di for all i. Here, fi ∈ kF [X,Y ] is homogeneous of degree di and λi ∈ C.
The map is GL2(kF )-equivariant via the inclusion κ0 : GL2(kF ) ↪→ GL2(C). Thus
we can think of F (a, b) as homogeneous polynomials of degree d. Alternatively, in

the language of algebraic representations (§A.4), F (a, b) ∼= (L(d, 0) ⊗ detb)|Γ and
the isomorphism (2.1) follows from Fact A.16.

If n > 2, there are unfortunately no simple formulas for all the Serre weights, but
at least they can be described in terms of the representation theory of the algebraic
group GLn in characteristic p, which is often sufficient in practice; see §A. There
are qn−1(q − 1) Serre weights of G.

Suppose that P = MN is a standard parabolic subgroup. Then P ∩ K =
(M ∩K)(N ∩K) and P ∩K = (M ∩K)(N ∩K) (again semidirect products).

Fact 2.3. If V is a Serre weight of G, then the invariants V N∩K and the co-
invariants VN∩K are Serre weights of M , i.e. irreducible representations of M ∩K.

Moreover, the composition V N∩K ↪→ V � VN∩K is an isomorphism.

Exercise 2.4. Suppose that n = 2. Show that V U∩K is 1-dimensional, spanned by
the homogeneous polynomial Y d in the above parametrization. Similarly show that
V → VU∩K can be identified with the map V → C · Y d, f(X,Y ) 7→ f(0, Y ) in the
above parametrization. Deduce that Fact 2.3 holds when n = 2.

In particular, V U∩K is an irreducible representation of the abelian group T ∩K,
hence 1-dimensional.

Fact 2.5. Given a Serre weight V , let ψV : T ∩ K → C× denote the action of

T ∩ K on V U∩K . The map V 7→ ψV is surjective and almost a bijection. More

precisely, let PV = MVNV denote the largest standard parabolic such that V NV ∩K

is 1-dimensional. Then the map V 7→ (ψV ,MV ) is a bijection onto the set of pairs
(ψ,M), where ψ : T ∩K → C× and M is a standard Levi such that ψ extends to a
character of M .

Note that PV is well defined since V U∩K is always 1-dimensional, and that
MV = G if and only if V is 1-dimensional.

Exercise 2.6. Verify Fact 2.3 for n = 2.

2.2. Hecke algebras. The second observation is the following: if π is any smooth
G-representation and V any irreducible subrepresentation of π|K , then we say that
V occurs in π. In this case the “multiplicity space”

(2.2) HomK(V, π|K) ∼= HomG(c-IndGK V, π)

is naturally a right module over the C-algebra HG(V ) := EndG(c-IndGK V ) (by pre-
composition, hence a right module). We will see in §2.3 that the Hecke algebra
HG(V ) of V is commutative, so we do not need to distinguish between left and
right HG(V )-modules.

Remark 2.7.

(i) This is exactly analogous to the Hecke algebras associated to types in the
complex representation theory of G.
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(ii) The same formalism works for EndG(c-IndGH V ) if H is a compact open
subgroup and V a finite-dimensional smooth H-representation over any
field. Moreover, Proposition 2.9 generalizes to this context (cf. Jessica’s

lectures) though EndG(c-IndGH V ) is usually noncommutative.

Exercise 2.8. Show that π is admissible if and only if HomK(V, π|K) is finite-
dimensional for each Serre weight V if and only if the K-socle socK π is finite-
dimensional. (Hint: for the first “if”, use the same ideas as in the proof of
Lemma 1.22.)

Proposition 2.9. The Hecke algebra HG(V ) is isomorphic to the algebra of func-
tions ϕ : G→ EndC(V ) such that supp(ϕ) is compact and ϕ(k1gk2) = k1 ◦ϕ(g)◦k2

for all k1, k2 ∈ K, g ∈ G. The product on this algebra is convolution ϕ1 ?ϕ2, where

(2.3) (ϕ1 ? ϕ2)(g) :=
∑

γ∈K\G

ϕ1(gγ−1) ◦ ϕ2(γ).

Note that the sum in (2.3) is finite, since ϕ1 (or ϕ2) has compact support. Also
the sum is well defined since ϕ1(gγ−1k−1)ϕ2(kγ) = ϕ1(gγ−1)ϕ2(γ) for k ∈ K.
(Here and in the future, when we sum over cosets we mean that the index runs
through a set of coset representatives and that the sum is independent of this
choice.)

Proof. Write Map(X,Y ) for the set of functions X → Y , which is a vector space if
Y is. As vector spaces,

HG(V ) = EndG(c-IndGK V ) ∼= HomK(V, c-IndGK V )

⊆ Map(V,Map(G,V )) = Map(G,Map(V, V )),

by Frobenius reciprocity. To see that the image of HomK(V, c-IndGK V ) inside

Map(G,Map(V, V )) is as claimed, take ψ ∈ HomK(V, c-IndGK V ), so its image
is given by ϕ(g)(v) = ψ(v)(g). It is a nice exercise to check that the condi-
tions on ψ (one compact support and two K-equivariance conditions) to lie in

HomK(V, c-IndGK V ) ⊆ Map(V,Map(G,V )) correspond precisely to the conditions
on ϕ in Map(G,Map(V, V )) stated in the first sentence of the statement of this
proposition.

We need to check that under the above vector space isomorphism, the product
in HG(V ) (composition) corresponds to the convolution product (2.3). Take ϕ

corresponding to ψ′ ∈ HG(V ) and to ψ ∈ HomK(V, c-IndGK V ). Then

ψ′([1, x])(γ) = ψ(x)(γ) = ϕ(γ)(x)

and hence by K-equivariance

ψ′([1, x]) =
∑

γ∈K\G

[γ−1, ϕ(γ)(x)] =
∑

γ∈K\G

γ−1[1, ϕ(γ)(x)].

If ϕ1, ϕ2 correspond to ψ′1, ψ
′
2 ∈ HG(V ), it is then an exercise to check that ϕ1 ?ϕ2

corresponds to ψ′1 ◦ ψ′2. �

We will often think of HG(V ) as the algebra of functions G → EndC(V ) as in
Proposition 2.9.
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Example 2.10. Let V be the trivial representation, then HG(V ) = Cc(K\G/K,C),
the algebra of bi-K-equivariant functions on G with compact support, under con-
volution. Let 1KgK denote the characteristic function of the double coset KgK.
Then, for a smooth G-representation π it acts on πK = HomK(V, π) on the right4:
if KgK =

∐r
i=1Kgi, then for x ∈ πK , 1KgK(x) =

∑r
i=1 g

−1
i x.

Exercise 2.11. Make the right action of HG(V ) on HomK(V, π|K) explicit. Suppose
that f ∈ HomK(V, π|K) as in (2.2) and ϕ : G → EndC(V ) in HG(V ). Then
fϕ ∈ HomK(V, π|K) is given by x 7→

∑
g∈G/K f(ϕ(g)x).

2.3. mod-p Satake transforms. The classical Satake isomorphism over C is of the
form HC

G(1)
∼−→ HC

T (1)W . Here, T is the diagonal maximal torus (1.1), HC
G(1) :=

EndG(c-IndGK 1), HC
T (1) := EndT (c-IndTT∩K 1) both over the field C, and W ∼= Sn

is the Weyl group. Note that HC
T (1) is isomorphic to the group algebra C[T/(T ∩

K)], as T is commutative (every double coset is a single coset), and W naturally
acts on it. In particular, HC

G(1) is commutative. Explicitly, the classical Satake
isomorphism is given by the formula

HC
G(1)→ HC

T (1)

ϕ 7→
(
t 7→ δ(t)−1/2

∑
u∈(U∩K)\U

ϕ(ut)

)
,

where δ : B → pZ ⊆ R× is the modulus character of B. The normalizing factor
δ(t)−1/2 is what makes the image W -invariant.

In order to have an analog of the Satake isomorphism in characteristic p, we are
forced to drop the normalizing factor. We would also like to allow non-trivial Serre
weights as coefficients. Recall that if V is a Serre weight of G, then VU∩K is a
(1-dimensional) Serre weight of T and we let pU : V � VU∩K denote the natural
projection onto the coinvariants. Let T+ ⊆ T denote submonoid

T+ := {diag(t1, . . . , tn) ∈ T : ordp(t1) ≥ · · · ≥ ordp(tn)}

and let H+
T (VU∩K) ⊆ HT (VU∩K) denote the subalgebra

H+
T (VU∩K) := {ϕ ∈ HT (VU∩K) : supp(ϕ) ⊆ T+}.

Theorem 2.12 (H.). The map

SG : HG(V )→ HT (VU∩K)

ϕ 7→
(
t 7→

∑
u∈(U∩K)\U

pU ◦ ϕ(ut)

)
is an injective algebra homomorphism with image H+

T (VU∩K). In particular, HG(V )
is commutative.

Here we think of HG(V ) as functions G→ EndC(V ) and likewise for HT (VU∩K).
Implicit in the above theorem is that the sum of all pU ◦ϕ(ut) : V → VU∩K factors
through a map VU∩K → VU∩K .

4It is more common in the literature to see the left action of double cosets where we decompose
KgK into left cosets.
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Exercise 2.13. Show how the mod-p Satake isomorphism follows from the the classi-
cal one if V = 1, using the explicit formula δ(t) = |t1|(n−1)/2|t2|(n−3)/2 · · · |tn|−(n−1)/2

for t ∈ T , where | · | is the normalized absolute value of F . (You may assume Step
2 of the sketch proof of Theorem 2.12 below.)

Exercise 2.14. Check that H(+)
T (VU∩K) ∼= C[T (+)/(T ∩K)], where the right-hand

side denotes the algebra on the monoid T (+)/(T ∩K) (even a group if we omit the
+).

The following calculation is instructive.

Exercise 2.15. Suppose that n = 2 and ϕ ∈ HG(V ) is supported on the double coset
K
(
$

1

)
K. Then k1 ◦ ϕ(

(
$

1

)
) = ϕ(

(
$

1

)
) ◦ k2 whenever k1

(
$

1

)
=
(
$

1

)
k2 for

some k1, k2 ∈ K. Deduce that ϕ(
(
$

1

)
) ∈ EndC(V ) induces a T ∩K-linear map

VU∩K → V U∩K , and conversely that any such T ∩ K-linear map arises from a
unique ϕ supported on K

(
$

1

)
K.

Exercise 2.16. Continue Exercise 2.15, showing that the vector space of ϕ ∈ HG(V )
supported on K

(
$

1

)
K is 1-dimensional. Show there is a unique nonzero such ϕ

such that ϕ(
(
$

1

)
) is a linear projection (namely the composition V � VU∩K

∼←−
V U∩K ↪→ V ).

Proof of Theorem 2.12 (sketch). Let Λ := Zn and Λ+ := {λ ∈ Zn : λ1 ≥ · · · ≥ λn}.
For λ ∈ Λ, let tλ := diag($λ1 , . . . , $λn). The Cartan decomposition says that
G =

∐
λ∈Λ+ KtλK.

Step 0: SG is an algebra homomorphism. This is a calculation, using the Iwasawa
decomposition: G = KB (so instead of summing over K\G in Proposition 2.9 we
can sum over (B ∩K)\B).

Step 1: as C-vector spaces, HG(V ) has basis (Tλ)λ∈Λ+ and HT (VU∩K) has
basis (τλ)λ∈Λ, where Tλ ∈ HG(V ) is determined uniquely by supp(Tλ) = KtλK
and Tλ(tλ) ∈ EndC(V ) is a linear projection (resp. supp(τλ) = tλ(T ∩ K) and
τλ(tλ) = 1).

This is easy in case of τλ. For Tλ, this is a generalization of Exercise 2.16, showing

that for ϕ ∈ HG(V ), ϕ(tλ) induces a Mλ ∩K-linear map VNλ∩K → V Nλ∩K , where
Pλ = MλNλ is the standard parabolic such that Mλ is the centralizer of tλ in G.

Then Tλ(tλ) is the composition V � V Nλ∩K
∼←− VNλ∩K ↪→ V (see Fact 2.3).

Step 2: show that SG has triangular form with respect to the bases of Step 1.
More precisely, for λ ∈ Λ+,

SG(Tλ) =
∑

µ∈Λ,µ≤λ

aλµτµ,

where aλµ ∈ C and aλλ = 1. Here, µ ≤ λ is the partial order defined by
∑r
i=1 µi ≤∑r

i=1 λi for all 1 ≤ r ≤ n, with equality when r = n.

Step 3: show that SG(HG(V )) ⊆ H+
T (VU∩K). This step is where the proof really

differs from the classical proof. It is not hard when V = 1, see Exercise 2.13, but a
bit tricky in general.

Step 4: The triangular form in Step 2 now becomes

(2.4) SG(Tλ) =
∑

µ∈Λ+,µ≤λ

aλµτµ,
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for λ ∈ Λ+, with aλλ = 1. It now follows inductively that SG : HG(V ) →
H+
T (VU∩K) is an isomorphism, using that for any λ ∈ Λ+ there are only finitely

many µ ∈ Λ+, µ ≤ λ. �

Remark 2.17. For 1 ≤ i ≤ n let Ti := Tλi and τi := τλi , where λi = (1, . . . , 1, 0, . . . , 0)
with i 1’s followed by n−i 0’s. By (2.4) it follows that SG(Ti) = τi. This is however
rather special to the group GLn(F ).

Corollary 2.18. We have H+
T (VU∩K) ∼= C[x1, . . . , xn, x

−1
n ] inside HT (VU∩K) ∼=

C[x±1
1 , . . . , x±1

n ], where xi corresponds to τi ∈ H+
T (VU∩K). There exists ϕ ∈ HG(V )

such that SG induces an algebra isomorphism HG(V )[ϕ−1]
∼−→ HT (VU∩K).

Proof. Note that τλ+µ = τλτµ. Hence we have an isomorphism C[Λ(+)] ∼= H(+)
T (VU∩K)

with λ ∈ Λ corresponding to τλ ∈ HT (VU∩K). Now it suffices to observe that

Λ =
⊕n

i=1 Zλi and Λ+ =
⊕n−1

i=1 Nλi ⊕ Zλn as monoids, where λi ∈ Λ+ is de-
fined as in Remark 2.17. For the final part, Λ is obtained from Λ+ by inverting∑n−1
i=1 λi, so HT (VU∩K) = H+

T (VU∩K)[(τ1 · · · τn−1)−1], hence we can take ϕ such
that SG(ϕ) = τ1 · · · τn−1. (There is a unique such ϕ by Theorem 2.12.) �

Remark 2.19. Barthel–Livné (for n = 2) do not work with the Hecke algebra

HG(V ), but instead with EndG(c-IndGKZ V ), where $ ∈ Z acts trivially on V .
The comparison of these Hecke algebras is discussed in [Her15, §10].

More generally, for any standard parabolic P = MN we also need a Satake
transform SGM : HG(V )→ HM (VN∩K). First note that the above results generalize
to Levi subgroups (in fact all connected reductive groups), so we have a Satake
map SM : HM (W ) ↪→ HT (WU∩M∩K). Let pN : V → VN∩K denote the natural
projection. It is not hard to deduce the following result from Theorem 2.12.

Proposition 2.20. The map

(2.5)

SGM : HG(V )→ HM (VN∩K)

ϕ 7→
(
m 7→

∑
n∈(N∩K)\N

pN ◦ ϕ(nm)

)
is an injective algebra homomorphism. We have SM ◦ SGM = SG. Moreover the
map SGM is a localization at one element, i.e. there exists ϕ ∈ HG(V ) such that SGM
induces an algebra isomorphism HG(V )[ϕ−1]

∼−→ HM (VN∩K).

Remark 2.21. The group U ∩ K is a semidirect product of N ∩ K (normal) and
U ∩M ∩K, so (VN∩K)U∩M∩K ∼= VU∩K .

Remark 2.22. Similar to the argument in Corollary 2.18 we can see that the fol-
lowing ϕ works in Proposition 2.20: SG(ϕ) =

∏r−1
i=1 τn1+···+ni if M = Mn1,...,nr .

Remark 2.23. There is a variant of the Satake map SG that is of the form ′SG :
HG(V )→ HT (V U∩K), defined by

ϕ 7→
(
t 7→

∑
u∈U/(U∩K)

ϕ(tu)|V U∩K
)
.

Both SG and ′SG fit into a family of Satake maps defined by Heyer, see the projects.
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2.4. Supersingular representations. Suppose that π is an admissibleG-representation.
Then for any Serre weight V , HomK(V, π) is finite-dimensional and HG(V ) acts on
it. Since HG(V ) is commutative and C = C, if HomK(V, π) 6= 0, it contains an
HG(V )-eigenvector. In other words, there exists 0 6= f ∈ HomK(V, π) such that
fϕ = χ(ϕ)f for all ϕ ∈ HG(V ) for some χ : HG(V ) → C (necessarily an algebra
homomorphism). In this case we say that χ is a Hecke eigenvalue of π (in weight
V ).

Proposition 2.24. Suppose P = MN is a standard parabolic and σ a smooth
representation of M . For any Serre weight V we have an isomorphism of vector
spaces

(2.6) HomK(V, IndGP σ) ∼= HomM∩K(VN∩K , σ),

which is compatible with the action of HG(V ), acting via SGM : HG(V )→ HM (VN∩K)
on the right-hand side.

Exercise 2.25. Using the Iwasawa decomposition G = PK check that (IndGP σ)|K =

IndKP∩K σ and deduce (2.6). Then complete the proof of Proposition 2.24.

Exercise 2.26. Suppose P = B and θ : T → C× is a smooth character, so θ =
θ1 ⊗ · · · ⊗ θn, where θi : F× → C× is a smooth character. If n = 2, prove that
socK(IndGB θ) has length 2 if and only if θ1|O×F = θ2|O×F , and length 1 otherwise. In

general, show that socK(IndGB θ) has length at most 2n−1.

Exercise 2.27. Continue Exercise 2.26 for n = 2. Show that for any Hecke eigenvalue
χ of IndGB θ we have χ(τ1) = θ1(p)−1 and χ(τ2) = (θ1(p)θ2(p))−1.

Remark 2.28. As observed by Henniart–Vignéras, we can use the naturality of the
isomorphism (2.6) in σ to define a unique algebra homomorphism SGM : HG(V )→
HM (VN∩K) such that Proposition 2.24 holds, and then compute that it is given by
formula (2.5). See [Her12a, §12].

Corollary 2.29. Keep the notation of Proposition 2.24. If σ is admissible, then
IndGP σ is admissible.

Proof. By taking dimensions in (2.6) we deduce that HomK(V, IndGP σ) is finite-
dimensional for each V , as σ is admissible, so the result follows from Exercise 2.8.

�

As a result of Proposition 2.24, any Hecke eigenvalue of IndGP σ necessarily fac-
tors through SGM (note that SGM is a localization). From the point of view of Hecke
eigenvalues, the most complicated representations then are the supersingular rep-
resentations, which were first singled out for n = 2 by Barthel–Livné:

Definition 2.30. We say that an irreducible admissible G-representation π is su-
persingular if the following equivalent conditions hold:

(i) if any Hecke eigenvalue χ of π factors through SGM , then M = G;
(ii) for any Hecke eigenvalue χ of π, we have χ(τ1) = · · · = χ(τn−1) = 0.

Here, we identified χ with a homomorphism H+
T (VU∩K)→ C via SG.5 The two

conditions are equivalent by Remark 2.22.

5We could have written χ(T1) = · · · = χ(Tn−1) = 0, but this is not ideal in light of Re-
mark 2.17.
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Remark 2.31. We remark that Vignéras gave another definition of supersingularity,
using the action of (the center of) the pro-p Iwahori-Hecke algebra EndG(c-IndGI1 1)

on πI1 . It was shown to be equivalent to the above definition by Ollivier–Vignéras.

2.5. Generalized Steinberg representations. At the other extreme of supersin-
gular representations are the irreducible factors of IndGB(1). Note that any standard

parabolic subgroup P defines a subrepresentation IndGP (1) ⊆ IndGB(1), and we have

IndGQ(1) ⊆ IndGP (1) whenever Q ⊇ P . Therefore it makes sense to define

SpP :=
IndGP (1)∑
Q)P IndGQ(1)

,

where the sum runs through all standard parabolic subgroupsQ that strictly contain
P . In particular, SpG = 1G, the trivial representation of G, and St := SpB is known
as the Steinberg representation.

By work of Große-Klönne we know:

Theorem 2.32. Let P be any standard parabolic subgroup. Then the admissible
representation SpP is irreducible, socK(SpP ) is irreducible, and its unique Hecke
eigenvalue is given by χ(τi) = 1 for all 1 ≤ i ≤ n.

More precisely, the Serre weight socK(SpP ) is parametrized by the pair (1,M)
(as in Fact 2.5), where P = MN . (See [Her12b] for two proofs that St is irreducible
when n = 2.)

It is not so hard to deduce:

Corollary 2.33. IndGB(1) is of length 2n−1, with irreducible constituents the SpP ,
each occurring with multiplicity 1.

2.6. Classification of irreducibles.

Theorem 2.34 (H.). Let P = Pn1,...,nr be a standard parabolic. Suppose that σi
is an irreducible admissible representation of GLni(F ) such that for each i either

(a) σi is supersingular and ni > 1 or
(b) σi = SpPi ⊗(ηi ◦ det) for some standard parabolic Pi ⊆ GLni(F ) and

smooth character ηi : F× → C×.

Suppose moreover that ηi 6= ηi+1 if σi and σi+1 are of type (b). Then IndGP (σ1 ⊗
· · · ⊗ σr) is irreducible and admissible.

Conversely, every irreducible admissible G-representation arises uniquely in this
way, meaning P is unique and the tuple (σ1, . . . , σr) is unique up to isomorphism.

Exercise 2.35. Use Theorem 2.34 and Corollary 2.33 to show that a principal series
IndGB(θ1 ⊗ · · · ⊗ θn) has length 2r, where r := |{1 ≤ i < n : θi = θi+1}|. (Hint:
first use transitivity of parabolic induction, inducing to the largest Levi to which
the character θ1 ⊗ · · · ⊗ θn extends.) In particular, it is irreducible if and only if
θi 6= θi+1 for all i, as was first proved by Ollivier.

This theorem allows one to compare the notion of supersingularity with super-
cuspidality, where we say that an irreducible admissible π is supercuspidal if π does
not occur as subquotient of IndGP σ for any proper standard parabolic P ( G and
any irreducible admissible representation σ of the Levi of P . (This is very similar
but not exactly analogous to the usual definition over C.)

Corollary 2.36. Suppose that π is an irreducible admissible G-representation.
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(i) The representation π is supersingular if and only if π is supercuspidal.
(ii) The Hecke eigenvalues of π are constant in the sense that there exist λi ∈ C

such that for each Hecke eigenvalue χ of π and each 1 ≤ i ≤ n we have
χ(τi) = λi.

(iii) If σ is an irreducible admissible M -representation, then IndGP σ is of finite
length and multiplicity free.

By part (ii), to check whether an irreducible admissible representation is super-
singular, it is enough to check Definition 2.30 for one Hecke eigenvalue.

As a special case of Theorem 2.34 we recover for n = 2:

Theorem 2.37 (Barthel–Livné). The irreducible admissible representations of GL2(F )
are given by

(i) principal series IndGB(θ1 ⊗ θ2) with θ1 6= θ2,
(ii) one-dimensional representations θ ◦ det,
(iii) St⊗ (θ ◦ det),
(iv) supersingular representations,

where θ, θ1, θ2 denote smooth characters F× → C×, and there are no non-trivial
isomorphisms between these representations.

Here, in the notation of Theorem 2.34, case (i) arises from P = B and η1 = θ1 6=
θ2 = η2 (type (b)); cases (ii) and (iii) from P = G and η1 = θ (type (b)); case (iv)
from P = G (type (a)).

Corollary 2.38. If π is an irreducible admissible representation of GL2(F ) such
that socK(π) is of length > 2, then π is supersingular.

This follows from Theorem 2.37 by recalling Exercise 2.26 and Theorem 2.32.

2.7. On the proofs. Let us briefly explain how one can prove that IndGP σ is
irreducible for some P = MN and some irreducible admissible M -representations
σ. It suffices to show that any nonzero G-subrepresentation π ⊆ IndGP σ we have

π = IndGP σ. As π 6= 0 we can pick a Serre weight V ⊆ π|K and Hecke eigenvalues
χ that occur in HomK(V, π). By Frobenius reciprocity we have a G-equivariant

map c-IndGK V � π, which is surjective as π is irreducible. By definition, this map

has to factor through a G-equivariant map (c-IndGK V )⊗HG(V ),χ C � π. It is thus
important to understand the left-hand side. Note that χ : HG(V ) → C has to
factor as χM ◦ SGM for a unique algebra homomorphism χM : HM (VN∩K) → C as

a result of Proposition 2.24 (since π ⊆ IndGP σ).
We say that V is M -regular if MV ⊆M , where MV is as in Fact 2.5.

Proposition 2.39. Suppose that V is M -regular and that χM : HM (VN∩K) → C
is an algebra homomorphism. Then we have an isomorphism of G-representations

(2.7) (c-IndGK V )⊗HG(V ),χ C ∼= IndGP

(
(c-IndMM∩K VN∩K)⊗HM (VN∩K),χM C

)
,

where χ := χM ◦ SGM .

The inducing representation on the right looks complicated, but it’s of exactly
the same form as the left-hand side, for M instead of G. Note that the iso-
morphism (2.7) is induced by the G- and HG(V )-equivariant map c-IndGK V →
IndGP (c-IndMM∩K VN∩K) (with HG(V ) acting via SGM on the right) coming from

Proposition 2.24 with σ = c-IndMM∩K VN∩K .
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Let us now show if π contains an M -regular Serre weight V , then π = IndGP σ.

Pick an HG(V )-eigenvector V ↪→ π|K ↪→ (IndGP σ)|K with eigenvalues χ. By Propo-
sition 2.24 it corresponds to anHM (VN∩K)-eigenvector VN∩K ↪→ σ with eigenvalues

χM , where χ = χM ◦SGM . The induced map (c-IndMM∩K VN∩K)⊗HM (VN∩K),χM C →
σ is surjective, as σ is irreducible. We obtain a commutative diagram, showing that
π = IndGP σ (the commutativity comes by construction):

(c-IndGK V )⊗HG(V ),χ C //

∼=Prop. 2.39

��

π �
� // IndGP σ

IndGP

(
(c-IndMM∩K VN∩K)⊗HM (VN∩K),χM C

)
33 33

Exercise 2.40. Suppose that n = 2. Note that a Serre weight is T -regular if and
only if it isn’t 1-dimensional. Show that all Serre weights that occur in a principal
series IndGB(θ1 ⊗ θ2) are T -regular, unless θ1|O×F = θ2|O×F . Thus Proposition 2.39

shows that IndGB(θ1 ⊗ θ2) is irreducible if θ1|O×F 6= θ2|O×F .

Exercise 2.41. Suppose that n = 2 and θ := θ1 ⊗ θ2. Here is a direct argument
showing that IndGB θ is irreducible if θ1|O×F 6= θ2|O×F . Suppose that V ↪→ (IndGB θ)|K
is any Serre weight, corresponding to a B ∩K-linear map η : V � θ by Frobenius

reciprocity. Let 0 6= v ∈ V U∩K and let f denote its image in IndGB θ, so f(bk) =
θ(b)η(kv) for b ∈ B, k ∈ K.

(i) Show that f(1) = η(v) ( 6= 0) and f(
(

0 1
1 0

)
) = 0, using Exercise 2.4. (For

the second part note that dimC V > 1 by Exercise 2.40!)
(ii) Deduce that the support of f is B(B ∩ K) = B(U ∩ K). (The Bruhat

decomposition says that K = (B ∩K)(B ∩K) t (B ∩K)
(

0 1
1 0

)
(B ∩K).)

(iii) Show that the restriction map gives an isomorphism of B-representations

(2.8)
{h ∈ IndGB θ : supp(h) ⊆ BU} → C∞c (F,C)

h 7→ h′ :=
(
a 7→ h(

(
1 0
a 1

)
)
)
,

where (bh′)(a) = θ(b)h′(α(b)a) ∀b ∈ B, a ∈ F and α(
(
x 0
z w

)
) := xw−1.

(iv) Suppose 0 6= π ⊆ IndGB θ is a G-subrepresentation. Using Exercise 2.26,
show that f ∈ π, which corresponds to 1OF ∈ C∞c (F,C). Use the B-action
(translating/scaling!) to show that π contains the left-hand side of (2.8).

(v) Use the G-action to show that π = IndGB θ.

A second ingredient is needed to deal with non-M -regular weights. For simplic-
ity let us specialize to n = 2. By Exercise 2.40, if V is a Serre weight that isn’t
T -regular, then dimC V = 1, and there exists a (unique) T -regular Serre weight V ′

such that V U∩K ∼= (V ′)U∩K . (In terms of Fact 2.5, V is parametrized by (ψV , G)
and V ′ by (ψV , T ).) Via the Satake isomorphism SG we obtain a natural identi-
fication HG(V ) ∼= HG(V ′). The following result can be obtained by constructing

explicit maps c-IndGK V � c-IndGK V
′ using the Satake formalism:

Proposition 2.42. With the above notation, for any χ : HG(V )→ C we have

(2.9) (c-IndGK V )⊗HG(V ),χ C ∼= (c-IndGK V
′)⊗HG(V ′),χ C

whenever χ(τ1)2 6= χ(τ2).



MOD-p REPRESENTATIONS OF p-ADIC GROUPS 21

We continue the argument before Exercise 2.40 (for n = 2, P = B). Suppose π
doesn’t contain a T -regular weight. Then π contains some V that isn’t T -regular,
with some Hecke eigenvalue χ. If χ satisfies the condition in Proposition 2.42, then
we can use isomorphism (2.9) to show that π contains the T -regular weight V ′ (with
Hecke eigenvalue χ), contradiction!

Exercise 2.43. Continue Exercise 2.40 to show IndGB(θ1⊗θ2) is irreducible if θ1 6= θ2.

(Note that if θ1 = θ2 =: θ, then IndGB(θ1 ⊗ θ2) is irreducible of length 2, having
irreducible subrepresentation θ ◦ det and irreducible quotient St⊗ (θ ◦ det).)

Exercise 2.44. Here is a direct argument showing that IndGB θ is irreducible if θ1 6=
θ2. By Exercise 2.41 we may suppose that θ1|O×F = θ2|O×F . By Exercise 2.26,

IndGB θ contains precisely two Serre weights V1 and V2 and precisely one of them

is 1-dimensional, say V1. If 0 6= π ⊆ IndGB θ is a G-subrepresentation, then π|K
contains V1 or V2, and if it contains V2 we get π = IndGB θ by Exercise 2.41. Suppose
V1 ⊆ π|K . Note that the action of K on V1 factors through the determinant.

(i) Show that following Exercise 2.41(i) we now get f(1) = f(
(

0 −1
1 0

)
) = η(v),

and that f ∈ π.
(ii) Using our assumptions on θ deduce that h :=

(
0 1
$ 0

)
f − θ1(−$)f is such

that supp(h) ⊆ BU and that h′ in (2.8) is a nonzero multiple of 1OF .

(iii) Deduce that π = IndGB θ as in Exercise 2.41.

Conversely, why is every irreducible admissible G-representation π of the form
listed in Theorem 2.34? Again pick a Hecke eigenvalue χ occurring in HomK(V, π)

for some Serre weight V . Then π is a quotient of (c-IndGK V ) ⊗HG(V ),χ C. If we
can find a standard parabolic P = MN , P 6= G such that Proposition 2.39 applies,
then we can write π as quotient of a parabolically induced representation IndGP σ
for some (perhaps huge) smooth M -representation σ. Using Emerton’s theory of
ordinary parts (a right adjoint of parabolic induction) we can deduce that π is a

quotient of IndGP σ
′ for some irreducible admissible M -representation σ′. Then we

are in good shape, since we can inductively suppose that σ′ is as in Theorem 2.34
and decompose IndGP σ

′ using Theorem 2.34 and Corollary 2.33.
If such a parabolic P does not exist, one can try to use Proposition (2.9) to

reduce to the previous case. If this approach gets stuck, one can show there are
only two possibilities: π is supersingular (and we are done) or π contains the trivial

Serre weight 1 with the same Hecke eigenvalue as the one occurring in IndGB 1 (up
to twist). In the final case, a separate approach is needed to show that π is 1-
dimensional.

2.8. The group GL2(Qp) and the mod p local Langlands correspondence.
Suppose that G := GL2(Qp). Breuil completed the classification of irreducible
admissible G-representations:

Theorem 2.45. Any irreducible admissible supersingular representation of GL2(Qp)
is of the form (c-IndGK V ) ⊗HG(V ),χ C for some Serre weight V and some algebra
homomorphism χ : HG(V ) → C such that χ(τ1) = 0. Precisely the following
non-trivial isomorphisms exist in this list:

(c-IndGK V )⊗HG(V ),χ C ∼= (c-IndGK V
′)⊗HG(V ′),χ′ C,

where V ∼= Symr(C2) ⊗ dets, V ′ ∼= Symp−1−r(C2) ⊗ detr+s, χ(τ1) = χ′(τ1) = 0,
χ(τ2) = χ′(τ2) for some 0 ≤ r ≤ p− 1, s ∈ Z.
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Let π := (c-IndGK V ) ⊗HG(V ),χ C as in Theorem 2.45. The second part of the
theorem follows from showing that socK π ∼= V ⊕V ′, where V ′ is as in the statement.
There are several known proofs, and I refer to [Her15, §10] for a relatively short
proof of Paškūnas.

Remark 2.46. Unfortunately such a simple classification is very far from true in
general! We will see this for GL2(F ), where F/Qp is a nontrivial unramified ex-
tension at the end of §3.2 (as well as in §3.4). In general it is still true that
any irreducible admissible supersingular representation is a quotient of a “univer-
sal supersingular quotient” (c-IndGK V ) ⊗HG(V ),χ C for some V and χ such that
χ(τ1) = · · · = χ(τn−1) = 0, but this quotient is nonadmissible if n = 2 and F/Qp
is a nontrivial unramified extension (Breuil). One of the projects will study this
quotient in case n = 3 and F = Qp.

Remark 2.47. We can write more concretely,

(c-IndGK V )⊗HG(V ),χ C ∼=
c-IndGK V

(T1, T2 − χ(τ2))(c-IndGK V )

if χ(τ1) = 0. As T2 =
( p

p

)−1
on c-IndGK V , it follows that this representation has

central character with p ∈ Z acting as χ(τ2)−1 and a ∈ Z×p acting via the central
character of V .

Breuil observed that the classification in Theorem 2.45 uses the same data as
the classification of irreducible continuous 2-dimensional Galois representations
Gal(Qp/Qp)→ GL2(C). Recall first that any continuous character Gal(Qp/Qp)→
C× is uniquely of the form ωs nr(α), where ω is the mod-p cyclotomic character,
s ∈ Z/(p−1)Z, and nr(α) is the unramified character sending an arithmetic Frobe-
nius element to α ∈ C×. Then if ρ : Gal(Qp/Qp) → GL2(C), either ρ is reducible

and ρ ∼=
(
θ1 ∗
θ2

)
, or ρ is irreducible and ρ|Ip ∼= ωi2 ⊕ ω

pi
2 for some i ∈ Z/(p2 − 1)Z

such that p + 1 - i. Here, Ip is the inertia subgroup and ω2 : Ip → C× is Serre’s

tame level 2 character, cf. §4.6, satisfying ωp+1
2 = ω|Ip . For p+ 1 - i let ρ(i) denote

the unique irreducible ρ such that ρ|Ip ∼= ωi2 ⊕ ω
pi
2 and det ρ = ωi.

This led Breuil to propose a mod-p Langlands correspondence between 2-dimensional
Galois representations Gal(Qp/Qp) → GL2(C) and certain admissible representa-
tions of G:

representations of G Galois representations

c-IndGK(Symr(C2)⊗ dets)

T1, T2 − α
←→ ρ(r + 1)⊗ ωs nr(α)

IndGB(θ1 ⊗ θ2ω
−1)⊕ IndGB(θ1 ⊗ θ2ω

−1) ←→6
(
θ1
θ2

)
where 0 ≤ r ≤ p− 1 and the characters θi : Q×p → C× are considered as characters

of Gal(Qp/Qp) via local class field theory (and vice versa for ω).

Remark 2.48. Note that ρ(r+ 1) ∼= ρ(p− r)⊗ ωr, consistently with Theorem 2.45.
Likewise note that in the second line on the right we cannot distinguish the order
of θ1, θ2, so it is not possible to match the Galois representation

(
θ1
θ2

)
with a

single principal series (by the uniqueness part of Theorem 2.34 or Theorem 2.37).

6At least if the two principal series on the left are irreducible, i.e. if θ1θ
−1
2 6= ω±1.



MOD-p REPRESENTATIONS OF p-ADIC GROUPS 23

This was at the beginning of much work by Breuil, Colmez, Kisin, Emerton,
Paškūnas, . . . culminating in the p-adic Langlands correspondence for GL2(Qp).
See [Bre10] and [Ber11] for an introduction as well as further references.

Unfortunately there are at least two major problems for GL2(F ), F 6= Qp: (i)
there are far more irreducible admissible supersingular representations of GL2(F )
than irreducible 2-dimensional representations of Gal(F/F ) (see §3) and (ii) the
irreducible admissible supersingular representations of GL2(F ) are not of finite
presentation, as shown by Schraen and Wu. Therefore, there seems to be no simple
way to construct a local mod-p Langlands correspondence for GL2(F ) when F 6=
Qp. Local-global compatibility may provide one path forward (see §4.7 and §4.11).
Another way to generalize the mod-p Langlands correspondence is the proposed
categorical p-adic Langlands program of Emerton–Gee–Hellmann [EGH].
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3. GL2(F )

In this section we will discuss the construction of many supersingular representa-
tions of G := GL2(F ). First, Paškūnas found a general construction using diagrams
that is explained in §3.1 and illustrated in Example 3.33. Then, Breuil–Paškūnas
defined a special class of diagrams that is consistent with global expectations (see
§3.4 and also §4). In §3.5 we explain a recent construction of nonadmissible irre-
ducible representation, first discovered by Daniel Le.

Throughout, we will assume that p > 2. Recall that I =
( O×F OF
$OF O×F

)
and I1 =(

1+$OF OF
$OF 1+$OF

)
. Note that I/I1 ∼= k×F × k

×
F is finite abelian of order prime to p.

Let Z := {
(
x 0
0 x

)
: x ∈ F×} denote the center of G. If H is a group, V a finite length

representation of H and τ an irreducible representation of H, we write [V : τ ] for
the number of times τ occurs as Jordan–Hölder factor of V .

3.1. Diagrams. The construction is based on the following fact, going back to
work of Ihara and Serre. Note that G acts on the Bruhat–Tits tree T , which is
an unoriented graph whose vertices consist of all homothety classes [L] of OF -
lattices L ⊆ F 2 (homothety is the equivalence relation by scaling by F×).7 The
edges consist of all pairs ([L], [L′]) such that L′ ( L is a maximal inclusion, i.e.
L/L′ ∼= kF . Note that g ∈ G acts on F 2 (column vectors) and hence on T , sending
[L] to [g(L)] and likewise for edges. It is not so hard to see that T is indeed a tree
[Bre07, Lemma 3.1], and that each vertex has degree |P1(kF )| = q + 1. Note also
that the center Z acts trivially on T .

Let x0 := [OF⊕OF ], x1 := [OF⊕$OF ], which are adjacent vertices, and let e :=

(x0, x1), an edge of T . Then StabG(x0) = KZ and StabG(x1) =
(

1 0
0 $

)
KZ

(
1 0
0 $

)−1
.

We see that G acts transitively on vertices (as each lattice is finite free of rank 2) and
on edges (as StabG(x0) is transitive on edges with vertex x0). Let N := StabG(e)
and note that IZ = StabG(x0) ∩ StabG(x1). Note that (N : IZ) = 2, since
Π :=

(
0 1
$ 0

)
exchanges x0 and x1.8

Proposition 3.1. We have a group isomorphism G ∼= KZ ∗IZN . Here, KZ ∗IZN
denotes an amalgam (i.e. pushout) in the category of groups, satisfying the universal
property for all pairs of morphisms KZ → Γ, N → Γ that agree on IZ = KZ∩N ).

Proof. Let T ′ denote the tree obtained by barycentric subdivision of T , i.e. vertices
are all vertices and all midpoints of edges of T . Each edge of T is thus subdivided
into two pieces. By above, G acts transitively on edges of T ′ and there are two
orbits of vertices: vertices of T and midpoints. If m denotes the midpoint of e
and e′ the edge (x0,m), then StabG(x0) = KZ, StabG(m) = StabG(e) = N , and
StabG(e′) = StabG(x0) ∩ StabG(x1) = IZ. By the universal property we get a
homomorphism StabG(x0) ∗StabG(e′) StabG(m) → G, which is an isomorphism by

the same argument as in [Bre07, Thm. 3.3].9 �

7Seen as a simplicial complex, this is the reduced Bruhat–Tits building of G; cf. Jessica’s

lectures.
8In fact, N is the normalizer of I (and of IZ), but we won’t need this.
9The general statement is: if a group G acts on a tree X such that the action is transitive on

edges, but not on vertices, then G ∼= StabG(x) ∗StabG(e) StabG(y), where e = (x, y) is any choice

of edge, and it is proved in the same way.



MOD-p REPRESENTATIONS OF p-ADIC GROUPS 25

To construct a representation of G is thus equivalent to constructing actions of
KZ and N on the same vector space that moreover agree on IZ. The main tool to
carry this out will be:

Definition 3.2. A diagram is a triple (D0, D1, r) such that

• D0 is a smooth representation of KZ;
• D1 is a smooth representation of N ;
• r : D1 → D0 is an injective IZ-equivariant map;
• D0 is admissible and $ ∈ Z acts trivially on D0.10

A map of diagrams (D0, D1, r) → (D′0, D
′
1, r
′) consists of a KZ-equivariant map

ϕ0 : D0 → D′0 and an N -equivariant map ϕ1 : D1 → D′1 such that r′ ◦ ϕ1 = ϕ0 ◦ r.
Example 3.3. The easiest examples of a diagram are (π|KZ , π|N , incl) and its sub-
diagram (πK1 , πI1 , incl), where π is an admissible smooth G-representation with $
acting trivially and incl denotes the inclusion.

Theorem 3.4. For any diagram (D0, D1, r) there exists an admissible smooth G-
representation π together with an injection of diagrams (D0, D1, r) ↪→ (π|KZ , π|N , incl)
such that moreover (i) π is generated by D0 as G-representation and (ii) socK π =
socK D0.

To prove this, we first need injective envelopes. If τ and J are smooth represen-
tations of a profinite group H we say that an injection j : τ ↪→ J is an injective
envelope if J is injective (i.e. the functor HomH(−, J) is exact) and j is essential
in the sense that any subrepresentation V 6= 0 of J satisfies V ∩ τ 6= 0.

Injective envelopes always exist (the notes [Bre07, §5.2] prove this in important
special cases), and they are unique up to isomorphism (good exercise!) but not
unique up to unique isomorphism! We write τ ↪→ injH τ for the choice of an
injective envelope.

Example 3.5. When H is finite of order prime to p, the category of smooth H-
representations is semisimple (Maschke). Hence any τ is injective and any essential
injection is an isomorphism, so τ is its own injective envelope. On the other hand,
if H is a pro-p group, then 1H ↪→ C∞(H,C) = IndH1 C is an injective envelope
(where 1H is the subspace of constant functions), because any subrepresentation V
contains a nonzero H-invariant element by Lemma 1.6 and C∞(H,C)H = 1H .

Exercise 3.6. The following are nice exercises and will be used in the arguments
below.

(∗1) (injH τ)|H′ is injective if H ′ ≤ H open;
(∗2) (injH τ)N ∼= injH/N (τN ) for N CH a closed normal subgroup;11

(∗3) injH τ
∼= injH(socH τ) and socH(τ) = socH(injH τ);

(∗4) injH(τ1 ⊕ τ2) ∼= injH τ1 ⊕ injH τ2;12

(∗5) injH τ is admissible if τ is finite-dimensional;13

10This last condition and the injectivity of r are not usually part of the definition, but they
are convenient for us.

11Note that HomH/N (−, (injH τ)N ) ∼= HomH(−, injH τ) on H/N -representations. Inciden-

tally, we implicitly assume that the isomorphism (∗2) is compatible with the maps from τN to

these representations. Similarly in (∗3) and (∗4).
12To show τ1 ⊕ τ2 ↪→ injH τ1 ⊕ injH τ2 is essential, it suffices to show that X ⊕ Y ↪→ X ⊕Z is

essential whenever Y ↪→ Z is essential, and that a composition of essential maps is essential.
13Use (∗2) to reduce to the case where H is finite (discrete), then notice that C[H] ∼= IndH1 (C)

is injective.



26 FLORIAN HERZIG

(∗6) if τ is irreducible and V any finite-dimensional smooth representation of
H, then dimC HomH(V, injH τ) = [V : τ ].

Lemma 3.7. Suppose that H is a profinite group with open normal subgroup M1

such that M1 is pro-p and H/M1 is prime-to-p. Then for any subgroup M1 ≤M ≤
H we have (injH τ)|M ∼= injM τ .

Proof. As (injH τ)|M is injective by (∗1), it suffices to check that τ ↪→ (injH τ)|M
is essential. Suppose that V ⊆ (injH τ)|M is such that τ ∩ V = 0. Then τ ⊕ V ↪→
(injH τ)|M , so τM1 ⊕ VM1 ↪→ (injH τ)M1 ∼= injH/M1

(τM1) by (∗2). As H/M1 is

prime-to-p, we have injH/M1
(τM1) = τM1 . It follows that VM1 = 0, so V = 0 by

Lemma 1.6. �

Let G := G/$Z and for any subgroup H ≤ G let H := H/(H ∩$Z) ≤ G denote
its image in G.14 Note that H = H if H is compact, so e.g. I = I.

An important observation is that N = I o 〈Π〉 (as IZ = I and Π has order 2
in G). For a smooth character χ : I → C× we let χs := χ(Π(·)Π−1) denote its
conjugate by Π, so χss = χ.

Lemma 3.8. Let V be a finite-dimensional smooth representation of I/I1. Then

V ∼= Ṽ |I for some smooth N -representation Ṽ if and only if dimC HomI(χ, V ) =
dimC HomI(χ

s, V ) for all smooth characters χ : I → C×.

Proof. It is easy to check “⇒”, so let us check “⇐”. Note that V is semisimple,
so it suffices to check that χ ⊕ χs can be extended to N , and that χ itself can be

extended to N if χ = χs. In the first case note that (IndNI χ)|I ∼= χ ⊕ χs. In the
second case, as N is a semidirect product and χ = χs we check by hand that there
is a unique homomorphism χ̃ : N → C× that extends χ and that sends Π to 1 (or
−1) in C×. �

Lemma 3.9. Suppose that V is any finite-dimensional smooth representation of K.
Then for any smooth character χ : I → C× we have dimC HomI(χ, (injK V )I1) =
dimC HomI(χ

s, (injK V )I1).

Proof. By (∗3) we may replace V by socK V , so assume that V is semisimple.
By (∗4) we may furthermore assume that V is irreducible. By Frobenius reciprocity

and (∗6), dimC HomI(χ, (injK V )I1) = dimC HomI(χ, injK V ) = dimC HomK(IndKI χ, injK V ) =

[IndKI χ : V ]. We conclude as IndKI χ and IndKI χ
s have the same semisimplifica-

tion.15 �

Proposition 3.10. Suppose (D0, D1, r) is a diagram. Then injK D0 can be equipped
with an action of N extending the given action of I such that moreover the compo-
sition D1 ↪→ D0 ↪→ injK D0 is N -equivariant.

Proof. The K-representation injK D0 = injK(socK D0) (by (∗3)) is admissible by
(∗5) and Exercise 2.8, as D0 is admissible. In particular, (injK D0)I1 is finite-

dimensional. On the other hand, D1 ↪→ D0 ↪→ injK D0, so DI1
1 ↪→ (injK D0)I1 . As

14If the group G/Z seems friendlier, you can put G = G/Z and restrict attention to represen-
tations on which Z acts trivially.

15This follows from the corresponding claim for a character χ over a field of characteristic zero
(cf. the scalar product formula in Charlotte’s lectures or [Pra07, Thm. 2.8]) followed by reduction

mod p (cf. §3.3).
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I/I1 is prime-to-p, the I/I1-representation (injK D0)I1 is semisimple (Maschke!),
so we can write

(3.1) (injK D0)I1 = DI1
1 ⊕ E

for some I/I1-subrepresentation E. Note that D1 ∩ E = 0.
By assumption, the action of I on D1 extends to a smooth representation of N ,

hence the same is true for DI1
1 , as I1 is normal in N . We now check that the same

is true for E. By Lemma 3.9 and Lemma 3.8 we know for all χ : I → C×:

dimC HomI(χ, (injK D0)I1) = dimC HomI(χ
s, (injK D0)I1),

dimC HomI(χ,D
I1
1 ) = dimC HomI(χ

s, DI1
1 ).

By subtraction,

dimC HomI(χ,E) = dimC HomI(χ
s, E),

so E extends to an N -representation by Lemma 3.8.
Observe that (injK D0)|I is an injective envelope of D1 ⊕ E: (injK D0)|I is in-

jective by (∗1) and D1 ⊕ E ↪→ (injK D0)|I is essential, since D1 ⊕ E contains

DI1
1 ⊕ E = (injK D0)I1 (cf. Lemma 1.6). Thus, applying injI to (3.1) we deduce

(injK D0)|I ∼= injI(D1 ⊕ E) ∼= (injN (D1 ⊕ E))|I ,

where the second isomorphism comes from Lemma 3.7 (using M1 = I1, M = I,
H = N and that p > 2!). Thus the N -action on injN (D1⊕E) provides the desired

N -action on injK D0, which agrees with the I-action on injK D0 and the N -action
on D1 by construction. �

Proof of Theorem 3.4. We let π′ := injK D0, equipped with compatible actions
of K and N by Proposition 3.10, i.e. compatible actions of KZ = K$Z and N
such that $ acts trivially. By Proposition 3.1, π′ is a G-representation, and by
construction, D0 ↪→ injK D0 = π′|K is K-equivariant and the composition D1 ↪→
D0 ↪→ π′ is N -equivariant. The action of G on π′ is automatically smooth, since
the K-action on π′ is smooth and K ≤ G is open.

Let π := 〈G ·D0〉 ⊆ π′ be the G-subrepresentation generated by D0 ⊆ π′. Then
socK D0 ⊆ socK π ⊆ socK π

′ = socK D0 (see (∗3)). Hence socK π = socK D0, and
as D0 is admissible, the admissibility of π follows from Exercise 2.8. �

Corollary 3.11. Suppose that (D0, D1, r) is an irreducible diagram, i.e. does not
contain any nonzero proper subdiagram. Then any admissible smooth G-representation
π satisfying the properties in Theorem 3.4 is irreducible.

Proof. Suppose that σ ⊆ π is a nonzero G-subrepresentation. Then 0 6= socK σ ⊆
socK π = socK D0, hence σ∩D0 6= 0, so (σ∩D0, σ∩D1, r) is a nonzero subdiagram
of (D0, D1, r). By the irreducibility assumption, D0 ⊆ σ, so π = 〈G ·D0〉 ⊆ σ and
hence σ = π. �

Here is a converse result. We say that a smooth G-representation π arises from
the diagram (D0, D1, r) if π is one of the representations produced in the proof
of Theorem 3.4, i.e. there exists an action of N on injK D0 extending the given
action of I such that the composition D1 ↪→ D0 ↪→ injK D0 is N -equivariant and
π = 〈G ·D0〉 ⊆ injK D0 and socK π = socK D0.
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Corollary 3.12. Suppose that (D0, D1, r) is a diagram and π is any (admissible)
smooth G-representation such that (D0, D1, r) ↪→ (π|KZ , π|N , incl), π = 〈G · D0〉,
and socK π = socK D0. Then π arises from the diagram (D0, D1, r).

Proof. Let (D̃0, D̃1, incl) denote the diagram (π|KZ , π|N , incl). Applying the proof

of Theorem 3.4 to the diagram (D̃0, D̃1, incl), we obtain an action of N on injK D̃0

extending the given action of I such that the composition D̃1 ↪→ D̃0 ↪→ injK D̃0

is N -equivariant. We have inclusions of diagrams (D0, D1, r) ↪→ (D̃0, D̃1, incl) ↪→
(injK D̃0, injK D̃0|N , incl). It remains to observe that injK D̃0 = injK D0 by (∗3),

as socK D̃0 = socK D0, and that 〈G ·D0〉 = D̃0 ⊆ injK D̃0. �

3.2. Injective envelopes of Serre weights and the extension graph. Let
Γ := K/K1

∼= GL2(Fq).
For the work of Breuil–Paškūnas, it is important to understand the finite-dimensional

representation injΓ σ for any Serre weight σ. In fact, only the following subrepre-
sentation is needed:

Lemma 3.13. There is a largest subrepresentation Vσ of injΓ σ such that [Vσ : σ] =
1.

Proof. Note that any nonzero subrepresentation contains socΓ(injΓ σ) = σ. It suf-
fices to show that if V1, V2 are nonzero subrepresentations with [Vi : σ] = 1, then
[V1 + V2 : σ] = 1. This follows by counting multiplicities of σ in the short exact
sequence 0→ V1 ∩ V2 → V1 ⊕ V2 → V1 + V2 → 0. �

Exercise 3.14. Show that JH(Vσ) = JH(injΓ σ). (Hint: show by induction on [V : σ]
that any subrepresentation V of injΓ σ admits a filtration 0 = V0 ⊆ V1 ⊆ · · · ⊆ Vr =
V such that each graded piece Vi/Vi−1 injects into Vσ. This argument works for
any finite group Γ.)

It is possible to explicitly describe Vσ as follows (this is much harder!). Recall
from Example 2.2 that (r0, . . . , rf−1) denotes the Serre weight F (r, 0). Recall from
§A.4 that V (λ) denotes a Weyl module and [i] the i-th Frobenius twist.

Proposition 3.15 ([BP12, §3]). Suppose σ = (r0, . . . , rf−1) /∈ {(0, . . . , 0), (p −
1, . . . , p− 1)}. Then

Vσ ∼=
(
V (2p− 2− r0, 0)⊗ · · · ⊗ V (2p− 2− rf−1, 0)[f−1]

)
|Γ ⊗ det

∑
j rjp

j

.

Remark 3.16.

(i) If σ = (p− 1, . . . , p− 1), then in fact σ = Vσ = injΓ σ (of dimension q). If
σ = (0, . . . , 0), then Vσ is a direct summand of the above representation.

(ii) As we can see, Vσ is the restriction of an algebraic representation of GL2.
In fact, the same is true for injΓ σ under the conditions of the proposition.

It is not hard to then work out the irreducible constituents of Vσ in case 1 ≤ rj ≤
p−3 for all j. For this, use the following facts about algebraic group representations
(all of which can be proven by hand; see §A.4 for the notation):

(i) 0 → L(p − 1, p − 1 − r) → V (2p − 2 − r, 0) → L(2p − 2 − r, 0) → 0 if
0 ≤ r ≤ p− 2;

(ii) L(2p− 2− r, 0) ∼= L(p− 2− r, 0)⊗L(1, 0)[1] if 0 ≤ r ≤ p− 2, cf. Fact A.16;
(iii) L(a, 0)⊗ L(1, 0) ∼= L(a+ 1, 0)⊕ L(a, 1) if 1 ≤ a ≤ p− 2.
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In particular, one deduces:

Proposition 3.17 ([BP12, §4]). Suppose σ = (r0, . . . , rf−1) with 1 ≤ rj ≤ p − 3
for all j. Then Vσ is multiplicity free and of length 3f .

Example 3.18. If f = 1, then Vσ has 3 constituents σ = (r0), (p− 1− r0)⊗ detr0 ,
(p− 3− r0)⊗ detr0+1.

If f = 2, then Vσ has 32 constituents σ = (r0, r1), (p − 2 − r0, r1 ± 1), (r1 ±
1, p− 2− r0), (p− 2− r0± 1, p− 2− r1± 1), where we have systematically omitted
determinant twists.16

The general formulas are combinatorially complicated [BP12, §4], but the struc-
ture of Vσ is easy to visually using the “extension graph”, as we now explain. First
one uses Proposition 3.15 (and a bit more if r = 0 or p− 1) to determine Ext1

Γ(σ, τ)
for all Serre weights σ, τ . (Note that if a nonsplit Γ-extension 0→ σ → E → τ → 0
exists with σ 6∼= τ , then E embeds into injΓ σ and hence into Vσ. Some extra work
is needed to rule out the case σ ∼= τ .)

Proposition 3.19 ([BP12, Cor. 5.6]). Suppose σ = (r0, . . . , rf−1) and τ are Serre

weights. Then Ext1
Γ(τ, σ) 6= 0 if and only if there exists 0 ≤ i ≤ f − 1 such that

τ ∼= (r0, . . . , ri−2, p− 2− ri−1, ri ± 1, . . . , rf−1)⊗ detp
i−1(ri−1+1)−pi( 1±1

2 ).17 In this

case, dimC Ext1
Γ(τ, σ) = 1. We say that the nonsplit extension is of type (i,±).

Remark 3.20. The statement dimC Ext1
Γ(τ, σ) = 1 is equivalent to saying that there

exists a unique Γ-representation E up to isomorphism that is a nonsplit extension
of the form 0→ σ → E → τ → 0.

Remark 3.21. Note that a nonsplit extension 0→ σ → E → τ → 0 is of type (i,+)
iff the dual nonsplit extension 0→ τ∨ → E∨ → σ∨ → 0 is of type (i,−).

Exercise 3.22. If 0→ σ → E → τ → 0 is a nonsplit extension, show that ωσ = ωτ
(equality of central characters). On the other hand, show that σ∨ ∼= σ⊗(ω−1

σ ◦det).
Deduce that the we get a nonsplit extension 0 → τ → E∨ ⊗ (ωσ ◦ det) → σ → 0,
which explains why there is symmetry between σ and τ in Proposition 3.19.

Remark 3.23. From Proposition 3.19 it follows that if σ = (p− 1, . . . , p− 1) up to
twist, then σ is injective and projective as Γ-representation.

Following [LMS22, §2], we define the extension graph to be the graph with ver-
tices all Serre weights and edges all pairs (σ, τ) such that Ext1

Γ(τ, σ)(∼= Ext1
Γ(σ, τ))

is nonzero. By Proposition 3.19 the extension graph near a generic σ (say 0 < rj <
p − 1 for all j) locally looks like Zf .18 Let us draw a picture for f = 2, omitting
det twists:

16Here is how to recover the twists: all these constituents necessarily have the same central
character as σ, and each Serre weight has precisely two twists that have a given central character,

as p > 2. We take the twist that does not contain any p−1
2

. For example, the Serre weight

(p− 3− r0, p− 1− r1) on this list should be (p− 3− r0, p− 1− r1)⊗ det(r0+1)+pr1 , noting that
σ has central character (−)r0+pr1 .

17The indices are taken mod f , so e.g. −1 = f − 1. If f = 1, the formula simplifies to

(p− 2− r0 ± 1)⊗ detr0+ 1∓1
2 .

18One can give an explicit formula as follows, ignoring determinant twists: fix any Serre

weight (r0, . . . , rf−1) to be the origin and then send (a0, . . . , af−1) ∈ Zf to the Serre weight

(s0, . . . , sf−1), where sj = rj + aj if aj+1 is even, sj = p− 2− (rj + aj) otherwise. Of course it

is only defined on the subset of Zf such that the image lands in the range [0, p− 1]f .
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...
...

...
...

. . . (p− 1− r0, p− 3− r1) (p− 2− r0, r1 + 1) (p− 3− r0, p− 3− r1) (p− 4− r0, r1 + 1) . . .

. . . (r0 − 1, p− 2− r1) (r0, r1) (r0 + 1, p− 2− r1) (r0 + 2, r1) . . .

. . . (p− 1− r0, p− 1− r1) (p− 2− r0, r1 − 1) (p− 3− r0, p− 1− r1) (p− 4− r0, r1 − 1) . . .

. . . (r0 − 1, p− r1) (r0, r1 − 2) (r0 + 1, p− r1) (r0 + 2, r1 − 2) . . .

...
...

...
...

Exercise 3.24. Suppose f = 2. Draw all connected components of the extension
graph for p = 3 and p = 5. (Up to twist you should only find 3 components: the
components of the Serre weights (0, 0), (0, 1), and (p−1, p−1). In general, the com-
ponents are indexed by central characters, at least once the trivial components are

removed.) You may need to put in the determinant twists, as σ 7→ σ ⊗ det(pf−1)/2

induces a fixed-point free automorphism of order 2 of the extension graph.

Note that an edge i is parallel to the i-th coordinate axis iff it corresponds to an
extension of type (i,±) in Proposition 3.19.

Using Proposition 3.15, it is not hard to see that the constituents of Vσ (if
0 < rj < p− 1 for all j) are then given by all vertices in the extension graph that
differ from σ by at most 1 in each coordinate direction, indicated in red above.

More precisely, as Vσ is multiplicity free, with some more work it is possible to
determine its submodule structure. Recall from §A.3 that the submodule structure
of a multiplicity-free representation is given by a partial order on the set JH(Vσ) of
its irreducible constituents.

Proposition 3.25 ([BP12, Thm. 4.7]). The partial order on JH(Vσ) is given as
follows: τ ≤ τ ′ in JH(Vσ) if and only if there is a shortest path from τ ′ to σ in the
extension graph that passes through τ .

Recall that we visualize the partial order by arrows pointing in a descending
direction. For f = 2, the partial order of Vσ is given as follows:

(3.2)

(p− 1− r0, p− 3− r1) //

��

(p− 2− r0, r1 + 1)

��

(p− 3− r0, p− 3− r1)oo

��
(r0 − 1, p− 2− r1) // (r0, r1) (r0 + 1, p− 2− r1)oo

(p− 1− r0, p− 1− r1) //

OO

(p− 2− r0, r1 − 1)

OO

(p− 3− r0, p− 1− r1)oo

OO

Let us now show that Proposition 3.25 is quite powerful.
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Example 3.26. From (3.2) it follows for example that the unique subrepresentation
of Vσ with cosocle (p− 1− r0, p− 3− r1) is given by:

(p− 1− r0, p− 3− r1)

**tt
(r0 − 1, p− 2− r1)

**

(p− 2− r0, r1 + 1)

tt
(r0, r1)

Equivalently, by Proposition 3.13, it is the unique Γ-representation V with socle σ,
cosocle (p − 1 − r0, p − 3 − r1) and [V : σ] = 1. (First embed V into injΓ σ, using
injectivity, then notice it is contained in Vσ as [V : σ] = 1.)

Example 3.27. We determine the submodule structure of a principal series P :=
IndKI χ

s, which is a Γ-representation. Let’s say χ = σI1 , where σ = (r0, r1) and
assume that 1 ≤ rj ≤ p − 2 for all j. Then by Frobenius reciprocity we see that

socΓ P ∼= σ and cosocΓ P ∼= σ[s], where σ[s] := (p− 1− r0, p− 1− r1). In particular,
P injects into injΓ σ. If [P : σ] = 1, then P injects into Vσ and hence by (3.2)
above, P has submodule structure given by:

(p− 1− r0, p− 1− r1)

**tt
(r0 − 1, p− 2− r1)

**

(p− 2− r0, r1 − 1)

tt
(r0, r1)

Now let’s show that in fact [P : σ] = 1! If not, then P/σ has a quotient with socle
σ (take the image of any nonzero map P/σ → injΓ σ, using (∗6)), so by induction
P has a quotient P ′ with socle σ and [P ′ : σ] = 1. As P � P ′ we also have
cosocΓ P � cosocΓ P

′, so cosocΓ P
′ ∼= σ[s]. By the previous argument we know P ′

and in particular can compute dimC P
′ = (p − r0)(p − r1) + r0(p − 1 − r1) + (p −

1− r0)r1 + (r0 + 1)(r1 + 1) = p2 + 1, which equals dimC P = (K : I), so P ′ = P !

Remark 3.28. To make this more memorable, starting from the Γ-socle σ = (r0, r1)
we know that the cosocle is σ[s] = (p−1−r0, p−1−r1). Now the two intermediate
constituents are the only Serre weights that admit nonsplit extensions with σ and
σ[s], by Proposition 3.19. Alternatively, up to forgetting about directions of the
arrows, it is the unique square in the extension graph that has σ and σ[s] as vertices.

Remark 3.29. Note also that σI1 and (σ[s])I1 are interchanged by Π =
(

0 1
p 0

)
: as

in Exercise 2.4, σI1 = σU∩K is spanned by Xr0+pr1 , so given by the character
(−)r0+pr1 ⊗1. Similarly, (σ[s])I1 = 1⊗ (−)r0+pr1 , remembering that more precisely,
σ[s] = (p−1−r0, p−1−r1)⊗detr0+pr1 . In the extension graph picture we indicate
the action of Π =

(
0 1
p 0

)
on I1-invariants of Serre weights by diagonal arrows (see

the next few figures).

Exercise 3.30. Describe the submodule structure of a principal series IndKI χ
s in

the remaining cases for f = 2. In particular, show that any principal series always
multiplicity free of length 2 or 3 or 4. (The multiplicity freeness is in fact true for
all f .)

Example 3.31. Let us determine the I-representation V I1σ when f = 2 and 1 ≤
rj ≤ p − 2 for all j. This is an I/I1-representation, an abelian group of order
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prime to p, so a direct sum of 1-dimensional representations. As (−)I1 is a left
exact functor and χτ = τ I1 is 1-dimensional for each Serre weight τ we see that
V I1σ has dimension at most 9, and it suffices to determine for each constituent τ
of Vσ whether χτ contributes to V I1σ . Now χτ ↪→ V I1σ if and only if there exists

a nonzero K-equivariant map IndKI χτ → Vσ by Frobenius reciprocity. Keeping in
mind Remark 3.28 we just need to locate the square bounded by τ and τ [s] in the
extension graph; if this square does not contain σ as a vertex, then χτ does not
contribute to V I1σ (if the image of IndKI χτ → Vσ is nonzero, it has socle σ). In fact,

otherwise it will: in this case, σ occurs in IndKI χτ , so IndKI χτ has a unique quotient
with socle σ (and cosocle τ), which is multiplicity free so embeds into Vσ, hence

we get a nonzero map IndKI χτ → Vσ. Concretely, the extension graph picture is
as follows, where diagonal arrows denote the action of Π =

(
0 1
p 0

)
on I1-invariants,

red vertices denote the constituents of Vσ, and the 4 red circles denote those τ such
that χτ contributes to V I1σ :

• __

��

• ◦ __

��

• •

• • ◦??

��

◦ •??

��
• ◦ • • •

Exercise 3.32. Deduce from Example 3.31 that a nonsplit extension 0→ σ → E →
τ → 0 of Γ-representations satisfies

EI1 ∼=

{
χσ ⊕ χτ if E is of type (j,+) for some j;

χσ if E is of type (j,−) for some j.

We can now construct some interesting families of irreducible supersingular rep-
resentations!

Example 3.33 ([Bre07, Ex. 5.8]). Suppose that f = 2. Let σ1 = (r0, r1), σ2 =
(r0 − 1, p− 2− r1), σ3 = (p− 1− r0, p− 3− r1), σ4 = (p− 2− r0, r1 + 1) (ignoring
twists), where 1 ≤ r0 ≤ p − 2, 0 ≤ r1 ≤ p − 3. In the extension graph the picture
is as follows:

• • σ
[s]
3>>

~~

•

σ
[s]
2 ``

  

σ3 σ4 ``

  

•

• σ2 σ1>>

~~

σ
[s]
4

• σ
[s]
1 • •

Let D0 := E14⊕E21⊕E32⊕E43, where Ei,i−1 denotes the unique Γ-representation

(up to isomorphism) that is a nonsplit extension 0 → σi → Ei,i−1 → σ
[s]
i−1 → 0
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(with indices taken modulo 4). We make D0 into a KZ-representation by letting

p ∈ Z act trivially. By Exercise 3.32, D1 := DI1
0 is isomorphic to

⊕4
i=1(χi ⊕ χsi ),

where χi := χσi for short. Let vi (resp. vsi ) be a C-basis of the χi- (resp. χsi -)
eigenspace in D1. We extend the IZ-action on D1 into an N -action by declaring
that Π(vi) = vsi for 1 ≤ i ≤ 3 and Πv4 = λvs4 for some λ ∈ C× (which determines
the Π-action as Π2 = 1 on D1), and denote this N -representation by Dλ

1 .

Exercise 3.34. Show that the diagram D(λ) := (D0, D
λ
1 , incl) in Example 3.33 is

irreducible for any λ ∈ C×. Show that D(λ) ∼= D(µ) are isomorphic diagrams if
and only if λ = µ. (Hint: without loss of generality, the isomorphism takes v1 to
v1, hence vs1 to vs1. Use that 〈Γ · vs1〉 = E21 contains v2 to show that it takes v2 to
v2, . . . )

Continuing Example 3.33 we can now construct an infinite family of irreducible
admissible supersingular G-representations that have the same K-socle. Let π(λ)
be any irreducible admissible G-representation obtained from Corollary 3.11 applied
to the irreducible diagram D(λ) (λ ∈ C×). In particular, socK π(λ) = socK D0 has

length 4, so π(λ) is supersingular by Corollary 2.38. Suppose that θ : π(λ)
∼−→ π(µ)

is any G-isomorphism. Then θ takes socK D0 = socK π(λ) to socK D0 = socK π(µ).
As D0 = 〈K · Π(socK D0)I1〉 we deduce θ(D0) = D0 and hence θ(Dλ

1 ) = Dµ
1 .

In other words, there is a diagram isomorphism D(λ) ∼= D(µ), hence λ = µ by
Exercise 3.34.

3.3. An aside on reduction modulo p. The extension graph is also very useful
for visualizing the reduction modulo p of irreducible Γ-representations over a (large
enough) field L of characteristic 0. Recall from Charlotte’s lectures that the irre-
ducible Γ-representations over L come in four kinds, arising from two families of
Deligne–Lusztig representations, where BΓ :=

( ∗ ∗
0 ∗
)
≤ Γ:

(i) irreducible principal series representations IndΓ
BΓ

(χ1 ⊗ χ2) ∼= IndΓ
BΓ

(χ2 ⊗
χ1) (of dimension q + 1), where χ1 6= χ2;

(ii) cuspidal representations (of dimension q − 1);
(iii) 1-dimensional representations χ ◦ det;
(iv) Steinberg representations (of dimension q).

Let L denote the fraction field of a discrete valuation ring OL with residue
field C, for example OL = W (C) (Witt vectors of C). If V is any irreducible Γ-
representation over L, its reduction modulo p (cf. §A.2) is a Γ-representation over
C, well-defined up to semisimplification.

In case (i), the reduction is IndΓ
BΓ

(χ1 ⊗ χ2), up to semisimplification, where

χi : Γ → C× is the reduction of χi : Γ → O×L . We already know that in this case
the Jordan–Hölder factors are given by those squares in the extension graph that are
decorated with a diagonal arrow (Example 3.30 and the following remarks there).
The new fact is that the reduction of the cuspidal representations is described by
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the remaining squares (and the reduction is again multiplicity free):

• __

��

•
cusp

• __

��

•

•
cusp

• •
cusp

??

��

•

• __

��

•
cusp

• __

��

•

• • • •

Remark 3.35. In case (iv) it turns out that the reduction is irreducible (giving a
trivial component in the extension graph). On can see (iii)+(iv) as a degenerate
case of (i) in the picture.

3.4. Breuil–Paškūnas diagrams. By mod-p Langlands philosophy §2.8 we would
hope to associate a (family of?) mod-p representations π(ρ) of admissibleG-representations
to a given mod-p Galois representation ρ : Gal(F/F )→ GL2(C). For the remainder
of section 3 we assume that F/Qp is unramified with uniformizer $ := p.

Using diagrams we can construct admissible G-representations having a given
K-socle. Now the K-socle of π(ρ) is predicted by the global theory, namely one
expects that

socK π(ρ) =
⊕

σ∈W (ρ)

σ,

where W (ρ) is a certain finite set arising in generalizations of Serre’s modularity
conjecture (§4.6). For now it will suffice to say (assuming ρ is suitably generic) that
W (ρ) is always a hypercube of dimension ∈ [0, f ] in the extension graph, and more
precisely:

(i) if ρ is irreducible, then W (ρ) consists of a hypercube that arises as the
reduction of a principal series (resp. cuspidal representation) if f is odd
(resp. even);19

(ii) if ρ is split reducible, then W (ρ) consists of a hypercube that arises as the
reduction of a principal series (resp. cuspidal representation) if f is even
(resp. odd);

(iii) if ρ is nonsplit reducible, then W (ρ) consists of a proper sub-hypercube of
W (ρss) in (ii).

In particular, |W (ρ)| = 2f if ρ is semisimple and |W (ρ)| = 2d for some 0 ≤ d < f
otherwise. (All d can arise, and d depends in a subtle way on the extension class
in ρ.)

An immediate problem is then how to extend
⊕

σ∈W (ρ) σ to a KZ-representation

D0 such that the IZ-action on DI1
0 extends to N . Already in the rather simple

Example 3.33 (which corresponds to a case where ρ is irreducible), we see that the

four Serre weights σ
[s]
i needed to be “added” to socK π =

⊕
σ∈W (ρ) σ in order to

produce a diagram.

19See §3.3.
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Breuil–Paškūnas solve this problem as follows: given ρ define D0(ρ) to be the
largest subrepresentation of injΓ(

⊕
σ∈W (ρ) σ) containing

⊕
σ∈W (ρ) σ such that [D0(ρ) :

σ] = 1 for all σ ∈W (ρ). This exists by the same reasoning as in Lemma 3.13.

Lemma 3.36. We have the following properties:

(i) We have D0(ρ) ∼=
⊕

σ∈W (ρ)D0,σ(ρ), where D0,σ(ρ) is the largest subrep-

resentation of injΓ σ such that [D0,σ(ρ) : τ ] = δστ for τ ∈W (ρ).20

(ii) The Γ-representation D0(ρ) is multiplicity free and

JH(D0(ρ)) = JH(
⊕

σ∈W (ρ)

Vσ).

(iii) The I-representation D0(ρ)I1 is multiplicity free and if χ : I → C× occurs
in it, then so does χs.

Proof. (i) Again D0,σ(ρ) exists by the argument in Lemma 3.13. Then by def-
inition,

⊕
σ∈W (ρ) σ ⊆

⊕
σ∈W (ρ)D0,σ(ρ) ⊆ D0(ρ). By (∗4) we have D0(ρ) ⊆⊕

σ∈W (ρ) injΓ σ, so

D0(ρ)/
⊕

σ∈W (ρ)

D0,σ(ρ) ↪→
⊕

σ∈W (ρ)

(injΓ σ)/D0,σ(ρ).

If the left-hand side is nonzero, then it contains an irreducible subrepresentation
τ . Hence τ injects into (injΓ σ)/D0,σ(ρ) for some σ ∈ W (ρ), so τ ∈ W (ρ) by
maximality of D0,σ(ρ), but this contradicts that [D0(ρ) : τ ] = 1!

(ii) First note that by definitionD0,σ(ρ) embeds into Vσ, soD0,σ(ρ) is multiplicity
free by Proposition 3.17. Now suppose that τ is any Serre weight occurring in⊕

σ∈W (ρ) Vσ. As W (ρ) is a hypercube (of perhaps lower dimension), there is a

unique σ ∈ W (ρ) that is closest to τ .21 For the same reason, for any σ′ ∈ W (ρ)
there exists a geodesic between σ′ and τ that passes through σ, and no geodesic
between σ and τ passes through any other element of W (ρ). Hence τ occurs in
D0,σ′(ρ) if and only if σ′ = σ by Proposition 3.25.

(iii) The multiplicity freeness of D0(ρ)I1 follows from (ii). If the character
χ injects into the semisimple I-representation D0(ρ)I1 , we get by Frobenius reci-

procity a nonzero map IndKI χ → D0(ρ) ⊆ injΓ(
⊕

σ∈W (ρ) σ) and hence a nonzero

map IndKI χ
s → injΓ(

⊕
σ∈W (ρ) σ) (see the proof of Lemma 3.9). In particular,

JH(IndKI χ
s) ∩W (ρ) 6= ∅ and hence IndKI χ

s has to admit a quotient Q such that
precisely one of its irreducible constituents, say σ′, is in W (ρ). (Keep quotienting
out irreducible subrepresentations until that is the case.) Then the unique up to

scalar nonzero map IndKI χ
s → injΓ σ

′ has to have image contained in D0,σ′(ρ), i.e.
χs contributes to D0,σ′(ρ)I1 . �

Let now p ∈ Z act trivially22 on D0(ρ), and by (iii) we can (non-uniquely) extend
the action of IZ onD1(ρ) := D0(ρ)I1 to an action ofN . A Breuil–Paškūnas diagram
is any diagram (D0(ρ), D1(ρ), incl) obtained in this way.

20Here, δxy = 1 if x = y, δxy = 0 otherwise.
21We take as distance between vertices the length of a shortest path connecting them.
22It’s best to suppose that det(ρ)(p) = 1, since the central character of π(ρ) should match

det(ρ)ω−1 under local class field theory, just as in §2.8.
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Using Proposition 3.25 we can then determine all possible Breuil–Paškūnas dia-
grams for f = 2. Horizontal/vertical arrows indicate the submodule structure and
dotted edges do not occur in D0(ρ):

• //

��

•

��

•

��

??

��

•

��

oo

• //__

��

• • __

��

•oo

• // • •??

��

•oo

• //

OO

•

OO

•

OO

•oo

OO

ρ irreducible,
|W (ρ)| = 4,
| JH(D0,σ(ρ))| = 4 ∀σ ∈W (ρ),
dimC D0(ρ)

I1 = 8.

• //

��

•

��

??

��

•

��

•

��

oo ??

��
• // • __

��

• •oo

• // •??

��

• •oo ??

��
• //

OO

•

OO

•

OO

•oo

OO

ρ split reducible,
|W (ρ)| = 4,
| JH(D0,σ(ρ))| = 4 ∀σ ∈W (ρ),
dimC D0(ρ)

I1 = 10.

• //

��

•

��

__

��

•

��

•

��

oo

• // •??

��

• •oo ??

��
• //

OO

•

OO

•

OO

•oo

OO

ρ nonsplit reducible,
|W (ρ)| = 2,
| JH(D0,σ(ρ))| = 6 ∀σ ∈W (ρ),
dimC D0(ρ)

I1 = 6.

• //

��

•

��

__

��

•oo

��
• // •??

��

•oo

• //

OO

•

OO

•oo

OO

ρ nonsplit reducible,
|W (ρ)| = 1,
| JH(D0,σ(ρ))| = 9 ∀σ ∈W (ρ),
dimC D0(ρ)

I1 = 4.

Note that none of these diagrams is irreducible (when f > 1), since for example
〈K ·D1(ρ)〉 ( D0(ρ), as is clear from the pictures when f = 2. (If ρ is irreducible,
we recover Example 3.33 in this way!) Still we have the following surprising result:

Theorem 3.37. If ρ is irreducible, then any smooth representation π satisfying the
properties in Theorem 3.4 (applied to the diagram (D0(ρ), D1(ρ), incl)) is irreducible
admissible and supersingular.

Proof. We give a proof when f = 2, which illuminates the general idea. Label σi
again as in Example 3.33 and let χi := σI1i .

Suppose 0 6= π′ ⊆ π is any G-subrepresentation. Then 0 6= socK π
′ ⊆ socK π =

socK D0 =
⊕4

i=1 σi. Hence HomK(σi, π
′) 6= 0 – and hence is 1-dimensional – for

some 1 ≤ i ≤ 4. It will suffice to show that this implies π′ contains D0,σi+1
(ρ)
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(in 4 steps we obtain that π′ contains D0(ρ) and hence π). Let’s take i = 1 for
concreteness.

Step 1 (“Weight cycling”). The I-equivariant map χ1 = σI11 ↪→ π′∩D1 gives
rise to an I-equivariant map χs1 ↪→ π′∩D1 by composing by Π =

(
0 1
p 0

)
: π′ → π′. By

Frobenius reciprocity we get a nonzero K-equivariant map θ∅ : IndKI χ
s
1 → π′∩D0.

In the extension graph:

σ
[s]
2 __

��

σ3 σ4 __

��

•

• σ2
// σ1??

P∅

��

σ
[s]
4

• σ
[s]
1

//

OO

•

OO

•

We use arrows to indicate the submodule structure of P∅ := IndKI χ
s
1 (Exam-

ple 3.27). The image of θ∅ is a quotient of P∅ whose socle is contained in socK D0,
so im(θ∅) is the unique quotient of P∅ whose socle is σ2 (the element of W (ρ) clos-

est to σ
[s]
1 ): the only other option, P∅ itself, is not possible because im(θ∅) ⊆ D0

and D0/ socK D0 does not contain any element of W (ρ) as constituent, by defini-
tion! We indicate the image of θ∅ in red color above, which is thus contained in
π′.

Step 2. Let’s push further. The subrepresentation χ1 ⊆ σ1|I of Step 1 is
contained in a larger I-subrepresentation V ⊆ σ1|I that has submodule structure

χ1α
−1
0 α−1

1

$$zz
χ1α

−1
0

%%

χ1α
−1
1

yy
χ1

where αj(
(
x ∗
y

)
) = κj(xy

−1) on I/K1 ≤ Γ. (Let V be the subspace of σ1 = (r0, r1)

spanned by Xr′0+pr′1 with rj − 1 ≤ r′j ≤ rj for j = 0, 1.) As V ⊆ σ1 ⊆ π′, by
using the action of Π ∈ G we see that Π(V ) ⊆ π′ and hence we get a K-equivariant

map θ : IndKI Π(V )→ π′, which extends θ∅ from Step 1.23 We want to understand

the submodule structure of IndKI Π(V ), which is an extension of the four principal

series PJ := IndKI Π(χ1

∏
j∈J α

−1
j ) = IndKI (χs1

∏
j∈J αj). By Frobenius reciprocity,

PJ has cosocle (p− 1− r0 + 2δ0, p− 1− r1 + 2δ1) up to twist, where δj = 1 if j ∈ J ,
δj = 0 if j /∈ J . We can locate them in the extension graph, ignoring colors for

23IndKI Π(V ) is not K1-invariant! (V is, but Π(V ) isn’t.)
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now:24

• // • //
??

P{0}

��

σ2

D0,σ2 (ρ)

// σ1??

P∅

��

σ
[s]
4

• //

OO

τ //

OO

__

��

σ
[s]
1

//

OO

•

OO

__

��

•

• //

OO

• //

OO

??

P{0,1}

��

• //

OO

•

OO

??

P{1}

��

•

• //

OO

•

OO

// •

OO

// •

OO

•

Note that in particular IndKI Π(V ) is multiplicity free. We use the arrows to in-
dicate the submodule structure: the solid arrows come from the principal series
(Example 3.27), the dashed arrows may or may not occur a priori, but if they oc-
cur they have to have the indicated direction (e.g. P∅ is a subrepresentation). In

fact, all dashed arrows do occur in IndKI Π(V ), by Exercise 3.39 below and we will
assume this in the following.

Step 3. We explain how the submodule structure of IndKI Π(V ) in Step 2 implies
that D0,σ2

(ρ) ⊆ π′. By Step 1, im(θ∅) has socle σ2, so the same is true for im(θ)
because the other principal series do not contain elements of W (ρ) as constituents.

Thus im(θ) ⊆ π′ is the unique quotient of IndKI Π(V ) that has socle σ2, and its
constituents are indicated in red above.

Let D denote the unique K-subrepresentation of im(θ) that has cosocle τ (indi-
cated in the figure above). It is K1-invariant, hence a Γ-representation, by a very
convenient criterion of Breuil–Paškūnas:

Lemma 3.38 ([BP12, Cor. 5.7]). Suppose that p > 3 or f > 1. If W is a
multiplicity-free finite-dimensional smooth K-representation that does not contain
as constituents any pair of Serre weights (σ, τ) of the shape

σ • τ

in the extension graph (a straight edge of length 2 in any coordinate direction), then
W = WK1 .

Hence D ⊆ Vσ2
and we deduce that D ∼= D0,σ2

(ρ). Finally we have two injective
maps ι1, ι2 : D0,σ2(ρ) → π, namely ι1 = incl and ι2 = θ|D. As JH(D0,σ2(ρ)/σ2) ∩
W (ρ) = ∅ we deduce that the restriction map HomK(D0,σ2(ρ), π)→ HomK(σ2, π)
is injective, so we deduce that ι1, ι2 are scalar multiples of each other. Therefore,
D0,σ2

(ρ) = im(ι1) = im(ι2) ⊆ π′, as desired.
We have shown that π is irreducible. The proof that π is admissible and super-

singular are as in the discussion of Example 3.33. �

Here is the exercise filling the gap in Step 2 (it needs to be applied four times).

24Strictly speaking, we use that Ext1
K/Z1

(σ, τ) = Ext1
Γ(σ, τ) for (almost all) Serre weights σ,

τ , where Z1 := Z ∩K1. A proof can be found in [BHH+, Lemma 4.3.4].
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Exercise 3.39 (f = 2). Suppose χ is a smooth character of I and 0 ≤ j ≤ 1. Let
E denote any smooth I-representation that is a nonsplit extension 0 → χ → E →
χαj → 0. As above, IndKI E looks as follows in the extension graph:

• // τ //
??

P{j}

��

σ // •??
P∅

��
• //

OO

τ ′

OO

// σ′

OO

// •

OO

where again P{j} := IndKI χαj and P∅ := IndKI χ. Use Frobenius reciprocity to

show that socK(IndKI E) = socK(P∅) is irreducible and likewise cosocK(IndKI E) =
cosocK(P{j}) is irreducible. (The point is that E is not K1-invariant: if it were,

then 0 6= Ext1
I/K1

(χαj , χ) = H1(I/K1, α
−1
j ) and use inflation-restriction to obtain

a contradiction.) Deduce that the top (resp. bottom) dashed edge needs to occur

in IndKI E, otherwise τ (resp. σ′) would contribute to the cosocle (resp. socle) of

IndKI E.

Remark 3.40. For general f the picture consists of two adjacent f -dimensional
hypercubes in the extension graph, connected by 2f−1 dashed arrows. Exercise 3.39
is still valid, i.e. all dashed edges actually occur in IndKI E. Here is a short argument:
as in the figure just above, let τ denote the socle of P{j}, σ

′ the cosocle of P∅, σ
the unique constituent of P∅ connected by a dashed arrow to τ , and τ ′ the unique
constituent of P{j} connected by a dashed arrow to σ′. By using the cosocle as in

Exercise 3.39, the dashed edge τ ′ → σ′ occurs in IndKI E. In particular, σ ≤ σ′ ≤ τ ′
in the submodule structure of IndKI E, so IndKI E admits a unique subquotient
W with socle σ and cosocle τ ′. Its constituents consist precisely of the “middle
hypercube” in the figure. By Lemma 3.38, W is K1-invariant, so W is the unique
subrepresentation of Vσ with cosocle τ ′. By the submodule structure of Vσ, we
conclude that all 2f−1 dashed arrows occur.

If ρ is split reducible, then the Breuil–Paškūnas diagrams decompose into a direct

sum of f + 1 subdiagrams: D0(ρ) =
⊕f

i=0D0(ρ)i. In general, there are precisely
two σ ∈ W (ρ) such that D0,σ(ρ) is a principal series and we fix one of them. We
let D0(ρ)i be the direct sum of all D0,τ (ρ) that differ from D0,σ(ρ) in precisely i
coordinate directions in the extension graph. One then checks that the IZ-action
on D0(ρ)I1i extends to N . (When f = 2, all this should be evident from the picture
above!) Then Theorem 3.37 generalizes to each D0(ρ)i, with a similar proof, the
cases i = 0 and i = f giving principal series representations and the others giving
supersingular representations.

This led to the following speculation: if ρ is irreducible, then π(ρ) is irreducible
supersingular, whereas if ρ is split reducible, then π(ρ) is a direct sum of two
principal series and f −1 irreducible supersingular representations. This of course
generalizes the f = 1 case, §2.8.

3.5. Exotic diagrams. The following idea of “spliced” diagrams appears in [GLS23].
Suppose that f = 2 for simplicity, and p > 3.

We first construct funny irreducible supersingular representations that have a
socle consisting of 7 distinct Serre weights (such representations do not occur glob-
ally, see §4). As p > 3 we may consider an extension of the configuration in the
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extension graph from Example 3.33 (spliced out of two isomorphic copies there):

σ
[s]
6 ``

  
σ

[s]
3>>

~~

σ6 σ
[s]
5>>

~~
σ

[s]
2 ``

  

σ3 σ4 ``

  

σ5

σ2 σ1>>

~~

σ
[s]
4

σ
[s]
1

Let D0 be the following Γ-representation, which is a direct sum of 6 indecom-
posable pieces as follows:

σ
[s]
2

��

σ
[s]
1

��

σ
[s]
3

!!

σ
[s]
4

}} !!

σ
[s]
7

}}

σ
[s]
5

��

σ
[s]
6

��
σ3 σ2 σ1 σ4 σ5 σ6 σ7

Here, σ7 := σ
[s]
3 and the arrows indicate once again the submodule structure (each

indecomposable piece being multiplicity free). Note that the two length 3 inde-
composable pieces can be obtained as subrepresentation of Vσ4

, respectively as

quotient of the principal series with cosocle σ
[s]
4 . Let Ei (1 ≤ i ≤ 7) denote the

direct summand of D0 such that σ
[s]
i occurs in the cosocle of Ei, so E3 = E7 and

D0 =
⊕

i 6=7Ei.

As in Example 3.33 we see that D1 := DI1
0 is of dimension 14 and stable under

χ 7→ χs. (In the case of the 3-dimensional summand with cosocle σ
[s]
4 , this is true

because it’s a quotient of a principal series.) Therefore the action of IZ can be
extended to an action of N .

Exercise 3.41. Use the same method as in Exercise 3.34 to show that any represen-
tation π associated to the diagram (D0, D1, incl) is irreducible.

Now we modify this construction to construct nonadmissible irreducible repre-
sentations of GL2(Qp2)! (again following [GLS23]).

Theorem 3.42. There exist nonadmissible irreducible representations of GL2(Qp2).

Note that over C it is known that any irreducible representation of G (any p-adic
reductive group) is admissible.

Proof. For 1 ≤ i ≤ 7 choose a C-basis vi of the χi-eigenspace in (socΓD0)I1 , where

χi := σI1i . Also choose a C-basis vsi of the χsi -eigenspace in EI1i . By construction
there exist Ti ∈ C[Γ] such that Ti(v

s
i ) = vi+1, where v8 := v4; this is simply
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because 〈Γ · vsi 〉 contains σi+1 (if σ8 := σ4). Likewise there exists T8 ∈ C[Γ] such
that T8(vs4) = v1.

Now let D̃0 :=
⊕

n∈ZD0 and let v
(s)
i,n ∈ D̃0 denote the element that equals v

(s)
i

in the n-th coordinate and is zero elsewhere. Extend the action of K to KZ by

letting p ∈ Z act trivially. Extend the action of IZ on D̃1 := D̃I1
0 to N as follows:

(3.3) Π(vi,n) :=


vsi,n if i /∈ {1, 7},
vsi,n−1 if i = 1,

λn+1v
s
i,n+1 if i = 7,

where λn ∈ C× are any pairwise distinct scalars.

Unfortunately, (D̃0, D̃1, incl) is not a diagram in our sense, since D̃0 is not
admissible, so we cannot apply Theorem 3.4. But the trick is to extend Ω :=⊕

n∈Z injK D0 into a G-representation rather than injK D̃0. Referring back to the

proof of Proposition 3.10, write (injK D0)I1 = D1 ⊕ E as in (3.1) (noting that I1
acts trivially on D1 here). Then, as in that proof,

Ω|I ∼=
⊕
n∈Z

(injI D1 ⊕ injI E) ∼=
⊕
n∈Z

1≤i≤7

(injI Cvi,n)⊕
⊕
n∈Z

1≤i≤7

(injI Cv
s
i,n)⊕

⊕
n∈Z

(injI E)

∼=
⊕
n∈Z

i/∈{1,7}

injI(Cvi,n ⊕ Cvsi,n)⊕
⊕
n∈Z

injI(Cv1,n ⊕ Cvs1,n−1)⊕ · · · ⊕
⊕
n∈Z

(injI E).

In the last row, each argument of injI extends to an N -representation, using (3.3)
and the old extension on each copy of E, hence we can again extend Ω|I to an N -

representation by replacing each injI by injN . By construction, the injection D̃1 ↪→
D̃0 ↪→ Ω becomes N -equivariant. Thus Ω is a G-representation by Proposition 3.1

and we let π := 〈G · D̃0〉 ⊆ Ω. Then socK π = socK D̃0 =
⊕

n∈Z socK D0, so π is

nonadmissible as πK1 has infinite dimension.
We show that π is irreducible. If 0 6= π′ ⊆ π is any nonzero subrepresentation,

then π′|K has to contain an irreducible subrepresentation, so HomK(σi, π
′) 6= 0 for

some 1 ≤ i ≤ 7 (by our knowledge of socK π). Suppose first that HomK(σ1, π
′) 6= 0.

Then π′ contains an element of the form v :=
∑
n∈Z cnv1,n for some cn ∈ C, not all

zero. We will show that v1,n ∈ π′ for some n ∈ Z.
Suppose that at least two cn are nonzero, and say in particular cm 6= 0. By the

definitions, Π(v) =
∑
n∈Z cnv

s
1,n−1 and so T1Π(v) =

∑
n∈Z cnv2,n−1 ∈ π′. Keep

cycling:

T6Π · · ·T3ΠT2ΠT1Π(v) =
∑
n∈Z

cnv7,n−1 ∈ π′,

v′ := T8Π · · ·T2ΠT1Π(v) =
∑
n∈Z

cnλnv1,n ∈ π′.

As the λn are pairwise distinct, we can replace v by v′ − λmv and have reduced
the number of nonzero coefficients by 1. After finitely many steps we arrive at just
one nonzero coefficient, i.e. v1,n ∈ π′ for some n ∈ Z. It is then a fun exercise to

show that we obtain vi,n ∈ π′ for all 1 ≤ i ≤ 7 and n ∈ Z, and hence socK D̃0 ⊆ π′,
which generates π, so π′ = π.

Finally if instead HomK(σi, π
′) 6= 0 for some i 6= 1 we use a similar cycling

procedure as above to reduce to the case i = 1 already covered. �
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Remark 3.43. We remark that Le even proved the existence of irreducible G-
representations that do not have a central character. (Note that irreducible ad-
missible representations have a central character; exercise!)
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4. Global aspects

Useful reference in this section: [Gee22] (esp. sections 4 and 5.3).
Suppose that E/Q is a totally real field. For any place v of E, let Ev denote

the completion at v and Ov its ring of integers if v - ∞. Let D be a quaternion
algebra over E such that D⊗E Ev is definite (i.e. nonsplit) at all real places v | ∞.
We assume that D splits at p, and hence we can fix an isomorphism ip : D ⊗E
Ep

∼−→ M2(Ep): we do this since we want to obtain representations of the p-adic
group GL2(Ep). Moreover, for simplicity we assume that p is inert in E, so that
Ep is a finite unramified extension of Qp. Fix any OE-order OD of D such that

ip(OD ⊗OE Op) = M2(Op). Note that (D ⊗E A∞E )× ∼=
∏′
v-∞(D ⊗E Ev)×, where

A∞E is the ring of finite adeles of E and the restricted direct product is formed with
respect to the subgroups (OD⊗OEOv)× of (D⊗EEv)×. Let U denote any compact
open subgroup of (D ⊗E A∞E )× of the form U =

∏
v-∞ Uv, where Uv is a compact

open subgroup of (D ⊗E Ev)× such that Uv = (OD ⊗OE Ov)× for almost all v.

4.1. Modular forms on quaternion algebras. Let k be a topological field (or
even topological ring). Consider the space of “modular forms”

S(U, k) := {f : D×\(D ⊗E A∞E )×/U → k},
which is finite-dimensional, as D×\(D⊗EA∞E )× is compact (see [PR94, Thm. 5.1]).
More generally, suppose that σ is a finite-dimensional continuous25 representation
of U over k, we define

S(U, σ) := {f : D×\(D ⊗E A∞E )× → σ :

f(du) = u−1f(d) ∀d ∈ (D ⊗E A∞E )×, u ∈ U}.
To get an action of the p-adic group GL2(Ep), we form a direct limit (i.e. union)

over all levels at p and obtain a space

S(Up, k) := lim−→
Up

S(UpUp, k) = {f : D×\(D⊗EA∞E )×/Up → k locally constant},

where Up runs through all compact open subgroups of (D ⊗E Ep)
×. The group

(D ⊗E Ep)× ∼= GL2(Ep) acts on S(Up, k) smoothly by right translations:

(gpf)(d) = f(dg−1
p ) ∀gp ∈ (D ⊗E Ep)×, d ∈ (D ⊗E A∞E )×, f ∈ S(Up, k).

Concretely, gp ∈ (D⊗EEp)× sends S(UpU
p, k) to S((gpUpg

−1
p )Up, k), and S(Up, k)Up =

S(UpU
p, k). Moreover, S(Up, k) is an admissible representation of GL2(Ep), since

S(U, k) is finite-dimensional for all U .
The spaces S(U, k) admit actions of Hecke operators, similarly to the theory of

classical modular forms. Let Σ denote a finite set of places of E, including p and all
infinite places, such that for all v /∈ Σ the algebra D splits at v and (OD⊗OE Ov)×
is a maximal compact subgroup of (D⊗E Ev)×. For each v /∈ Σ we have an action
of the double coset algebra Hv := k[(OD ⊗OE Ov)×\(D ⊗E Ev)×/(OD ⊗OE Ov)×]
on S(U, k) and S(Up, k), with the double coset [UvgvUv] sending f to

∑r
i=1 xif =∑r

i=1 f((−)xi), where UvgvUv =
∐r
i=1 xiUv. By construction, the actions of Hv

and Hv′ commute whenever v 6= v′.
Fix an isomorphism (D⊗E Ev)× ∼= GL2(Ev) that identifies (OD⊗OE Ov)× with

GL2(Ov) and a uniformizer $v of Ev. In particular, we have the Hecke operators

25Equivalently smooth if k is discrete.
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Tv = [Uv
(
$v

1

)
Uv] and Sv = [Uv

(
$v

$v

)
Uv] in Hv, and Sv is central. Hence the

polynomial algebra Tk := k[Tv, Sv : v /∈ Σ] acts on S(U, k) and S(Up, k). We say
that f ∈ S(U, k) is an eigenform if it is a Tk-eigenvector. Note that the actions of
Tk and GL2(Ep) on S(Up, k) commute!

4.2. Comparison with automorphic forms over C. We quickly explain the
comparison with automorphic forms when k = Qp, following Gross. It will be
convenient to denote GD(A) := (D ⊗Q A)× for any (commutative) Q-algebra A.

For the comparison we need to fix an isomorphism ι : Qp
∼−→ C. Suppose that σ

is a finite-dimensional representation of GD(Qp) over Qp, so that we can consider

σ ⊗ι C as representation of GD(C) via ι.26 We consider σ as representation of U
via the composition U → Up ≤ (D ⊗E Ep)× = GD(Qp) → GD(Qp) and likewise
σ ⊗ι C is a representation of GD(R) via GD(R) ⊆ GD(C).

Then

S(U, σ) = {f : GD(Q)\GD(AQ)/GD(R)→ σ : f(du) = u−1f(d)}

and

(4.1) S(U, σ)⊗ι C ∼= {f ′ : GD(Q)\GD(AQ)/U → σ ⊗ι C : f ′(dh∞) = h−1
∞ f ′(d)},

where u ∈ U , h∞ ∈ GD(R) and f ′(d) := d−1
∞ ι(dpf(d)) (so the trick is to “inter-

change p and ∞”, just as when one associates a Galois character to an algebraic
Hecke character). By construction, this isomorphism is compatible with Hecke
operators at places v - p∞.

The right-hand side of (4.1) is a space of automorphic forms of the group GD(AQ)
over C, analogous to a space of classical modular forms of fixed weight and level,
in the adelic description. Automorphic forms on GD(AQ) can be compared with
Hilbert modular forms over E via the Jacquet–Langlands correspondence. If σ is
the trivial representation, then S(U, σ) = S(U,Qp) corresponds to Hilbert modular

forms of parallel weight 2. If σ =
⊗

τ :E→Qp(Symkτ−2(E2) ⊗ det`τ ) ⊗E,τ Qp over

k = Qp for some kτ ∈ Z≥2 and `τ ∈ Z, then S(U, σ) corresponds to Hilbert modular

forms of weights (kι−1τ ′ , `ι−1τ ′)τ ′:E→R (often `τ is suppressed in the notation).27

Exercise 4.1. Justify the isomorphism (4.1).

Remark 4.2. A more trivial kind of comparison is possible when σ is a finite-
dimensional smooth U -representation, in which case S(U, σ)⊗ιC is already a space
of automorphic forms (taking f ′(d) = ι(f(d))). These are particular automorphic
forms of trivial weight and level U ′ := ker(σ):

S(U, σ)⊗ι C ∼= HomU/U ′(σ
∨, C∞(GD(Q)\GD(AQ)/GD(R)U ′,C)).

One says that they have type σ.

26It would be slightly more natural to recognize that GD is the functor of points of an algebraic
group and to take for σ an algebraic representation of GD ×Q Qp.

27Note that GD(Qp) ∼=
∏
τ :E→Qp

GL2(Qp) as E ⊗ Qp ∼=
∏
τ :E→Qp

Qp, and we let the τ -th

copy of GL2(Qp) act on the τ -th factor Symkτ−2(Q2
p)⊗ det`τ in the tensor product.
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4.3. Fixed central character. In general the theory of automorphic forms is
more complicated when the action of the center is not fixed, as the center does
not act semisimply. Therefore, we now fix ψ : E×\(A∞E )× → k×, a continuous
character. If ψ is trivial on U ∩ (A∞E )×, then ψ extends to a continuous character
of U(A∞E )× = U · (A∞E )× that is trivial on U and we can define

Sψ(U, k) := {f : D×\(D ⊗E A∞E )× → k :

f(duz) = ψ(z)f(d) ∀d ∈ (D ⊗E A∞E )×, uz ∈ U(A∞E )×}.

as the subspace of S(U, k) on which the center (A∞E )× acts via ψ. More generally,
suppose that σ is a finite-dimensional continuous representation of U such that
U ∩ (A∞E )× acts via ψ−1. Then σ extends to a representation of U(A∞E )× such that
(A∞E )× acts via ψ−1, and we define

Sψ(U, σ) := {f : D×\(D ⊗E A∞E )× → σ :

f(duz) = (uz)−1f(d) ∀d ∈ (D ⊗E A∞E )×, uz ∈ U(A∞E )×}

as the subspace of S(U, σ) on which the center (A∞E )× acts via ψ. The Hecke action
preserves the subspaces Sψ(U, k) ⊆ S(U, k) and Sψ(U, σ) ⊆ S(U, σ).

Letting

Sψ(Up, k) := lim−→
Up

Sψ(UpU
p, k),

where Up runs through all compact open subgroups of (D ⊗E Ep)
×, the group

(D ⊗E Ep)× ∼= GL2(Ep) acts on Sψ(Up, k) by right translations and the action is
admissible smooth as before.

Exercise 4.3. If f ∈ S(U, σ) is an eigenform, show that f ∈ Sψ(U, σ) for a unique
character ψ. (Hint: first show that E×

∏
v/∈ΣE

×
v ⊆ (A∞E )× acts by a character,

then use class field theory to show that the inclusion E×
∏
v/∈ΣE

×
v ⊆ (A∞E )× is

dense.)
This exercise may need a
correction (to be updated)Exercise 4.4. Let’s return to σ =

⊗
τ :E→Qp(Symkτ−2(E2) ⊗ det`τ ) ⊗E,τ Qp over

k = Qp for some kτ ∈ Z≥2 and `τ ∈ Z, considered as U -representation via U → Up.

Show that if U ∩ (A∞E )× acts via ψ−1, then the integer kτ + 2`τ is independent
of τ . This is known as the “parity condition” in the context of Hilbert modular
forms. (Hint: first note that U ∩ E× = U ∩ O×E acts trivially. Then use the ideas
of the proof of Dirichlet’s unit theorem.) Conversely, show that for any such σ and
any U , there exists a (finite index) open subgroup U ′ of U such that U ′ ∩O×E acts
trivially and hence that we can choose ψ such that U ′ ∩ (A∞E )× acts via ψ−1.

This exercise may need a
correction (to be updated)Exercise 4.5. Continuing Exercise 4.4, show that if the parity condition fails, then

S(U, σ) = 0. (Hint: if S(U, σ) 6= 0, then it contains an eigenform.)

Exercise 4.6. Suppose that σ is a smooth representation of Up over Fp (for example,
a Serre weight if Up = GL2(Op)). Show that there exists a (finite index) open
subgroup U ′ of U such that U ′ ∩O×E acts trivially on σ via U → Up. Hence there
is no parity issue in characteristic p.

4.4. An injectivity property. Suppose that k = C has characteristic p > 3.
We show, following Breuil, that S(Up, k) is injective in the category of smooth
Up-representation, for any compact open subgroup Up ≤ (D ⊗E Ep)×.



46 FLORIAN HERZIG

Exercise 4.7. Suppose that U = UpU
p. Show that for any finite-dimensional smooth

Up-representation σ we have

(4.2)
S(U, σ)

∼−→ HomUp(σ∨, S(Up, k))

f 7→ (λ 7→ λ ◦ f),

where on the left we consider σ as U -representation via the projection U → Up.

Let di (1 ≤ i ≤ r) be a set of coset representatives for D×\(D ⊗E A∞E )×/U .
Then

(4.3)
S(U, σ)

∼−→
r⊕
i=1

σU∩d
−1
i D×di

f 7→ (f(di))i.

The groups U ∩ d−1
i D×di are always finite since D× ⊆ (D ⊗E A∞E )× is discrete,

and they are of order prime to p [Gee22, §5.3]. Therefore the functor σ 7→ S(U, σ)
is exact by (4.3), and hence we get the desired injectivity property by Exercise 4.7.

Remark 4.8. We used implicitly that if π is a smooth representation of a profinite
groupH, then HomH(−, π) is exact on smooth representations if it is exact on finite-
dimensional smooth representations. This can be done by a standard application
of Zorn’s lemma.

4.5. Galois representations. By the work of many people one knows:

Theorem 4.9. Suppose that σ =
⊗

τ :E→Qp(Symkτ−2(E2) ⊗ det`τ ) ⊗E,τ Qp for

some kτ ∈ Z≥2 and `τ ∈ Z. If f ∈ S(U, σ) is an eigenform with Tvf = λvf , Svf =
µvf for all v /∈ Σ, then there exists a unique semisimple Galois representation
r : Gal(E/E)→ GL2(Qp) such that

(i) for each v /∈ Σ, the representation r is unramified at v and the character-
istic polynomial of r(Frobv) equals X2 − λvX +N(v)µv;

(ii) r is de Rham (equivalently, potentially semistable) at p, with τ -Hodge–Tate
weights kτ + `τ − 1, `τ for any τ : E → Qp;

(iii) r is odd, i.e. det(r(c)) = −1 for any complex conjugation c ∈ Gal(E/E).

Moreover, r is crystalline at p if Up = GL2(Op) and the crystalline Frobenius on
Dcris(r|Gal(Ep/Ep)) has characteristic polynomial X2−λpX +N(p)µp (assuming in

addition that Tpf = λpf , Spf = µpf).

Here, Frobv denotes an arithmetic Frobenius element at v, N(v) denotes the
cardinality of the residue field at v, and Hodge–Tate weights are normalized such
that the cyclotomic character of Gal(E/E) has τ -Hodge–Tate weights 1 for all τ .

From Theorem 4.9 it is not so hard to deduce over Fp:

Theorem 4.10. Suppose that Up = GL2(Op) and that σ is a Serre weight over Fp.
If f ∈ S(U, σ) is an eigenform with Tvf = λvf , Svf = µvf for all v /∈ Σ, then there
exists a unique odd semisimple Galois representation r : Gal(E/E)→ GL2(Fp) such
that for each v /∈ Σ, the representation r is unramified at v and the characteristic
polynomial of r(Frobv) equals X2 − λvX +N(v)µv.

We say that r : Gal(E/E) → GL2(Fp) is modular if it arises in this way.
Serre’s conjecture is about the converse question if any irreducible odd r is modu-
lar. Serre formulated this in the context of classical modular forms (and classical
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weights and levels), and again this has only been proved in that context, by Khare–
Wintenberger.

Given r that is unramified at all v /∈ Σ we let mr denote the maximal ideal
(Tv−λvµ−1

v , Sv−N(v)µ−1
v : v /∈ Σ) of TFp , whereX2−λvX+pµv is the characteristic

polynomial of r(Frobv).
28

Exercise 4.11. Show that if S(Up,Fp)[mr] 6= 0 (or even just S(Up,Fp)mr 6= 0), then
r is modular in the above sense.

4.6. Weights in Serre’s conjecture. Suppose that Up = GL2(Op). Given a

modular r : Gal(E/E) → GL2(Fp), the weight part of Serre’s conjecture is the
question of determining the finite set

(4.4) W (r) := {Serre weights σ : S(U, σ∨)[mr] 6= 0}.
By definition, W (r) 6= ∅.29

The following result was conjectured by Buzzard–Diamond–Jarvis and estab-
lished by Gee–Liu–Savitt and Gee–Kisin (under mild hypotheses). Let f := [Ep :

Qp] = [kp : Fp]. Let IpCDp ≤ Gal(E/E) denote a choice of inertia and decomposi-

tion subgroups at p. For any n ≥ 1 let ωnf : Ip → F×p denote Serre’s tame level nf

character: it is of order pnf − 1 and under local class field theory corresponds to

O×p,n � k×p,n
κ0,n−−−→ F×p , where Ep,n/Ep is the unramified extension of degree n (so

Gal(Ep/Ep,n) ≤ Gal(Ep/Ep) have the same inertia subgroup), with ring of integers

Op,n, residue field kp,n, and κ0,n : kp,n → Fp is any field embedding that extends

our chosen κ0 : kp → Fp.

Theorem 4.12. The set W (r) only depends on r|Dp , and even only on r|Ip .

(i) If r|Dp is a direct sum of two characters, then F (a, b) ∈ W (r) if and only
if there exists J ⊆ {0, 1, . . . , f − 1} such that

r|Ip ∼=

ω∑
j∈J (aj−bj+1)pj

f 0

0 ω
∑
j /∈J (aj−bj+1)pj

f

⊗ ω∑f−1
j=0 bjp

j

f .

(ii) If r|Dp is irreducible, then F (a, b) ∈ W (r) if and only if there exists J ⊆
{0, 1, . . . , 2f − 1} such that j ∈ J ⇐⇒ j + f /∈ J (inside Z/2fZ) and

r|Ip ∼=

ω∑
j∈J (aj−bj+1)pj

2f 0

0 ω
∑
j /∈J (aj−bj+1)pj

2f

⊗ ω∑f−1
j=0 bjp

j

f .

If r|Dp is not semisimple, then the recipe is also known but considerably more
complicated. By abuse of notation we will often write W (r|Dp) for W (r).

Exercise 4.13. Suppose that f = 2.

(i) If r|Ip ∼= ω
(r0+1)+(r1+1)p
2 ⊕ 1 with 0 ≤ rj ≤ p− 3 and (r0, r1) /∈ {(0, 0), (p−

3, p−3)}, determine W (r) and show that it forms a square in the extension
graph.

28The maximal ideal m′r = (Tv − λv , Sv − µv : v /∈ Σ) is more standard, but we chose these
conventions to fit with σ∨ in formula (4.4). Note that mr = m′

r∨⊗ω , where ω is the mod-p

cyclotomic character..
29We ignore the level part of Serre’s conjecture, keeping Up fixed throughout.
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(ii) If r|Ip ∼= ω
(r0+1)+(r1+1)p
4 ⊕ ω

(r0+1)p2+(r1+1)p3

4 with 1 ≤ r0 ≤ p − 2 and
0 ≤ r1 ≤ p − 3, determine W (r) and show that it forms a square in the
extension graph.

Theorem 4.12 tells us the GL2(Op)-socle of the smooth GL2(Ep)-representation

S(Up,Fp)[mr] as follows. By the isomorphism (4.2), for any Serre weight σ over Fp,
(4.5)

HomGL2(Op)(σ, S(Up,Fp)[mr]) = HomGL2(Op)(σ, S(Up,Fp))[mr] ∼= S(U, σ∨)[mr],

is nonzero if and only if σ ∈ W (ρ), where ρ := r|Dp . Note that if we shrink Up,

then the space S(Up,Fp)[mr] grows. It is possible to impose reasonable conditions
such that the vector spaces (4.5) are of dimension ≤ 1 (cf. §4.10), so that

(4.6) socGL2(Op)(S(Up,Fp)[mr]) ∼=
⊕

σ∈W (ρ)

σ.

We will assume this from now on and refer to it as our multiplicity one hypothesis.
We can now explain why D0(ρ) ⊆ S(Up,Fp)[mr] is a GL2(Op)-subrepresentation.

First, socGL2(Op)(D0(ρ)) = socGL2(Op)(S(Up,Fp)[mr]) by (4.6). On the other hand,

S(Up,Fp), and hence S(Up,Fp)mr , is an injective GL2(Op)-representation by §4.4

(noting that localization is an exact functor), so we obtain a mapD0(ρ)→ S(Up,Fp)mr
that is injective, since it is an isomorphism on socles.

Lemma 4.14. The image of the map D0(ρ) ↪→ S(Up,Fp)mr of GL2(Op)-representations

is contained in S(Up,Fp)[mr] ⊆ S(Up,Fp)mr .

Proof. As D0(ρ) is finite-dimensional, its image lands in S(V,Fp)mr for V = VpU
p,

where Vp ≤ Up is some open subgroup. LetA denote the image of TFp in EndFp(S(V,Fp)),
which is finite-dimensional as S(V,Fp) is. Therefore A is an artinian ring, so

A =
∏

nAn and S(V,Fp) =
⊕

n S(V,Fp)n, where the index runs over the finitely

many maximal ideals n of A. It follows that S(V,Fp)n = S(V,Fp)[ni] for i� 0. Ap-

plying this to the image n of mr in A, the image of D0(ρ) in S(V,Fp)mr is contained

in S(V,Fp)[mir] ⊆ S(Up,Fp)[mir].
Choose now i ≥ 1 minimal, in the sense that the image is not contained in

S(Up,Fp)[mi−1
r ]. Consider the maps

D0(ρ)→ S(Up,Fp)[mir]/S(Up,Fp)[mi−1
r ]

a−−→ S(Up,Fp)[mr],

where a ∈ mi−1
r is chosen such that the image I is nonzero. If i > 1, then the map

kills socGL2(Op)(D0(ρ)), so any irreducible subrepresentation of I is a constituent

of D0(ρ)/ socGL2(Op)(D0(ρ)) but also of socGL2(Op)(S(Up,Fp)[mr]) =
⊕

σ∈W (ρ) σ,

contradiction (by the construction of D0(ρ)). �

4.7. Local-global compatibility. We continue to assume that r is modular in
level U = UpU

p (Up = GL2(Op)) and that our multiplicity one hypothesis (4.6) is
satisfied. The isomorphism (4.6) together with Theorem 4.12 gives us the first hint
that the representation S(Up,Fp)[mr] might be purely local, i.e. only depends on
ρ = r|Dp .

More generally we can consider

S[mr] := lim−→
U

S(U,Fp)[mr],
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where the limit runs over all compact open subgroups U of (D ⊗E A∞E )×. (To

even make sense of this limit, one first needs to check that S(U,Fp)[mr] does not

depend on the choice of Σ above, see [BDJ10, Lemma 4.6].) As for S(Up,Fp)[mr],
the space S[mr] is naturally a smooth representation of (D ⊗E A∞E )×. Note that

S(Up,Fp)[mr] = S[mr]
Up .

Conjecture 4.15 ([BDJ10, Conj. 4.7]). The (D ⊗E A∞E )×-representation S[mr]
factors as restricted tensor product

S[mr] ∼=
⊗′

v-∞

πv,

where πv is a smooth representation of (D ⊗E Ev)
×, which is explicit and only

depends on r|Dv if v - p∞.

The hope is that πp also depends only on r|Dp .
In the case where E = Q the analog of Conjecture 4.15 and the hope about

πp was proved by Emerton, in the context of classical modular forms (instead of
modular forms on definite quaternion algebras).

4.8. Existence of supersingular representations. Our aim is to sketch a global
argument that irreducible supersingular representations of G := GL2(Ep) exist,
without using diagrams §3. This method generalizes to GLn(F ) for any p-adic field
F , cf. [HKV20, §6].

Let τi : Ep → Qp denote the unique embedding that induces κi : kp → Fp
(0 ≤ i ≤ f − 1) on residue fields.

Suppose that a = (ai)i, b = (bi)i ∈ Zf such that 0 ≤ ai− bi ≤ p− 1. We suppose
moreover that ai + 2bi is independent of i, to avoid parity issues. Let

σ0 :=

f−1⊗
i=0

[
(Symai−bi(O2

p)⊗ detbi)⊗Op,τi Zp
]
,

which we consider as representation of Up = GL2(Op), as usual. Then σ := σ0 ⊗Zp
Fp ∼= F (a, b) (Serre weight), and we let σ := σ0⊗ZpQp. Suppose for simplicity that

U is sufficiently small in the sense that U ∩ d−1D×d = 1 for all d ∈ (D ⊗E A∞E )×,

so that S(U, σ0) is a Zp-lattice in S(U, σ) and S(U, σ0)⊗Zp Fp
∼= S(U, σ), cf. (4.2).

We first compare classical and mod-p Hecke actions at p. To define classical
Hecke operators on S(U, σ) at p, we let gpf := gpf((−)gp) for gp ∈ GL2(Ep), so

that GL2(Op) acts trivially and hence Hp = Zp[GL2(Op)\GL2(Ep)/GL2(Op)] acts
by the same formula f 7→

∑r
i=1 xif as in §4.1. (This really corresponds to the usual

Hecke action at p under the comparison isomorphism (4.1).) On the other hand,

(4.7) S(U, σ) ∼= HomGL2(Op)(σ
∨, S(Up,Fp))

by (4.2), so HG(σ∨) acts on it, see §2.2. Let T := T(0,−1) ∈ HG(σ∨) in the notation
of §2.3.

Lemma 4.16.

(i) We have
( p

1

)
σ0 ⊆ p

∑
i biσ0 and the induced map p−

∑
i bi
( p

1

)
: σ → σ

is the projection σ � σ( 1 ∗
0 1

) ∼←− σ
(

1 0
∗ 1

)
↪→ σ.
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(ii) We have a commutative diagram:

S(U, σ0)
p−

∑
i biTp //

����

S(U, σ0)

����
S(U, σ)

T // S(U, σ)

Proof. (i) It suffices to note that the action of the torus on the algebraic represen-

tation Symk(std)⊗ det` of GL2 is the direct sum of characters (−)`+i ⊗ (−)`+k−i,
0 ≤ i ≤ k, and p acts by the lowest valuation only on the lowest weight vector
(−)` ⊗ (−)`+k.

(ii) An easy check shows that we have an automorphism of (commutative) Hecke
algebras HG(σ) ∼= HG(σ∨), ϕ 7→ ϕ′ with ϕ′(g) = ϕ(g−1)∨. The algebra HG(σ)
acts on S(U, σ) by the formula f 7→ (d 7→

∑
g∈GL2(Ep)/GL2(Op) ϕ(g)f(dg)) (for ϕ ∈

HG(σ), f ∈ S(U, σ)). A slightly tedious check show that with these identifications
this action of ϕ ∈ HG(σ) on the left is identified with the action of ϕ′ ∈ HG(σ∨)
on the right of (4.7).

Now take ϕ = T1 = T(1,0) ∈ HG(σ), so ϕ′ = T . We check p−
∑
i big : σ0 → σ0

induces T1(g) : σ → σ for all g ∈ GL2(Op)
( p

1

)
GL2(Op): it is true for g =

( p
1

)
by (i) and Exercise 2.16, and hence follows in general.

Finally,

(p−
∑
i biTpf)(d) =

∑
g

p−
∑
i bigf(dg),

where the index g runs through GL2(Op)
( p

1

)
GL2(Op)/GL2(Op) which reduces

mod p to ∑
g

T1(g)f(dg) = (T1f)(d)

by the preceding paragraph. �

Suppose now that S(U, σ)[mr] 6= 0 for some Galois representation r such that
r|Dp is irreducible.30

Claim: Any Hecke eigenvalue of HG(σ∨) on S(U, σ)[mr] is supersingular.
If this is true, we pick any f : σ∨ → S(Up,Fp)[mr] that is a T -eigenvector, so

Tf = 0. Let π′ be the GL2(Ep)-subrepresentation of S(Up,Fp)[mr] generated by the
image of f . As π′ is by definition finitely generated as GL2(Ep)-representation, it
admits a maximal subrepresentation M by a standard application of Zorn’s lemma.
Let π := π′/M be the corresponding irreducible quotient of π′. Then π is admissible,
as it is a subquotient of the admissible representation S(Up,Fp)[mr]. Moreover,
f : σ∨ → π′ � π is nonzero, giving a supersingular Hecke eigenvalue, so π is
supersingular by Corollary 2.36(ii), as desired.

To justify the claim, suppose by contradiction that there is an eigenform f ∈
S(U, σ)[mr] such that Tf = cf with c ∈ F×p . By an abstract algebra argument
(using only that we have a commuting set of linear operators), the Hecke eigenvalues
lift, i.e. there exists an eigenform f ′ in S(U, σ0) whose Hecke eigenvalues reduce to

those of f . In particular, (i) by Lemma 4.16, Tpf
′ = λpf

′ with λp ∈ p
∑
i biZ×p and

30This is possible, for example by using automorphic induction from a suitable Hecke character,
though the details are a bit involved.
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(ii) the Galois representation r associated to f ′ by Theorem 4.9 lifts r (checking on
Hecke eigenvalues at v /∈ Σ).

We now show using a little bit of p-adic Hodge theory that r|Dp is reducible,
which gives the desired contradiction, since r|Dp is irreducible. To keep the ar-
gument as simple as possible, let’s suppose that the residue degree f = 1 (in
general, see [EGH13, §4.5]). The last sentence of Theorem 4.9 says that the crys-
talline Frobenius of Dcris(r|Dp) has characteristic polynomial X2 − λpX + pµp,

where λp ∈ pb0Z
×
p . On the other hand, the Hodge–Tate weights of Dcris(r|Dp) are

a0 + b0 + 1 and b0. This means that both the Newton and the Hodge polygon of
Dcris(r|Dp) have slopes b0 and a0 + b0 + 131, giving that r|Dp is reducible.

Remark 4.17. One of the projects concerns the existence of supersingular represen-
tations.

4.9. Patching. A key to proving Theorem 4.12, as well as to various other results
on the global representations S(Up,Fp)[mr] is Taylor–Wiles–Kisin patching (here,
[Gee22] provides a great introduction).

Since the patching construction is ultimately based on a pigeonhole principle,
it is important that we work with a finite residue field, so we fix L/Qp a finite
extension and take an absolutely irreducible, modular Galois representation r :
Gal(E/E) → GL2(kL). We assume L is large, in particular [kL : Fp] ≥ f so that
all Serre weights can be defined over kL. We also assume L/Qp unramified, which
will be useful in §4.10.

To keep the notation as simple as possible and to focus on the essential ideas,
we now assume that D is split at all finite places, Uv = GL2(Ov) for all v - p∞,
and that r is unramified at all finite places.32 We also cheat slightly by not fixing
central characters on the Galois side (this is important to get correct statements,
but in the parallel context of a definite unitary group of rank 2 over E this is not
needed).

Let R denote the universal framed deformation ring of r|Dp , which is the ring
representing the functor

C → Set

A 7→ {homomorphisms ρ : Dp → GL2(A) reducing to r|Dp},

where C is the category of complete noetherian local OL-algebras together with an
isomorphism A/mA

∼−→ kL.
The patching method gives (non-canonically) the following: a power series ring

R∞ = RJx1, . . . , xhK for some h ≥ 1 and an exact functor

M∞ : {f.g. OL-modules with continuous GL2(Op)-action} → {f.g. R∞-modules}

such that

(4.8)
the action of R∞ on M∞(σ0(λ, τ)) factors through Rλ,τ∞ and
M∞(σ0(λ, τ)) is a maximal Cohen–Macaulay Rλ,τ∞ -module;

31For the Newton polygon we only calculated one slope; however, the endpoints of the two
polygons always coincide.

32These assumptions are too strong, since e.g. the assumption on D forces that [E : Q] is even.
Instead, one allows finitely many bad places and R∞ will be a power series ring over a completed
tensor product of local Galois deformation rings at all bad places.
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and

(4.9) M∞(W )/m∞ ∼= HomGL2(Op)(W,S(Up, kL)[mr])
∨ ∀W,

where m∞ denotes the maximal ideal of R∞.

Remark 4.18.

(i) The original Taylor–Wiles–Kisin patching construction works with a fixed
pair (λ, τ) and a fixed lattice σ0(λ, τ), producing the maximal Cohen–
Macaulay module M∞(σ0(λ, τ)). Emerton–Gee–Savitt, building on earlier
ideas of Kisin, realized that the patching argument can be done simulta-
neously for all coefficients. The exactness of M∞ ultimately comes from
the exactness of S(U,−) in §4.4.

(ii) You do no not need to know the definition of maximal Cohen–Macaulay
(CM) modules. The important thing is that it implies that the support of
the module M∞(σ0(λ, τ)) is a union of (maximal dimensional) irreducible
components of SpecRλ,τ∞ .

In particular, by (4.9) and (4.6) and Nakayama’s lemma we see that

(4.10) W (r) = {σ : M∞(σ) 6= 0}.
To give one illustration of the power of patching functors, let us show how it

can be used to prove Theorem 4.12, following Emerton–Gee–Savitt.33 Let W ?(r)
denote the explicit set of Serre weights described in Theorem 4.12, and recall that
W ?(r) is a hypercube in the extension graph. To show that W (r) = W ?(r) we need
two (non-trivial!) inputs that come from p-adic Hodge theory:

(i) for any tame τ , Rτ is either 0 or an integral domain such that Rτ/p has
precisely | JH(σ(τ)) ∩W ?(r)| irreducible components;

(ii) for any low weight λ (i.e. 0 ≤ λτ ≤ p − 1 for all τ), Rλ is either 0 or a
power series ring over OL.

We first show that W (r) ⊆W ?(r). If σ ∈W (r) \W ?(r), then by looking at the
extension graph we can choose a tame τ such that JH(σ(τ))∩W ?(r) = ∅ (cf. §3.3),
where the red dots denote W ?(r):

• • σ

τ

•

•

τ ′

• • •

• • • •
Then M∞(σ) 6= 0 by (4.10). Using the exactness of M∞, we have M∞(σ(τ)) 6= 0
and hence M∞(σ0(τ)) 6= 0, as M∞(σ0(τ))/p ∼= M∞(σ(τ)) 6= 0, again by exactness.
As M∞(σ0(τ)) is an Rτ∞-module by (4.8), it follows that Rτ 6= 0, contradicting (i)!

Now we show that W ?(r) ⊆ W (r). Again by the extension graph, see picture
above, there exists a tame τ ′ such that JH(σ(τ ′)) ⊇ W ?(r). By modularity of
r, there exists a Serre weight σ′ ∈ W (r), so σ′ ∈ W ?(r) ⊆ JH(σ(τ ′)). As in the

33Unfortunately the argument does not quite work like this in the context of quaternion alge-

bras, due to parity constraints, but it does work for definite unitary groups. Also, strictly speaking

we need to impose a slight genericity condition on r|Dp , to ensure that W ?(ρ) is a hypercube and

that (i) and (ii) are valid.
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preceding paragraph we deduce that M∞(σ0(τ ′)) 6= 0. By (4.8) and (i), M∞(σ0(τ ′))

is supported on all of Rτ
′

∞, and hence M∞(σ0(τ ′))/p ∼= M∞(σ(τ ′)) is supported

on all of Rτ
′

∞/p. Using the exactness of M∞ again, the support of M∞(σ(τ ′))
is the union of the supports of all M∞(σ) for σ ∈ JH(σ(τ ′)), or equivalently for

σ ∈W (r) ⊆W ?(r) by (4.10) and our choice of τ ′. As Rτ
′

∞/p has precisely |W ?(r)|(≥
|W (r)|) irreducible components by (i) and our choice of τ ′, it suffices to show that
each M∞(σ) is supported on just one irreducible component. For this, choose a low
weight λ such that σ(λ) ∼= σ. By (4.8) and (ii), we deduce (similarly to the case of
τ ′) that M∞(σ) is supported precisely on Rλ∞/p, which is irreducible.

4.10. Multiplicity one. We finally justify our multiplicity one hypothesis! First
note that any maximal CM module over a regular local ring is necessarily free, by
[Mat89, Thm. 19.1, Thm. 19.2] (first exploited by Diamond in this context). In
particular, M∞(σ0(λ)) is free over Rλ∞ for any low weight λ (by (ii) above). So
necessarily, Rλ∞ = R∞/AnnR∞(M∞(σ0(λ)) and we just say that M∞(σ0(λ)) is free
over its support. By reduction, M∞(σ) is free over its support for any σ ∈W (r).

Choose any tame type τ such that | JH(σ(τ)) ∩W (r)| = 2 (cf. §3.3):

• •
τ

• •

•

τ ′

• •

τ ′′′

•

• •

τ ′′

• •

• • • •

Then, by exactness of M∞ and (4.10) we have

(4.11) 0→M∞(σ1)→M∞(σ(τ))→M∞(σ2)→ 0,

where JH(σ(τ)) ∩W (r) = {σ1, σ2}. Another input from p-adic Hodge theory is
that Rτ is regular if | JH(σ(τ))∩W (r)| ≤ 2 (here we use that L/Qp is unramified),
so that M∞(σ(τ)), hence also M∞(σ(τ)), is free over its support. By localizing
the sequence (4.11) at the two minimal primes of Rτ/p, we deduce that all three
modules have the same rank (over their respective supports).

By the extension graph, any two elements of W (r) can be connected by a se-
quence of tame types as above, so by the preceding paragraph all M∞(σ) (σ ∈
W (r)) have the same rank, so all HomK(σ∨, π(r)) have the same dimension by (4.9).
With a bit more effort one can achieve rank (resp. dimension) equal to 1.

4.11. Some recent progress. We would like to understand the GL2(Ep)-representation

π(r) := S(Up,Fp)[mr] further, under our multiplicity one hypothesis. Recall that
we hope that π(r) only depends on ρ := r|Dp . The following results give some,
albeit weak, evidence for that.

As in §4.9 we work over the coefficient field kL, where L/Qp is a large finite
extension. Let K1 ⊆ I1 ⊆ I ⊆ K be defined as in sections 1–3 with F := Ep.

Theorem 4.19 (Emerton–Gee–Savitt). We have π(r)I1 ∼= D0(ρ)I1 as I-representations.
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For any smooth character χ : I → k×L we have by Frobenius reciprocity:

HomI(χ, π(r)I1) = HomI(χ, π(r)) = HomK(IndKI χ, π(r)),

which is dual to M∞(IndKI χ)/m∞.
The key result is:

Proposition 4.20 ([EGS15]). The patched module M∞(σ0(τ)) is cyclic for any
tame type τ and all lattices σ0(τ) such that σ(τ) has an irreducible cosocle.

(We already saw the case where | JH(σ(τ)) ∩ W (r)| ≤ 2 above; in that case

we didn’t even need an irreducible cosocle!) Applied to σ0(τ) = IndKI χ, where
χ : I → O×L is the Teichmüller lift of χ, Proposition 4.20 gives that HomI(χ, π(r)I1)
is at most 1-dimensional for any χ. As I/I1 acts semisimply, it remains to check:

Lemma 4.21. We have HomI(χ, π(r)I1) 6= 0 if and only if HomI(χ,D0(ρ)I1) 6= 0.

Proof. Recall that

(4.12)
⊕

σ∈W (ρ)

σ ⊆ D0(ρ) ⊆ π(r)K1 ⊆ injΓ(
⊕

σ∈W (ρ)

σ)

by §4.4, respectively (4.6), so D0(ρ)I1 ⊆ π(r)I1 and “⇐” holds. Conversely, suppose

that 0 6= HomI(χ, π(r)I1) = HomK(IndKI χ, π(r)). The image V of such a nonzero
K-homomorphism is a Γ-representation such that JH(V )∩W (ρ) 6= ∅ by (4.6). Let
V ′ be a minimal quotient of V such that JH(V ′) ∩W (ρ) 6= ∅. Then socK(V ′) =
σ ∈ W (ρ) and JH(V ′/σ) ∩ W (ρ) = ∅, so V ′ injects into D0,σ(ρ) ⊆ D0(ρ) by

Lemma 3.36(i), so we get IndKI χ� V � V ′ ↪→ D0(ρ), as desired. �

Remark 4.22. Assume det ρ(p) = 1. Theorem 4.19 implies that there exists an N -
action on D1(ρ) = π(r)I1 extending the given I-action such that we have an inclu-
sion of diagrams (D0(ρ), D1(ρ), incl) ↪→ (π(r)|KZ , π(r)|N , incl). By Corollary 3.12,
π(r) contains a Breuil–Paškūnas representation, meaning a representation arising
from the diagram (D0(ρ), D1(ρ), incl).

Theorem 4.23 (Le–Morra–Schraen, Hu–Wang, Le). We have π(r)K1 ∼= D0(ρ) as
Γ-representations.

Exercise 4.24. Show that this statement is equivalent to M∞(projΓ σ) being cyclic
for any σ ∈W (ρ). (Use (4.9) and the definition of D0(ρ).)

If ρ is semisimple, Theorem 4.23 follows by proving the following representation-
theoretic criterion: if D0(ρ) ⊆ W ⊆ injΓ(

⊕
σ∈W (ρ) σ) is any Γ-representation such

that

dimkL HomΓ(σ(τ),W ) ≤ 1

for all tame types τ and all lattices σ0(τ) such that σ(τ) has an irreducible cosocle,
then W = D0(ρ). Applying this to W = π(r)K1 using Proposition 4.20 and (4.9)
gives the theorem. If ρ is non-semisimple, the proof is more subtle and requires
more inputs from p-adic Hodge theory.

Remark 4.25. Hu [Hu10] showed that there exist Breuil–Paškūnas representations
π such that D0(ρ) ( πK1 , so Theorem 4.23 shows that some Breuil–Paškūnas
representations do not occur globally!

Another application of patched modules:
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Theorem 4.26 (Dotto–Le). The diagram (π(r)K1 , π(r)I1 , incl) is purely local, i.e.
only depends on ρ.

Again this rules out many Breuil–Paškūnas representations, since it constrains
the action of N on D1(ρ).

The next important step was to understand the “size” of the representation π(r),
which can be measured by its so-called Gelfand–Kirillov dimension. It is known
that π(r) has a central character, so that it is a smooth representation of G/Z1,
where Z1 := Z∩K1. Therefore the linear dual π(r)∨ is a finitely generated over the
noetherian ring kLJHK (see §1.5.3), where H is any fixed compact open subgroup
of G/Z1. The G-representation π(r) is said to have Gelfand–Kirillov dimension

d ∈ Z≥0 if j := 3f −d is minimal such that ExtjkLJHK(π(r)∨, kLJHK) 6= 0, which is a

noncommutative generalization of the “codimension of the support” of the module
π(r)∨ and is independent of the choice of H. Concretely, this is true if and only if
there exist real constants 0 < a ≤ b such that apmd ≤ dimkL(π(r)Km) ≤ bpmd for
all m ≥ 1.

Theorem 4.27 (Breuil–H.–Hu–Morra–Schraen; Hu–Wang). Assume some Taylor–
Wiles hypotheses and a genericity condition on ρ. Then π(r) has Gelfand–Kirillov
dimension f .

The crucial input comes again from patching. Let m denote the unique maxi-
mal of the local ring Λ := kLJI1/Z1K. Patching allowed us to determine π(r)[m3],
which was sufficient to show that the associated graded module grm(π(r)∨) :=⊕

i≥0 m
iπ(r)∨/mi+1π(r)∨ over grmΛ is killed by an explicit ideal J such that

(grmΛ)/J is commutative of dimension f . This gave the desired upper bound
on the Gelfand–Kirillov dimension (the lower part is easier and was known earlier).

We briefly list several results that use Theorem 4.27 as key input:

Theorem 4.28 (Breuil–H.–Hu–Morra–Schraen). Assume some Taylor–Wiles hy-
potheses and a genericity condition on ρ. Then the G-representation π(r) is gen-
erated by D0(ρ).

In particular, under these hypotheses, π(r) is itself a Breuil–Paškūnas repre-
sentation. If ρ is reducible, we could recently give evidence for the speculation
mentioned at the end of §3.4.

Theorem 4.29 (Breuil–H.–Hu–Morra–Schraen). Assume some Taylor–Wiles hy-
potheses and a genericity condition on ρ. Then the G-representation π(r) is of
finite length. More precisely, it is of length at least 3 (if f ≥ 2) and at most f + 1.
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Appendix A. Appendix

A.1. A few words about topological groups. Let H be any topological group,
i.e. a group that carries a topology such that multiplication and inverse are contin-
uous.

Remark A.1.

(i) Left and right translations H → H (i.e. h 7→ h′h, h 7→ hh′ for a fixed
h′ ∈ H) are homeomorphisms.

(ii) Any open subgroup of H is also closed (the complement is a union of
cosets, hence open).

(iii) Any closed subgroup of finite index of H is open (the complement is a
finite union of cosets, hence closed).

(iv) If H is compact then any open subgroup of H has finite index (the cosets
form a disjoint open cover).

A profinite group is a compact Hausdorff topological group H such that H has a
fundamental system of neighbourhoods of 1 consisting of normal subgroups. (One
can show that the last condition can be replaced with H being totally disconnected.)
Equivalently, H is an inverse limit of finite groups, carrying the coarsest topology
such that all projection maps are continuous. We say that H is pro-p if the index
(H : N) is a power of p for each open normal subgroup N . The Sylow theorems
generalize to profinite groups; in particular, any profinite group contains a maximal
(closed) pro-p subgroup, which is unique up to conjugation.

Any closed subgroup or quotient group of a profinite (resp. pro-p) group is profi-
nite (resp. pro-p). An arbitrary product of profinite (resp. pro-p) groups is profinite
(resp. pro-p).

Basic examples of profinite groups are finite groups with discrete topology, Zp =
lim←−Z/pnZ, and Z×p = lim←−(Z/pnZ)×, where the limit is over integers n ≥ 1. The
second example is pro-p, whereas the third has pro-p Sylow subgroup 1 + pZp of
index p− 1.

A.2. Representations of finite groups. Suppose Γ is a finite group and k a
field. Then the category of Γ-representations over k (equivalently k[Γ]-modules)
is semisimple by Maschke if |Γ| is invertible in k, and if k = k the number of
irreducible representations equals the number of conjugacy classes in Γ.

Now suppose that char k = p > 0 with p | |Γ|. Then the category of Γ-
representations is no longer semisimple, and if k = k the number of irreducible
representations equals the number of p-regular conjugacy classes in Γ, where γ ∈ Γ
is p-regular if its order is prime to p. (See [Her12b, Ex. 3].)

If V is a finite-dimensional Γ-representation, then JH(V ) denotes the set of its
Jordan–Hölder factors (up to isomorphism) and the length of V denotes the length
of any Jordan–Hölder filtration (so | JH(V )| is at most the length of V ). We define
the semisimplification V ss to be the direct sum of all Jordan–Hölder factors of V
(with multiplicities).

Note that we may consider Γ-representations as smooth by giving Γ the discrete
topology. In particular, we have the notion of socle, socΓ (Definition 1.9), which
is functorial and left exact. If V is a finite-dimensional representation, it also has
a maximal semisimple quotient, its cosocle cosocΓ V , which is functorial and right
exact (note cosocΓ V ∼= (socΓ V

∨)∨).
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We also have an induced representation IndΓ
∆W (= c-IndΓ

∆W ) for any represen-
tation W of a subgroup ∆ ≤ Γ, and both forms of Frobenius reciprocity hold (Prop.

1.14). It follows that k[Γ] ∼= IndΓ
1 1 is both projective and injective.

By (∗3) in §3.1 we then have k[Γ] = injΓ(k[Γ]) ∼= injΓ(socΓ k[Γ]). By Frobenius
reciprocity we compute socΓ k[Γ] ∼=

⊕
σ σ
⊕ dimk σ, where the sum runs over all

irreducible representations of Γ. It follows using (∗4) that

k[Γ] ∼=
⊕
σ

(injΓ σ)⊕ dimk σ.

A further consequence is that each injΓ σ (for σ irreducible) is projective, as k[Γ]
is. In fact cosocΓ(injΓ σ) ∼= σ (see Exercise A.2 for a special case of the proof),
which implies that injΓ σ

∼= projΓ σ. Here, projΓ σ is the projective cover of σ,
which satisfies the dual definition of an injective envelope (it is a projective object
surjecting onto σ such that no proper subobject surjects onto σ).

Exercise A.2. Prove directly that injΓ 1 surjects onto 1, by showing that
∑
γ∈Γ γ

induces an isomorphism PΓ
∼−→ PΓ for any finite-dimensional projective represen-

tation P . (Hint: reduce to P = k[Γ] by using that P is a direct summand of a finite
free k[Γ]-module.)

Suppose now that OL is a discrete valuation ring with residue field k, for example
OL = W (k) (Witt vectors of k). Let L denote the fraction field and $ a uniformizer.
If V is any finite-dimensional Γ-representation over L, then there exists a Γ-stable
lattice V 0 ⊆ V , where lattice means a finite freeOL module such that V 0[1/$] = V .
(For example, let M ⊆ V denote any lattice and take V 0 :=

∑
γ∈Γ γM .) By

the Brauer–Nesbitt theorem, the semisimplified reduction (V 0/$V 0)ss of V is well
defined, i.e. independent of the choice of V 0.

Exercise A.3. Suppose that pn is the largest power of p dividing Γ. Show that pn

divides dimk(injΓ σ) for any irreducible representation σ. (Hint: use (∗1) to restrict
to a Sylow subgroup and recall Example 3.5.)

A.3. Multiplicity-free representations. The following is very useful and less
well-known than it should be (see [Alp80]).

Suppose that Γ is any group and W a finite-dimensional Γ-representation over a
field k. Suppose that W is multiplicity free, i.e. each irreducible constituent of W
occurs only once in W . Then the “submodule structure” is determined completely
by a partial order on the set JH(W ) of Jordan–Hölder factors, as follows.

For any σ ∈ JH(W ) there exists a unique submodule Wσ such that cosocΓWσ
∼=

σ. The easiest way to see this is that there is a unique nonzero homomorphism
projΓ σ →W up to scalar, dually to (∗6), and we let Wσ be its image.

We define a partial order ≤ (or more precisely ≤W ) on JH(W ): for σ, τ ∈ JH(W )
we say σ ≤ τ if Wσ ⊆ Wτ . A lower set in the poset JH(W ) is any subset X such
that (σ ≤ τ and τ ∈ X) implies σ ∈ X. The following is a fun exercise!

Lemma A.4. We have an isomorphism of lattices34:

{subrepresentations of W} ∼−→ {lower sets in (JH(W ),≤)}
W ′ 7−→ JH(W ′).

34I.e. preserving min and max, or equivalently preserving inclusions (both sides are lattices
with respect to ⊆).
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with inverse X 7→
∑
σ∈XWσ.

Dually, for each σ ∈ JH(W ), W admits a unique quotient Wσ with socle σ,
and quotient representations W ′ correspond to upper sets in (JH(W ),≤) under
W ′ 7→ JH(W ′).

Note however that (JH(W ),≤) is not enough to recover W up to isomorphism,
which can already be seen in case | JH(W )| = 2.

Exercise A.5. Any subquotient representation W ′ of W is also multiplicity free,
hence has its own partial order ≤W ′ . Show that ≤W ′ is the restriction of ≤W to
JH(W ′). (First consider when W ′ is a subrepresentation, resp. quotient.)

Exercise A.6. Show that socΓW ∼=
⊕

σ∈JH(W )min
σ and cosocΓW ∼=

⊕
σ∈JH(W )max

σ,

where JH(W )min (resp. JH(W )max) denotes the set of all minimal (resp. maximal)
elements of (JH(W ),≤).

To visualize the partial order ≤, we draw an arrow σ ← τ precisely if σ < τ and
there is no ρ ∈ JH(W ) such that σ < ρ < τ . In particular, we then see the Γ-socle
of W as the collection of terminal vertices.

Example A.7. If the Γ-representation E is a nonsplit extension 0→ σ → E → τ → 0
with σ 6∼= τ both irreducible, then the associated partial order is given by σ ≤ τ ,
which is visualized by the single arrow σ ← τ .

Example A.8. Suppose (JH(W ),≤) is given by:

d

����

e

��
b

��

c

��
a

Then socΓW ∼= a, socΓ(W/ socΓW ) ∼= b⊕ c, and cosocΓW ∼= d⊕ e. Moreover, the
quotient W c with socle c is an extension of d⊕ e by c.

Exercise A.9. If σ, τ ∈ JH(W ) show that there exists a subquotient W ′ of W with
socΓW

′ ∼= σ, cosocΓW
′ ∼= τ if and only if σ ≤ τ .

Exercise A.10. Show that W can be uniquely written as W =
⊕

iWi with Wi

indecomposable and that the JH(Wi) are the equivalence classes under the equiv-
alence relation generated by ≤. Moreover, show that any subrepresentation (resp.
quotient) W ′ of W is of the form

⊕
iW
′
i , where W ′i is a subrepresentation (resp.

quotient) of Wi.

Remark A.11. Why is the multiplicity freeness important? If σ is irreducible, then
σ ⊕ σ has many subrepresentations: HomC(σ, σ ⊕ σ) ∼= EndC(σ)2 (= C2 if σ is
absolutely irreducible). However, Lemma A.4 is still valid for representations that
satisfy the weaker condition that they do not admit any subquotient of the form
σ⊕σ for some irreducible σ. The only difference is that JH(W ) is now a multi-set. (I
do not know a reference, but it is not hard to show.) For example, if Γ = Z/pZ and
C is of characteristic p, then the only irreducible representation is 1 (Lemma 1.6).
The Γ-representation W = C[Γ] is uniserial, so verifies the condition. You can then
verify that its partial order is visualized by 1← 1← · · · ← 1 (p copies of 1).
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A.4. Representations of reductive algebraic groups. General reference, which
contains much more than we need: [Jan03, Part II]. For a quick introduction for
GLn as well as the relation to representations of GLn(Fq), see [Her09, §3].

We briefly discuss representations of reductive algebraic groups over an alge-
braically closed field k. For simplicity and concreteness we restrict to GL2. Nota-
tion: G := GL2(k) with subgroups B :=

( ∗ ∗
0 ∗
)
, T :=

(
∗ 0
0 ∗
)
, U :=

(
1 ∗
0 1

)
.

We can either think of G as an affine algebraic variety in the classical sense (cut
out by polynomial equations in affine space) or as a functor of points A 7→ GL2(A)
for any commutative k-algebra A.

An algebraic representation of G is then a morphism G→ GLN (k) of algebraic
groups, or better in a coordinate-independent way: G→ GL(V ), where V is a finite-
dimensional k-vector space. In the functor-of-points language, this is a functorial
group homomorphism GL2(A)→ GL(V ⊗k A).

Any algebraic representation of T is a direct sum of 1-dimensional represen-
tations, which in turn are described by the character group X∗(T ) = {

(
x 0
0 y

)
7→

xi1yi2 : i1, i2 ∈ Z} ∼= Z2. Hence if V is an algebraic representation of G, we have

V =
⊕

µ∈X∗(T )

Vµ,

where Vµ ⊆ V is the subspace on which T acts via µ. There is a partial order ≤
on X∗(T ), where λ ≤ µ if and only if λ1 ≤ µ1 and λ1 + λ2 = µ1 + µ2 (cf. the
proof of Theorem 2.12). If Vµ 6= 0, we say µ is a weight of V and λ ∈ X∗(T ) is
a highest weight of V if λ a weight and any other weight is ≤ λ. Any irreducible
algebraic representation of G has a (unique) highest weight. By considering the
action of the normalizer of T , one sees that the weights of V are closed under
µ 7→ w0µ := (µ2, µ1), so a highest weight λ has to be dominant, i.e. λ1 ≥ λ2. Let
X∗(T )+ ⊆ X∗(T ) denote the subset of dominant characters.

Fact A.12. The irreducible algebraic representations of G (up to isomorphism) are
in bijection with X∗(T )+, by sending V to the highest weight of V .

For λ ∈ X∗(T )+ let L(λ) denote the irreducible algebraic representations of
highest weight λ.

If char k = 0, then everything is very neat: any algebraic representation of G
is semisimple, and the irreducibles are given explicitly by L(λ) = Symλ1−λ2(k2)⊗
detλ2 , which we can think of as homogeneous polynomials of degree λ1 − λ2 in
X,Y , cf. §2.1. Note that the weights of L(λ) are all µ such that w0λ ≤ µ ≤ λ, each
appearing with multiplicity 1.

If char k = p, as we suppose from now on, then things are a lot more complicated.
For λ ∈ X∗(T )+ we can still define H0(λ) := Symλ1−λ2(k2)⊗ detλ2 (it can also be
thought of as an algebraic induction of λ from B to G, or equivalently as global
sections of a line bundle on the flag variety), and H0(λ) contains L(λ) as unique
irreducible subrepresentation. If λ1 − λ2 ≤ p− 1, then H0(λ) = L(λ), but we have
a nonsplit exact sequence

(A.1) 0→ L(p, 0)→ H0(p, 0)→ L(p− 1, 1)→ 0.

Exercise A.13. Verify (A.1) by showing that L(p, 0) = C ·Xp +C · Y p is G-stable.
For nonsplitness, show that dimkH

0(p, 0)U = 1.
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Exercise A.14. More generally show that we have a nonsplit exact sequence

0→ L(ap+ b, 0)→ H0(ap+ b, 0)→ L(ap− 1, b+ 1)→ 0.

for any 1 ≤ a ≤ p− 1, 0 ≤ b ≤ p− 2.

It is also useful to define a Weyl module V (λ), which has L(λ) as unique irre-
ducible quotient. Concretely, V (λ) := H0(−w0λ)∨ and note that L(−w0λ)∨ ∼= L(λ)
by comparing highest weights. We remark that V (λ) and H0(λ) have isomorphic
semisimplifications, and that V (λ) is a universal highest weight module of weight
λ (for any algebraic representation V , V is generated by a highest weight vector of
weight λ if and only if V is a nonzero quotient of V (λ)).

Remark A.15. We have L(λ+ (1, 1)) ∼= L(λ)⊗ det and likewise for H0(λ), V (λ).

For V an algebraic representation of G let V [i] (i ≥ 0) denote the composi-

tion G
ϕi−→ G → GL(V ), where ϕ denotes the Frobenius morphism of G, raising

coordinate entries to their p-th powers.

Fact A.16 (Steinberg). If λ(i) ∈ X∗(T )+ such that 0 ≤ λ
(i)
1 − λ

(i)
2 ≤ p− 1 for all

0 ≤ i ≤ n, then

L
( n∑
i=0

piλ(i)
)
∼=

n⊗
i=0

L(λ(i))[i].

In particular, we can compute dimk L(λ) for any λ ∈ X∗(T )+. However, this, as
well as the explicit descriptions of L(λ), is very particular to the group GL2.

Exercise A.17. Deduce that L(λ) = H0(λ) if and only if λ1−λ2 = rpn−1 for some
1 ≤ r ≤ p − 1 and n ≥ 0. (Hint: reduce to λ = (a, 0) with a =

∑n
i=0 aip

i with
0 ≤ ai ≤ p− 1. Compare dimensions, using induction on n.)
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Appendix B. Project outlines

Project Assistant: Heejong Lee

Let G := GLn(F ) (for simplicity) and keep the notation of §1 and §2.

B.1. Explicit Satake transforms. Recently, using derived techniques, Heyer
[Hey23, §4.3] defined Satake transforms which are algebra homomorphisms

Si : EndG(c-IndGK V )→ EndT (c-IndTT∩K H
i(U ∩K,V ))

for 0 ≤ i ≤ dimU and a Serre weight V , where dim here denotes the dimension
as a p-adic Lie group. (In fact, V can be any smooth K-representation.) The two
extreme cases appear in §2.3 as SG and ′SG (note that HdimU (U ∩K,V ) ∼= VU∩K).

The purpose of this project is to study the new cases 0 < i < dimU , starting
with n = 2 and F/Qp quadratic unramified (so dimU = 2 and i = 1). You will
work on finding explicit formulas for Si in terms of standard bases of the two Hecke
algebras (in the extreme cases, there are nice formulas for the “inverse” of Si). It
would even be interesting to find a “hands-on” formula for Si, as in the extreme
cases.

The recent paper [KP] may be helpful. Though derived categories initially appear
(for which [Yek] provides a helpful introduction), I do not think that much is needed
in that direction. It will be essential to know some group cohomology.

B.2. Supersingular representations with prescribed properties. So far, ex-
tremely little is known about the supersingular irreducible admissible representa-
tions of G for n > 2. In fact, to the best of my knowledge, only their existence
is known, cf. [HKV20]! The goal of this project is to show that such representa-
tions exist with some prescribed properties, e.g. containing a given Serre weight (at
least for Serre weights in the lowest alcove). This will most likely require global
arguments, following the approach in §4.8 (based on [HKV20]) but requires unitary
groups instead of quaternion algebras. The global setup discussed in [EGH13] may
be helpful.

B.3. Universal supersingular modules. Let V be a Serre weight, which we con-
sider as KZ-representation by letting $ ∈ Z act by a fixed scalar. The universal su-
persingular module is the quotient U(V ) := (c-IndGKZ V )/(T1, . . . , Tn−1), where Ti ∈
EndG(c-IndGKZ V ) is (as in §2.3) the Hecke operator supported on the double coset
KZtiKZ, sending ti to a linear projection, where ti := diag($, . . . ,$, 1, . . . , 1) (i
copies of $ followed by n− i copies of 1). It is a smooth representation of G.

For n = 2 it is known that U(V ) is admissible iff F = Qp (see e.g. [Bre03],
[Sch14], [Hen19]). What about n > 2? The representation U(V ) is then expected
to be non-admissible for all F .

It should be possible to show that U(V ) is at least of infinite length when n = 3
and F = Qp (and V in the lowest alcove), using global methods from [HLM17]. The
idea is to use V = F (a−1, b, c+1) with (a, b, c) as in [HLM17, §1] and to use a global
Galois representation r as in [HLM17, Thm. D(ii)]. The G-representation generated
by V inside S(Uv,Fp)[mr] will also contain a second Serre weight F (a, c, b− p+ 1),
with non-supersingular (ordinary) Hecke eigenvalue. Infinitely many such Hecke
eigenvalues are possible. The project consists of first verifying this in detail, and
then trying to go further.
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[BP12] Christophe Breuil and Vytautas Paškūnas, Towards a modulo p Langlands correspon-

dence for GL2, Mem. Amer. Math. Soc. 216 (2012), no. 1016, vi+114. MR 2931521

[Bre03] Christophe Breuil, Sur quelques représentations modulaires et p-adiques de GL2(Qp).
I, Compositio Math. 138 (2003), no. 2, 165–188. MR 2018825

[Bre07] , Representations of Galois and of GL2 in characteristic p, https://www.imo.

universite-paris-saclay.fr/~christophe.breuil/PUBLICATIONS/New-York.pdf,
2007.

[Bre10] , The emerging p-adic Langlands programme, Proceedings of the International

Congress of Mathematicians. Volume II, Hindustan Book Agency, New Delhi, 2010,
pp. 203–230. MR 2827792

[DdSMS99] J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-p groups, second
ed., Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University

Press, Cambridge, 1999. MR 1720368

[EGH] Matthew Emerton, Toby Gee, and Eugen Hellmann, An introduction to the categor-
ical p-adic Langlands program, https://arxiv.org/abs/2210.01404.

[EGH13] Matthew Emerton, Toby Gee, and Florian Herzig, Weight cycling and Serre-type con-

jectures for unitary groups, Duke Math. J. 162 (2013), no. 9, 1649–1722. MR 3079258
[EGS15] Matthew Emerton, Toby Gee, and David Savitt, Lattices in the cohomology of

Shimura curves, Invent. Math. 200 (2015), no. 1, 1–96. MR 3323575

[Eme10] Matthew Emerton, Ordinary parts of admissible representations of p-adic reduc-
tive groups I. Definition and first properties, Astérisque (2010), no. 331, 355–402.
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sible supersingular representations of p-adic reductive groups, Forum Math. Sigma 8

(2020), Paper No. e2, 73. MR 4061972

[HLM17] Florian Herzig, Daniel Le, and Stefano Morra, On mod p local-global compatibility for
GL3 in the ordinary case, Compositio Math. 153 (2017), no. 11, 2215–2286.

[Hu10] Yongquan Hu, Sur quelques représentations supersingulières de GL2(Qpf ), J. Algebra

324 (2010), no. 7, 1577–1615. MR 2673752

[Jan03] Jens Carsten Jantzen, Representations of algebraic groups, second ed., Mathematical
Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI,

2003. MR 2015057
[Koh17] Jan Kohlhaase, Smooth duality in natural characteristic, Adv. Math. 317 (2017),

1–49. MR 3682662
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