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Problem set 6

Below you will find problems for problem set six. We divide the problem sets into three parts -
beginner, intermediate and advanced.

Feel free to go back and forth between the theory and the problems you like. There is absolutely
no pressure to learn all this material at one go. Take your time and keep coming back to it as
you move forward in your learning. Please be kind to yourself and your peers while learning and
discussing the material. Most importantly, have fun :)

Beginner

Problem 1. A quaternion algebra over a field K is a central simple K-algebra of dimension 4
over K. Concretely, when charK ̸= 2, an algebra B over K is a quaternion algebra if there exist
i, j ∈ B such that 1, i, j, ij is a K-basis for B and

i2 = a, j2 = b, ji = −ij (1)

for some a, b ∈ K and we denote this quaternion algebra to be
(
a,b
K

)
. Below are some facts about

quaternion algebras. Feel free to take them for granted.

1. The ring M2(K) of 2×2 matrices with coefficients in K is a quaternion algebra over K: there

is an isomorphism
(
1,1
K

)
→ M2(K) of K-algebras induced by i 7→

(
1 0
0 −1

)
, j 7→

(
0 1
1 0

)
.

More generally, if K(
√
a) is a splitting field over K for the polynomial x2 − a, then there

is an injective map
(
a,b
K

)
→ M2(K(

√
a)) of K-algebras induced by i 7→

(√
a 0
0 −

√
a

)
, j 7→(

0 b
1 0

)
.

2. The map which interchanges i and j gives an isomorphism
(
a,b
K

)
≃

(
b,a
K

)
. Similarly, one has(

a,b
K

)
≃

(
a,−ab
K

)
≃

(
b,−ab
K

)
by interchanging basis elements.

3. If c, d ∈ K×, then
(
a,b
K

)
≃

(
ac2,bd2

K

)
. In particular, if K×/(K×)2 is finite, then there are only

finitely many isomorphism classes of quaternion algebras over K, and if K× = (K×)2 then

there is only one isomorphism class
(
1,1
K

)
≃ M2(K).

4. If B =
(
a,b
R

)
is a quaternion algebra over R, then B ≃ M2(R) or B ≃ H :=

(
−1,−1

R

)
, the

latter occuring if and only if a, b < 0. If B is a division quaternion algebra over R, then
B ≃ H.

5. Let L be a separable quadratic K-algebra and b ∈ K×. We denote by
(
L,b
K

)
:= L ⊕ Lj the

K-algebra with basis 1, j as a left L-vector space and with the multiplication rules j2 = b



and jα = ᾱj for α ∈ L, where¯is the nontrivial involution on L. If K is a nonarchimedean
local field, then there is a unique (up to K-algebra isomorphism) division quaternion algebra

B ≃
(
L,b
K

)
over K where L is the unique quadratic unramified extension of K.

6. If L is a field extension of K, then there is a canonical isomorphism
(
a,b
K

)
⊗K L ≃

(
a,b
L

)
extending scalars.

7. Given a quaternion algebra B over Q, we say that a place v is ramified in B if the completion
Bv is a division ring, and otherwise v is unramified or split. The mapB 7→ RamB gives a bijec-
tion {Quaternion algebras over Q up to isomorphism}↔ {Finite subset of places of Q of even cardinality}.
This result can be generalized to global fields.

Problem 2. Consider the j = 0 elliptic curve E : y2 = x3 + 1 defined over F̄p for some prime
p ≥ 5.

1. The p-power Frobenius map Frobp defines an endomorphism of E.

2. Let ω ∈ F̄p be a cube root of unity, then (x, y) 7→ (ωx, y) defines an endomorphism [ω] of E.

3. Suppose p ≡ −1 (mod 3). Show that the field Fp does not contain cube roots of unity, i.e.,
the polynomial x2 + x + 1 is irreducible over Fp, then Frobp and [ω] do not commute with
each other. Conclude that E is supersingular.

Problem 3 (See Problem 6 for a generalisation). Let Fq be a finite field with with q = pr elements
with p > 2. Let E be an elliptic curve with Weierstrass equation

y2 = f(x)

where f(x) = Fq[x] is a cubic polynomial. one can read off from the equation if E is super-singular
or ordinary. More precisely, E is supersingular if and only if the coefficient of xp−1 (known as the
Hasse invariant) in f(x)p−1/2 is zero. We take this fact for granted.

1. From PSET 1 problem 7, we know that over Fq, we can find a λ such that E has the form
y2 = x(x− 1)(x− λ). Let m = (p− 1)/2. Define the following polynomial

Hp(t) =

m∑
i=0

(
m

i

)2

ti

Show that E is supersingular if and only if Hp(λ) = 0.

2. Prove that for half the primes in Z (that is, for p ≡ 3 mod 4) the CM elliptic curve E : y2 =
x3 + x over Q has supersingular reduction.

3. Let Ep denote the reduction of E mod p. Confirm the above fact by showing that that
End(Ep) is not commutative. In particular, show that the Frobenius endomorphism and
“multiplication by i” do not commute if p ≡ 3 mod 4.

Problem 4. Let E/Fq be an elliptic curve over the finite field with q elements where q is a power
of p. Let φ denote the Frobenius map.

1. Show that |E(Fqn)| = deg(1− φn).



2. Consider the map φl on the l-adic Tate module of E. Let α and β denote the roots of the
characteristic polynomial (defined over Z) of φl over C. Show that |α| = |β| = √

q

3. Further show that |E(Fqn)| = 1− αn − βn + qn.

Problem 5 (Canonical lift). Let Fq be a finite field, and let Qq be a unramified extension of
Qp with residue field Fq. Denote Zq the ring of integers in Qq. Let E/Fq be an elliptic curve, a
canonical lift of E is an elliptic curve E/Zq with the property that 1) the reduction of E is E, and
2) there is an endomorphism of E whose reduction is the Frobenius of E. It can be shown that the
canonical lift of an ordinary elliptic curve always exist, and is unique 1.

1. Show that canonical lift, if exists, must be CM.

2. Give an explicit equation for the canonical lift of y2 = x3 + x over F97.

Intermediate

Problem 6. Let E be an elliptic curve with CM by the quadratic imaginary field K over a number
field F. Let p be a prime of F over the prime p in Q. Let Ep denote the reduction of E mod p.

1. Suppose that Ep is ordinary. Then show that p has to split in K.

2. Conversely suppose p splits in K, then show the reduction Ep is ordinary.

3. Use Chebotarev Density Theorem to prove that if E is a CM elliptic curve over K, then for
half of the primes in Q it has ordinary reduction.

Problem 7 (A followup problem). Now for arbitrary elliptic curve E over a number field K, show
that there are infinitely many places where E has ordinary reduction (Hint: again, you need to
somehow use Chebotarev density theorem).

Problem 8 (Weil Conjectures for elliptic curves over finite fields). Let E be an elliptic curve over
Fq. Define the zeta function of E to be the series

Z(E/Fqn ; t) = exp

( ∞∑
n=1

(|E(Fqn)|)
tn

n

)
1. (Rationality and Factorization and the Riemann Hypothesis) Use problem 4 to prove that

Z(E/Fq; t) =
(1− αt)(1− βt)

(1− t)(1− qt)
∈ Q(t)

with |α| = |β| = √
q.

2. (Functional equation) Do the transformation t → 1/qt to get a functional equation for the
zeta function:

Z(E/Fq; 1/qt) = Z(E/Fq; t)

Problem 9. Let E be a supersingular elliptic curve over a field F with charF = p > 0, then
End(E) ⊗ Q is a quaternion algebra over Q ramified at p and ∞. Hint: For l ̸= p, consider
End(E)⊗Ql ↪−→ End(Tl(E))⊗Ql ≃ M2(Ql).

1This can be done using Serre–Tate deformation theory. Though in practice, it is not easy to compute an explicit
equation for the canonical lift.



Advanced

Problem 10. Let k,K be fields. A K-coefficient cohomology theory for smooth proper k-
varieties is a functor from the category of smooth proper k-varieties to graded K-vector spaces.
Such a functor is denoted by H. Taking the n-th graded piece of H(X) gives you n-th cohomology
of X, denoted Hn(X). For example, when k = C and K = Q, the Q-coefficient singular cohomology
is a cohomology theory. If K = C, then de Rham (Doubault) cohomology is a cohomology theory.

A good cohomology theory (Weil cohomology theory) is a cohomology theory satisfying certain
properties, like excision, Kunneth formula, etc. We don’t need a precise notion of this. Just note
that singular cohomology and de Rham cohomology are all good cohomology theories.

In the follwing, we fix a prime p and a field k of characteristic p. For each l ̸= p, there is a
good Ql-coefficient cohomology theory Hl for smooth proper k-varieties, namely, the l-adic étale
cohomology. For an elliptic curve E, H1

l (E) is basically the rational Tate module. More precisely,
the l-adic rational Tate module Vl(E) of an elliptic curve E, as a Galois representation, is canonically
isomorphic to H1

l (E)∨.
What happens when l = p? Does there exist a good Qp-coefficient cohomology theory Hp?

Such a cohomology theory, if exists, should satisfy

dimQp H
n
p (X) = dimQl

Hn
l (X)

for any smooth proper k-variety X and any integer n.

1. It turns out that p-adic étale cohomology is not a good Qp-coefficient cohomology theory.
Justify this by taking an elliptic curve E and consider its p-adic Tate module Vp(E). You
may assume the fact that the first p-adic étale cohomology of E is canonically dual to Vp(E).

2. Show that good Qp-coefficient cohomology theory does not exist. (Hint: suppose it exists,
take a supersingular elliptic curve E and study H1

p (E), use the functorial property of Hp to
deduce a countradiction.)

3. Later on, Grothendieck, Barthlott, Illusie and various other people constructed a good K-
coefficient cohomology theory for some p-adic field K. It is called the crystalline coho-
mology. However, the coefficient field K usually depends on k, and is some very large field
extension of Qp.


