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Problem set 5

Below you will find problems for problem set five. We divide the problem sets into three parts -
beginner, intermediate and advanced.

Feel free to go back and forth between the theory and the problems you like. There is absolutely
no pressure to learn all this material at one go. Take your time and keep coming back to it as
you move forward in your learning. Please be kind to yourself and your peers while learning and
discussing the material. Most importantly, have fun :)

Beginner

Problem 1 (Review on algebraic number theory). Let E/F be a finite extension of number fields.
Let p be a prime of F and p|p be a prime of E. Denote Ip|p ⊆ Gp|p ⊆ Gal(E/F ) be the inertia and
decomposition groups of p. Let L/F be another finite extension, and let M = EL. Write P for a
prime of M lying over p and let q be the prime ideal P|L.

1. Let EIp|p and EGp|p be the fixed fields of the respective groups. Show that EIp|p (resp. EGp|p)
is the largest among the subfields K ⊆ E such that p|K is unramified (resp. totally split)
over p. Show that EIp|p (resp. EGp|p) is the smallest among the subfields K ⊆ E such that p
is totally ramified (resp. the only prime) over p|K .

2. Show that if p is unramified (resp. totally split) in both E and L, then it is unramified (resp.
totally split) in M .

3. If E/F is Galois and p|p is unramified (resp. totally split), show that P|q is unramified (resp.
totally split).

4. Give an example that E,L are both Galois, and p is totally ramified in both E,L, but not
totally ramified in M .

5. Justify the assertion: Galois extensions of F are completely determined by the primes of F
that are totally split in the extension (Hint: Use Chebotarev’s density theorem).

Problem 2 (Hilbert class field). The Hilbert class field H(K) of a number field K is the maximal
unramified1 abelian extension of K. It is a consequence of Artin’s reciprocity law that H(K) is a
finite extension of K of degree #Cl(K) and there is an isomorphism

Cl(K)
∼−→ Gal(H(K)/K), p → Frobp,

Here, Frobp is defined as follows: Pick any P lying above p, since H/K is unramified, we have that
DP|p ≃ Gal(κP/κp), where κp stands for the corresponding residue field. Define Frobp to be the
Frobenius of Gal(κP/κp). Since H(K)/K is abelian, Frobp is independent of the choice of P. We
will take this result for granted.

1including being unramified at infinite places. This means, a real embedding extends to a real embedding.



1. Show that H(Q(
√
−163)) = Q(

√
−163), while H(Q(

√
−5)) = Q(

√
−5, i).

2. Find H(Q(
√
−15)).

3. Show that every prime ideal p of K decomposes into a product of #Cl(K)/f primes in H(K),
where f is the order of p in Cl(K). In particular, if p is principal, then it totally splits in
H(K).

Problem 3. Show that the j(
√
−5) = a + b

√
5, where a, b ∈ 1

2Z. One can then use numerical
methods to determine a and b.

Problem 4. As a consequence of PSET 4 Problem 6, we have shown that if K is an imaginary
quadratic field whose discriminant is a prime l, then Cl(K)[2] = 1. Give another proof of this
fact using Hilbert class field (Hint: show that every quadratic extension of K is ramified at some
prime). See Problem 9 for a generalization.

Problem 5. Let E be an elliptic curve over C (with or without CM). Assume that its j-invariant
is not 0 or 1728. Let w = 27j/j − 1728. Then show that the Weierstrass equation for E can be
written in the form y2 = 4x3 − u2wx− u3w for a unique u ∈ C∗. Conclude that E can be defined
over Q(j). As for the two exceptions, we have already seen that elliptic curves corresponding to
those j-invariants can be defined over Q.

Problem 6. Show that the map X(N) → X(1) is ramified at exactly j = 0, 1728,∞ with ramifi-
cation index 3, 2, N , respectively. Use Riemann–Hurwitz formula, prove that

g(X(N)) = 1 +
N2(N − 6)

24

∏
p|N

(1− p−2). (1)

What are the values of N such that g(X(N)) = 0 ?

Intermediate

Problem 7. Let E be an elliptic curve over Q. Show that EndQ(E) = Z.

Problem 8. LetK be an imaginary quadratic field of discriminantD and L be its Hilbert class field.
Let d be the number of primes dividing D, and let p1, . . . , pr be the odd primes dividing D (so that
d = r or d = r+ 1 according to whether D ≡ 1 or d ≡ 0 (mod 4)). Set p∗i = (−1)(pi−1)/2pi. Let M
be the unramified abelian extension of K corresponding to the subgroup Gal(L/K)2 ⊂ Gal(L/K).

1. Let G = Gal(L/Q) = Gal(L/K) ⋊ (Z/2Z), where the nontrivial element of Z/2Z acts
on Gal(L/K) by conjugation of complex conjugation. Note that under the isomorphism
Gal(L/K) ≃ Cl(K), the nontrivial element of Z/2Z sends an element of Cl(K) to its in-
verse. Show that M is the maximal unramified extension of K abelian over Q by proving
Gal(L/K)2 = [G,G], where [G,G] is the commutator subgroup of G. Hint: For one direction,
show that G/Gal(L/K)2 ≃ (Cl(K)/Cl(K)2)× (Z/2Z).

2. Let a ∈ Z with a | D and a ≡ 1 (mod 4). Show that K ⊂ K(
√
a) is unramified. Hint: Note

that D = ab, where K(
√
a) = K(

√
b). Consequently, by Problem 1, K ⊂ K(

√
p∗1, . . . ,

√
p∗r)

is unramified.

3. Show that M = K(
√

p∗1, . . . ,
√
p∗r).



Problem 9 (Continuation of Problem 4 and Problem 8). Use Hilbert class field, prove the following
theorem 2:
• (Gauss) If K is an imaginary quadratic field whose discriminant is D, then Cl(K)[2] ≃ (Z/2)d−1,
where d is the number of prime factors of D.

Use this to deduce a classification result on CM elliptic curves defined over R.

Problem 10. For N ≥ 3, compute the dimension of the space MN,2k of weight 2k modular forms
of level N (Hint: use PSET 4 Problem 10 and Problem 6).

Advanced

Problem 11. For an integer D > 0, the Hurwitz class number H(D) is defined to be the
weighted size of SL2(Z)-equivalence classes of positive definite binary quadratic forms

ax2 + bxy + cy2, with discriminant b2 − 4ac = −D, a, b, c ∈ Z.

Here the forms equivalent to a(x2+y2) and a(x2+xy+y2) are counted with multiplicities 1/2 and
1/3 respectively. When m is not a perfect square, show that

1. (Hurwitz’s formula) ∑
dd′=m

max{d, d′} =
∑

t∈Z,4m−t2>0

H(4m− t2).

(Hint: use PSET 4 Problem 12).

Problem 12 (Explicit local class field theory (Lubin–Tate theory)). Let K be a local field with a
uniformizer π and residue characteristic p. The main theorem of local class field theory states that
there is a unique group homomorphism (called the Artin homomorphism)

θ : K∗ → Gal(Kab/K)

such that for every finite abelian extension L/K, the induced morphism K∗/N(L∗)
∼−→ Gal(L/K).

In other words, θ induces an isomorphism θ̂ : K̂∗ ∼−→ Gal(Kab/K) of topological groups, where

K̂∗ is the completion of K∗ for the topology generated by {πn}n≥1. Recall that for imaginary
quadratic fields, the maximal abelian extension can be generated by the j-invariant and torsion
points on a certain elliptic curve. Lubin–Tate theory is its local counterpart: it claims that the
maximal abelian extension of K can also be generated by torsion points on a certain “formal group
of dimension 1”.

1. Show that K̂∗ = O∗
K× Ẑ (depending on the choice of π). Show that the fixed field of θ̂(O∗

K) is

the maximal unramified extension Kunr/K. Let Kπ be the fixed field of θ̂(Ẑ), it is a maximal
totally ramified extension of K. We have Kab = KunrKπ.

2. Show that Kunr/K can be constructed as Kunr =
⋃

(n,p)=1K(ζn). So it suffices to understand
Kπ/K. This is achieved by adjoining torsions of the “Lubin–Tate formal group”, as we will
explain.

2It is also possible to prove it by using quadratic lattices, which is Gauss’ original proof.



3. For any commutative ring A, a (commutative) formal group law over A is a power series
F ∈ A[[X,Y ]] such that (commutativity) F (X,Y ) = F (Y,X), (identity) F (X, 0) = X and
(associativity) F (X,F (Y, Z)) = F (F (X,Y ), Z). We will writeX+FY := F (X,Y ). Show that
inverse exists, i.e., there is a unique element h(T ) ∈ TA[[T ]] such that F (f(T ), h(f(T ))) = 0
for all f(T ) ∈ TA[[T ]].

An endomorphism f : F → G between formal group laws is a power series f ∈ TA[[T ]] such
that f(X +F Y ) = f(X) +G f(Y ). So we can talk about the endomorphism ring End(F ). A
formal A-module is a formal group law F together with a injection A ↪→ End(F ).

4. Let Fq be the residue field of K. Let f = πT + T q ∈ TOK [[T ]]3. Show that there is a unique
formal group law Ff over OK such that f ∈ End(Ff ). It is called the Lubin–Tate formal
group law for f . Furthermore, for every a ∈ OK , show that there is a unique [a]f ∈ TOK [[T ]]
such that [a]f = aX +O(X2) and [a]f ◦ f = f ◦ [a]f . Then show that [a]f ∈ End(Ff ), hence
there is an injection OK ↪→ End(Ff ), making Ff a formal OK-module.

5. Let Λf be the set mOK equipped with the group structure x +Λf
y = Ff (x, y). Let Λf,n be

the set of n-torsion points of Λf under this group structure. Let Kf,n := K(Λf,n). Show that
Λf,n ≃ OK/πn and Kf,n is a totally ramified Galois extension of K of degree (q − 1)qn−1.

6. Show that the action of OK on Λf induces an isomorphism (O/πn)×
∼−→ Gal(Kf,n/K) (so

Kf,n/K is abelian). Deduce that Kπ =
⋃

nKf,n.

3More generally, one can take f to be any series with f(T ) = πT + O(T 2) and f(T ) ≡ T q mod π. But it turns
out that all formal groups arising this way are isomorphic.


