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Problem set 4

Below you will find problems for problem set four. We divide the problem sets into three parts -
beginner, intermediate and advanced.

Feel free to go back and forth between the theory and the problems you like. There is absolutely
no pressure to learn all this material at one go. Take your time and keep coming back to it as
you move forward in your learning. Please be kind to yourself and your peers while learning and
discussing the material. Most importantly, have fun :)

Beginner

Problem 1. 1. For N ≥ 1, find the cardinality of |SL(Z/NZ)|. (Hint: Do this for N = pn for
n ≥ 1 and then use the Chinese remainder theorem)

2. Show that the map Γ1(N) → Z/NZ given by(
a b
c d

)
7→ b mod N

has kernel Γ(N)

3. Show that the map given by Γ0(N) → (Z/NZ)∗(
a b
c d

)
7→ d mod N

has kernel Γ1(N)

4. Use previous parts to compute the index of Γ(N), Γ1(N), Γ0(N) in SL2(Z), respectively. In
particular note that the index is finite.

Problem 2. Show that the modular curve Y (1) = H/SL2(Z) has exactly one cusp. Moreover,
show that the modular curves X(N), X1(N) and X0(N) have only finitely many cusps.

Problem 3. Suppose that N > 2 for this problem. For all modular curves mentioned above
convince yourselves that we can define a well defined map X → X(1) where X = X(N), X1(N) or
X0(N).

1. Show that the degree the map X0(N) → X(1) is [Γ0(N) : SL2(Z)] which is computed in
problem 1.

2. However, the degree of the map in the other two cases is given by [Γ : SL2(Z)]/2 where
Γ = Γ(N) or Γ1(N). (HINT: Note that -I acts trivially on H and this parity is seen based in
whether −I is in the congruence subgroup or not.)

Problem 4. As seen in the lecture, the modular curves corresponding to the congruence subgroups
we saw above have a “moduli interpretation”.



1. We recall that the affine part of X(1) = H/SL2(Z) parametrizes elliptic curves over C up to
isomorphism. This space is along with the cusp ∞ is P1.

2. The affine part of X0(N) parametrizes isomorphism classes of pairs [E,C] where C is a cyclic
subgroup of E of order N.

3. The affine part of X1(N) parametrizes isomorphism classes of pairs [E,P ] where P is a point
of E of order N.

4. The affine part of X(N) parametrizes isomorphism classes of pairs [E,P,Q] where P,Q are
basis for E[N ] such the the Weil pairing on them e(P,Q) = −1 ∈ Z/NZ.

A. Similar to problem 3, more generally convince yourselves that we have maps

X(N) → X1(N) → X(N) → X(1).

B. Can you find an interpretation of these maps in terms of the points they parametrise?

C. Show that the map X(N) → X(1) is ramified at most at ∞ (cusp), or the two points corre-
sponding to elliptic curves with extra automorphims (j = 0 and 1728).

Problem 5 (Y (N) is a K(π, 1)1). Show that for N ≥ 3, Γ(N) acts freely on H. For each n ≥ 1,
compute the homotopy group πn(Y (N)), where we view Y (N) as a differentiable manifold.

Problem 6. Let F = {τ ∈ H||ℜ(τ)| ≤ 1
2 , |τ | ≥ 1} be a fundamental domain for Y (1) = SL2(Z)\H.

1. Describe the points τ ∈ F such that the corresponding elliptic curve E can be defined over
R, i.e., find {τ ∈ F | j(τ) ∈ R}.

2. Let l ≡ −1 (mod 4) be a prime number. Show that up to isomorphism over C, there is

a unique elliptic curve E over C with CM by Z[1+
√
−l

2 ], such that j(E) ∈ R, and j(E) =

j(1+
√
−l

2 ).

Problem 7 (Heegner points over C). Let N ≥ 1 be an integer. Let K be an imaginary quadratic
field with discriminant D and OK be its ring of integers. Assume D ≡ 1 (mod 4) and (N,D) = 1.

1. Show that there is a 1-1 correspondence between pairs ([a], n), where [a] ∈ ClK , n ⊂ OK an
integral ideal such that OK/n ≃ Z/NZ, and equivalence classes of pairs of elliptic curves
having CM by OK , together with a cyclic degree N isogeny. The correspondence is given by

([a], n) ↔ (C/a idC−−→ C/an−1).

2. Let N = pr11 · · · prss be the prime factorization of N . Show that the existence of integral ideals
n ⊂ OK satisfying OK/n ≃ Z/NZ is equivalent to all pi split in K. In this case, there are
exactly 2s such ideals of norm N .

Problem 8. Here are some old PSET problems which were intermediate or advanced, but are now
within beginners’ grasp. Recall that Y (1) is the modular curve with level 1, viewed as a curve over
Q. A Tn-Hecke correspondence Tn ⊆ Y (1)× Y (1) is a divisor parametrizing isomorphic classes
of a pair of elliptic curves (E1, E2) with a degree n isogeny E1 → E2. Show that:

1In algebraic topology, this is called an Eilenberg–MacLane space.



1. T1 is nothing other than the diagonal.

2. Tm ⊆ Tmn2 . In particular, Tn may be non-irreducible.

3. Tn is cut out by the equation Φn(x, y) = 0, where x, y are coordinates on two copies of Y (1)’s,
respectively. Deduce that Tn is also a curve over Q.

4. Tn contains a Zariski dense collection of CM points (a CM point of Y (1)n is a point corre-
sponding to a product of n CM elliptic curves).

Intermediate

Problem 9. This is a continuation of Problem 8:

1. Fix a complex elliptic curve E, show that there are
∑

d|n d many equivalent classes of isogeny

E → E′ with degree n. Here E → E′ and E → E′′ are called equivalent, if there is an
isomorphism E′ → E′′ that commutes with the respective isogenies (Hint: consider matrices
in M2(Z) with determinant n).

2. For two divisors in C,D ⊆ X(1) ×X(1). We write C ·D for the number of intersections of
C and D (counting multiplicities). Let T n be the Zariski closure of Tn in X(1)×X(1). Fix
e ∈ X(1)(C), compute T n · (e×X(1)), T n · (X(1)× e) and T n · T 1.

The number T n · T 1 is of particular interest: it almost counts the number of elliptic curves
together with a degree n isogeny to itself (though there is over-counting at ∞), see Problem
12.

Problem 10 (Modular forms). Let Γ be one of the groups Γ(N), Γ0(N) and Γ1(N). A level Γ
modular form of weight k is a holomorphic function f : H∗ → C such that f(gτ) = (cτ + d)−kf(τ)

for all g =

[
a b
c d

]
∈ Γ. Show that the global section of the line bundle ω⊗k of the (compactified)

modular curve X(Γ) is isomorphic to the space of level Γ modular forms of weight 2k. Here ω is
the tangent bundle of X(Γ).

Problem 11. Show that for an elliptic curve E over a local field K = Qq with good reduction, the
identity component of the local l-adic monodromy (i.e, the Zariski closure of the image of Gal(K)
in GL(Vl(E))) is a torus. Use this, deduce that when K is a local field, the analogue of Tate’s
isogeny theorem “Hom(E1, E2)⊗ Zl = HomGal(K)(Tl(E1), Tl(E2))” is false.

Advanced

Problem 12. This is a continuation of Problem 8 and Problem 9. Show that when n is not a
perfect square, the local intersection number of T n · T 1 at (∞,∞) is

∑
dd′=nmin{d, d′} (Hint: use

Tate curve). Conclude that the number of elliptic curves together with a degree n isogeny to itself
is

∑
dd′=nmax{d, d′}. For example, when n = 2, there are 4 such elliptic curves with degree 2

isogenies, what are they ? (cf. PSET 3 Problem 5)

Problem 13 (Hodge structures and Mumford–Tate groups). Let A be a subring of R (ususally
taken as Z,Q or R). An A-Hodge structure of is a finite free A-module HA that admits a Hodge
decomposition

HA ⊗ C =
⊕

Hp,q, (1)



where each Hp,q is a C-vector space satisfying Hp,q = Hq,p. A morphism of A-Hodge structures is
a morphism of A-modules which respects the Hodge decomposition. Therefore, we have a notion
of the category of A-Hodge structures. An A-Hodge structure is called pure of weight n,
if Hp,q = 0 for all p + q ̸= n. Let Hn =

⊕
p+q=nH

p,q, it is an R-vector space. The weight
decomposition induced by the Hodge decomposition is

HA ⊗ R =
⊕
n∈Z

Hn. (2)

It is a decomposition over R.

1. The Deligne torus S an algebraic group over R, defined as the Weil restriction of Gm,C
from C to R. This means, S admits the following funtor of points: S(R) = (R ⊗ C)∗ for
all R-algebra R. Show that S is a rank 2 torus over R with a Gal(R)-invariant isomorphism
S ⊗ C ≃ Gm,C × Gm,C, where Gal(R) acts on the left over the scalar C, and on the right
by swapping the two factors. There is a cocharacter c0 : Gm,R → S defined by the inclusion
R∗ ↪→ C∗ (over R-points).

2. Show that the category of R-Hodge structures is equivalent to the category of finite dimen-
sional S-representations: an R-Hodge structure HR is the same as a morphism S → GL(HR)
(where we view HR as an R-vector space). Show that the cocharacter c0 induces the weight
decomposition. (Hint: consider two characters z resp. z: S⊗C = Gm,C×Gm,C → Gm,C send-
ing (w1, w2) to w1 resp. w2. Show that the cocharacter group X∗(S) := Homgp(S⊗C,Gm,C)
is Zz ⊕Zz, with Gal(R)-action swapping z and z. Then use the fact that a representation of
a torus admits splitting indexed by its cocharacter group).

3. For a Z or Q-Hodge structure H, define its Mumford–Tate group MT(H) as the samllest
Q-algebraic subgroup of GL(HQ) through which the representation S → GL(HR) factors.
Show that MT(H) is connected, and contains the central torus Gm,Q ⊆ GL(HQ) if H is pure
of nonzero weight.

4. As we have seen in PSET 1 Problem 11, the category of elliptic curves over C is equivalent
to the category of rank 2 pure Z-Hodge structures of type (1, 0) + (0, 1), the equivalence
can be constructed as E → H1(E,Z) (or H1(E,Z)). We write MT(E) := MT(H1(E,Q)) ⊆
GL(H1(E,Q)) ≃ GL2,Q for the Mumford–Tate group of E. Show that MT(E) = GL2,Q if
E is non-CM, and is the Weil restriction of Gm,K from K to Q (in particular it is a rank 2
torus), if E admits CM by an order of K.

5. Let E be an elliptic curve over a number field K ⊆ C. In PSET 3 Problem 10 we defined the
l-adic monodromy group G◦

l (E) as the Zariski closure of the image of Gal(K) in GL(Vl(E)).
Show that for every l, there is a canonical identification H1(EC,Z)⊗Ql = Vl(E).

6. Prove the Mumford–Tate conjecture for elliptic curves: under the identification in 5, we
have MT(EC)⊗Ql = G◦

l (E).


