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Problem set 3

Below you will find problems for problem set one. We divide the problem sets into three parts -
beginner, intermediate and advanced.

Feel free to go back and forth between the theory and the problems you like. There is absolutely
no pressure to learn all this material at one go. Take your time and keep coming back to it as
you move forward in your learning. Please be kind to yourself and your peers while learning and
discussing the material. Most importantly, have fun :)

Beginner

Problem 1. Consider the following elliptic curves:

E : y2 = x3 + x

E7 : y
2 = x3 + 49x

1. Compute the j-invariant of the elliptic curves. Conclude that the two elliptic curves are
isomorphic over C.

2. Use sage or magma to compute the ranks of the elliptic curve. Conclude that they are not
isomorphic over Q.

3. Can you find an isomorphism between them over an extension of Q?

Problem 2. Let p ≥ 5 be a prime. Consider the following elliptic curves over Q:

E1 : y
2 = x3 + 1

E2 : y
2 = x3 + p6

1. Find an isomorphism E2 → E1 over Q.

2. Show that E1 has good reduction at p while E2 does not.

Problem 3. Let E be an elliptic curve with CM by an order O in a quadratic imaginary field.
Show that j(E) ∈ Z if and only if O has class number 1.

Problem 4. Let E/C be an elliptic curve associated to the lattice Λ. Suppose E has CM by an
order O in a quadratic imaginary field K. Let α ∈ O. Show that the endomorphism ϕα has degree
NmK/Qα.

Problem 5. Let E be an elliptic curve over C with an endomorphism ϕ : E → E of degree 2.

1. Show that E has complex multiplication.

2. Notation as in the previous problem. Show that there are only three possibilities for α:



(a) α = 1 +
√
−1, O = Z[

√
−1];

(b) α =
√
−2, O = Z[

√
−2];

(c) α = 1+
√
−7

2 , O = Z[1+
√
−7

2 ].

3. Find the j-invariants for the three isomorphism classes.

Problem 6. It is a well known result that there is no elliptic curve over Q with everywhere
good reduction. But there do are elliptic curves over quadratic extensions with everywhere good
reduction. Show that

E : y2 + xy +

(
5 +

√
29

2

)2

y = x3

over K = Q(
√
29) has everywhere good reduction.

Problem 7 (eπ
√
163 is an almost integer). Consider the quadratic field F = Q(

√
−163). We note

that this is UFD and hence the class group cl(OF ) = 1. Conclude that the j-invariant of the elliptic
curve E corresponding to the lattice OK is integral. Moreover, using the the q(= e2πiτ ) expansion
of j given by

j(q) = 1/q + 744 + o(q)

Conclude that eπ
√
163 is almost an integer.

Indeed plugging in a calculator shows that

eπ
√
163 = 262537412640768743.99999999999925......

Intermediate

Problem 8. Consider the curve E : y2 = x3+x over Q. We know that the endomorphism algebra
of this curve is given by Q(i). Show that the field Q(i)(E(Q)[n]) is an abelian Galois extension of
Q(i).

Problem 9. Let E/K be an elliptic curve. We denote by S a finite set of primes of OK and by
OK,S the localization of OK at these primes. Suppose that E/OK,S is an (integral) elliptic curve
with generic fiber E. In the following, we will write p for a prime of OK dividing an integer prime
(p) ⊆ Z, and p /∈ S. We will also write Ek(p) for the reduction of E modulo p.

1. Let Z be the ring of algebraic integers. Choose a prime p in Z that lies above p. Show that
Z/p ≃ Fp. Check that once fixing p, the reduction map E(Q) → Ek(p)(Fp) is well defined.

2. Show that the kernel E [n] of the n-th power map E n−→ E is flat over OK,S . If you are not
familiar with scheme theory, just take this for granted.

3. Let p|p be a prime not in S and let n be coprime to p. Use 2 to show that the reduction map
on n-torsion points E(Q)[n] → Ek(p)(Fp)[n] is bijective. In particular, if l ̸= p, the reduction

induces an isomorphism of the Tate modules Tl(E)
∼−→ Tl(Ek(p)).

4. Show that the Gal(k(p))-module Tl(Ek(p)) is obtained from the Gal(K)-module Tl(E) by first
restricting to the decomposition group Dp and then quotient by the inertial group Ip. In
particular, Ip acts trivially on Tl(E).



5. The famous criterion by Néron–Ogg–Shafarevich claims the inverse: if Ip acts trivially on
Tl(E), then E has good reduction at p.

Remark 1. Instead of using scheme theory, 3 can also be proved using formal group laws (cf.
Arithmetic of Silverman chapter IV and VII). If you are not familiar with both of them, feel free
to take 2 and 3 for granted.

Problem 10 (l-adic monodromy). Let E be an elliptic curve over a field K finitely generated
over a number field or a finite field. Recall that for any prime l ̸= charK, the Tate module
Vl(E) := Tl(E) ⊗ Ql is a dimension two Ql-representation of Gal(K) := Gal(K/K). Therefore,
there is a map ρ : Gal(K) → GL(Vl(E)) ≃ GL2(Ql). The Zariski closure of im ρ in the Ql-algebraic
group GL2,Ql

is a Ql-algebraic subgroup of GL2,Ql
(it is OK that you don’t know what an algebraic

group is, just view it as a Lie group). This subgroup is called the l-adic monodromy group of
E, denoted Gl(E).

1. Let E′ be the base change of E to a finite extension K ′. Show that Gl(E
′) ⊆ Gl(E). Further-

more, show that G◦
l (E

′) = G◦
l (E) (here G◦

l denotes the identity component, i.e., the connect
component which contains identity, it is itself an algebraic subgroup).

2. Show that EndGl(E)(Vl(E)) = End(E) ⊗ Ql and EndG◦
l (E)(Vl(E)) = End(EK) ⊗ Ql (Hint: a

version of Tate conjecture for elliptic curves claims that EndGal(K)(Vl(E)) = End(E) ⊗ Ql.
The conjecture was proven by Tate for finite fields, by Zarhin for finite generated fields over
finite fields, and by Faltings for finite generated fields over number fields).

3. Using 2, show that base changing E from K to an inseparable extension doesn’t change
End(E)⊗Q.

Advanced

Problem 11 (l-adic monodromy, continued). This is a continuation of Problem 10. All the setups
will be the same.

1. Suppose that K is finite. If E is supersingular, show that G◦
l (E) is the rank 1 diagonal

torus, i.e. the center of GL2. If E is ordinary, show that G◦
l (E) is a rank 2 torus containing

the diagonal torus. Can you give an explicit description of this torus? (Hint: look at the
characteristic polynomial of the Frobenius endomorphism of E).

2. How does the structure of G◦
l (E) in 1 reflects the identities in Problem 10 2?

3. Suppose that K is a number field. Show that Gl(E) contains a rank 2 torus containing the
diagonal torus. Deduce that when E is CM, then G◦

l (E) is a rank 2 torus containing the
diagonal torus. Can you give an explicit description of this torus?

4. Suppose that K is a number field. If E is non-CM, show that Gl(E) = GL2.

Problem 12 (Families of elliptic curves). Let X be a complex variety. A relative elliptic curve
overX is a smooth projective variety E π−→ X of relative dimension 1, together with a (commutative)
relative group law m : E ×X E → E , a relative identity section id : X → E , and a relative inverse
map ι : E → E , such that for every point x ∈ X(C), the fiber Ex is an elliptic curve with group law
mx, identity id(x) and inverse map ιx. Roughly speaking, E is an algebraic family of elliptic curve
parametrized by X. E is said to be isotrivial, if there is an elliptic curve E/C, such that E ≃ Ex
for all x ∈ X(C). E is said to be trivial, if there is an elliptic curve E/C such that E ≃ X × E.



1. Take the base X = Gm := SpecC[t, t−1]. The relative projectivization E ⊆ Gm × P2 of the
affine family

E ′ := Spec

(
C[t, t−1][x, y]

y2 = x3 + tx

)
⊆ Gm × A2 → Gm

is a relative elliptic curve over Gm. Show that it is an isotrivial family. Find a finite étale
cover of Gm over which E is trivial (cf. Problem 1).

2. More generally, if E is isotrivial, then it is trivial up to an étale cover, i.e., there is a finite
étale cover X ′ → X such that the pullback family E ×X X ′ → X ′ is trivial (Hint: in PSET 2,
we defined the modular curve of level 1 as Y (1) := H/ SL2(Z), which is a fine moduli space of
elliptic curves. First, show that E induces a morphism X → Y (1). Then, use that fact that
for N ≥ 3, Y (N) := H/Γ(N) is an algebraic curve, which is also a finite étale cover of Y (1)).

3. If X is projective, then E is isotrivial. In particular, if X = P1, then E is trivial (Hint: show
that Y (N) is affine).

4. If every fiber is CM, then E is isotrivial. In particular, if X = A1, then E is trivial.

Problem 13 (A p-adic proof of integral j-invariant). In this problem, we give a p-adic proof of
the fact that the j-invariant of a CM elliptic curve over a number field K is an algebraic integer.
Refer to Advanced topics in Silverman for this proof. Let K be a p-adic field such that E/K
satisfies |j(E)| > 1. We take for granted the Tate uniformisation for elliptic curves which gives a
parmetrisation of the K points of E: We have an isomorphism

φ : E(K) → K
∗
/qZ

for some unique q ∈ K∗ such that |q| < 1 and −ordv(q) = ordv(j(E)). Further the map φ commutes
with the Galois action on both sides. In particular, E(L) = L∗/qZ for any finite extension L of K.

1. Let l be a prime not dividing ordv(j) where v is the valuation on K. Find a basis for E[l]
and an element σ ∈ Gal(K/K), in the inertia subgroup, such that

σ ≡
(
1 1
0 1

)
mod l

HINT: First convince yourself that it is OK to base change and possibly work with a finite
extension of K. So assume that K contains ζ, a primitive lth root of unity.

2. Conclude from 1, that if E is an elliptic over a number field F . Then for almost all but finitely
many primes the image of Gal(F/F ) → Tl(E) contains an element satisfying the condition
in 1.

3. Let F/Q be a number field. Further, suppose that E/F does not have j-invariant in OF . We
will show that ψ ∈ Z. Let ψ ∈ End(ψ). We know that ψ acts on Tl(E) via, say, ψl ∈M2(Zl).

Show that

ψ ≡
(
a b
0 a

)
mod l

4. Let m = deg(1 + ψ)− deg(ψ)− 1. Using the part 1, show that m ≡ 2a mod l.

5. Next, show that deg(m− 2ψ) ≡ 0 mod l for all but finitely many l.

6. Conclude that ψ ∈ Z. This completes the proof that End(E) = Z and hence E is not CM.


