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Problem set 1

Below you will find problems for problem set one. We divide the problem sets into three parts -
beginner, intermediate and advanced.

Feel free to go back and forth between the theory and the problems you like. There is absolutely
no pressure to learn all this material at one go. Take your time and keep coming back to it as
you move forward in your learning. Please be kind to yourself and your peers while learning and
discussing the material. Most importantly, have fun :)

Beginner

Problem 1. Let (E,O) be an elliptic curve defined over an algebraically closed field K. A Weier-
strass equation embeds E in P2. Let P,Q ∈ E(K).

(a) Let L be the line connecting P and Q (tangent line to E if P = Q), and R the third point of
intersection of L with E. Let L′ be the line connecting R and O. Explain why the third point
of intersection of L′ with E is P +Q, where + is the group law induced from E(K̄) ≃ Pic0(E).

(b) Describe a geometric way to find −P .

(c) Suppose E is defined by the Weierstrass equation

y2 = x3 + 17

and P = (−1, 4), Q = (2, 5). Compute P +Q.

Problem 2. Prove that isogeny is an equivalence relation. Then prove that given an elliptic curve
X, there are countably many curves X ′ isogenous to it.

Problem 3. Let K be a field of characteristic 0 and let E be the elliptic curve defined by the
Weierstrass equation

y2 = x3 + x.

Find an endomorphism ϕi ∈ End(EK̄) such that ϕi ◦ ϕi is the multiplication by −1 map. In
particular, conclude that E has complex multiplication.

Problem 4. (Automorphisms of an elliptic curve) For this problem, we require that the char
K ̸= 2, 3. Let E be an elliptic curve over a field K given by the equation

y2 = x3 + ax+ b (1)

(a) Let a = 0 and b = 2. Write down the automorphisms of the elliptic curve over K

(b) Let a = 3 and b = 0. Write down the automorphisms of E over K

(c) What are the automorphisms of an elliptic curve given by the equation (1) in the case ab ̸= 0.



(d) Conclude that the order of the automorphism group of an elliptic curve as given above divides
24. In particular, it is finite.1

Problem 5. Let E be an elliptic curve over a field K of characteristic 0 or p. Let l be a prime
(For the latter case, l ̸= p). Let φ be an endomorphism of E.

(a) Show that φ induces an endomorphism of E[ln], the ln torsion of E, for all n ≥ 1.

(b) Deduce from (a), that φ = (φn)n≥1 where each φn is a 2× 2 matrix(
a b
c d

)
∈M2(Z/lnZ)

(c) Let y1, y2, . . . yn . . . such that yn is an ln-torsion point for each n ≥ 1. Further, suppose
yn ≡ yn−1 mod ln−1, then show that any φ preserves the relation of this system. Can you
write the relation in terms of φn?

(d) Deduce that φ can be written as an element of M2(Zl). Moreover, use this to show that φ
satisfies a monic polynomial with coefficients in Zl.

(e) In fact the determinant and the trace of this matrix is given by the degree of φ. See Propo-
sition V.2.3 in Silverman’s Arithmetic of elliptic Curves. In particular, this shows that the
characteristic polynomial of φ is in fact defined over Z.

Intermediate

Problem 6. Consider the elliptic curve

E : y2 = x3 + 3x

The same proof as in 3 shows that Z[i] ⊂ End(E). In particular 1 + i ∈ End(E). Show that the
map 1 + i on E(Q(i)), that is the Q(i)-rational points of E, is not surjective.

HINT: Consider the multiplication by 2 map [2] = [(1 + i)(1 − i)]. Show that it is enough to
show [2] is not surjective on Q(i)-rational points and then prove that.

Problem 7. Let (E,O) be an elliptic curve over an algebraically closed field K with charK ̸= 2.

(a) Use Riemann-Roch to show that the divisor (2O) on E defines a morphism f : E → P1 of
degree 2.

(b) Show that f is ramified at exactly four points, with O being one of them.

(c) Show that if P1, P2, P3 are three distinct points of P1, then there exists a unique automorphism
φ of P1 such that φ(P1) =∞, φ(P2) = 0, φ(P3) = 1. Thus, if a, b, c are the three branch points
in P1 besides ∞, then there is a unique automorphism of P1 leaving ∞ fixed and sending a to
0 and b to 1, and we may assume that f is branched over the points 0, 1, λ,∞ of P1.

1This is true even in char 2, 3 but requires more effort to prove since we cannot assume the existance of an equation
of form given in 1. See Arithmetic of elliptic curves, Apppendix A pg 410 for a proof.



(d) Let the symmetric group Σ3 act on K\{0, 1} as follows: given λ ∈ K\{0, 1}, permute the
numbers 0, 1, λ according to σ ∈ Σ3, then apply a linear transformation α of P1 that fixes
infinity and sends the first two back to 0, 1, and let α(σ(λ)) be the image of the third. Show
that the possibilities for the orbit of λ, that is α(σ(λ)) consists of λ, 1

λ , 1− λ, 1
1−λ ,

λ
λ−1 ,

λ−1
λ .

(e) Conclude that there is a correspondence between the set of isomorphism classes of elliptic curves
over K, and K\{0, 1} modulo the action of Σ3 described above.

Problem 8. (See problem 5 as well) For an elliptic curve E over a field K of characteristic 0 (or
p). Define its Tate module to be the inverse limit (for a prime l ̸= p)

E[l∞] = lim←−
n

E[ln](K)

For two elliptic curves, E1 and E2 prove that there exists an injective map of groups

Hom(E1, E2)→ Hom(E1[l
∞], E2[l

∞])

Problem 9. Let E be an elliptic curve over C and let n ≥ 1. We can view En as a variety with
a group structure respecting the product structure (such a geometric object is an example of an
abelian variety). Describe the endomorphism ring of En. Show that even though E only admits
finitely many automorphisms, En has infinitely many automorphisms when n ≥ 2.

Advanced

Problem 10. Show that any étale cover of an elliptic curve is an elliptic curve. Moreover, show
that an elliptic curve admits an étale cover of arbitrarily high degree. If you don’t remember
what étale is, that’s OK. Try to use Riemann-Hurwitz Theorem from problem set zero to see what
unramified covers of elliptic curves look like.

Definition 1. (Hodge structures)

1. A pure Z-Hodge structure of weight n is a Z-lattice HZ that admits a Hodge decomposition

HZ ⊗ C =
⊕

p+q=n

Hp,q, (2)

where each Hp,q is a C-vector space satisfying Hp,q = Hq,p. A morphism of pure Hodge
structures of weight n is a morphism of Z-lattices which respects the Hodge decomposition.
Therefore, we have a notion of the category of pure Hodge structures of weight n

2. A pure hodge structure of signature (0, 1)+(1, 0) is a rank two Z-lattice HZ such that HZ⊗C
admits a Hodge decompositionHZ⊗C = H0,1⊕H1,0, whereH0,1, H1,0 are mutually conjugate
C-subspaces. A morphism of two such hodge structure is a morphism of Z-lattices respecting
this structure.

The following problem requires some knowledge of parametrization of elliptic curves over C.

Problem 11 (Torelli theorem for elliptic curves). Show that a pure Hodge structureHZ of signature
(0, 1) + (1, 0) as defined above is equivalent to a complex structure2 of HZ⊗R, which is equivalent
to the data of rank 2 full lattices in C. Use this to show that the category of pure Hodge structures
of signature (0, 1) + (1, 0) is equivalent to the category of elliptic curves defined over C. What can
you say about the Hodge structures that correspond to CM elliptic curves ?

2Recall that a complex structure on a real vector space V is an R-linear map J of V such that J2 = −1



Problem 12 (Reduction of elliptic curves and S-integrality). Let E : y2 = x3+bx+c be an elliptic
curve over Q with b, c ∈ Z. Define a Z-scheme

E/Spec(Z) := Proj

(
Z[x : y : z]

y2z − (x3 + bxz2 + cz3)

)
.

We call E an integral model of E. The mod p reduction of E is the Fp-scheme E ×Spec(Z)Spec(Fp),
denoted by EFp . We say that E has good reduction at p, if EFp is an elliptic curve.

1. Show that for all but finitely many primes p ∈ Z, E has good reduction. Can you find b, c
such that E has good reduction at every prime?

2. Let K/Q be a finite extension, show that any K point x ∈ E(K) extends uniquely to an
OK-point of E . Therefore we can talk about the reduction xp of x over a prime p of OK . Note
that when p|p, xp is an Fp-point of EFp .

3. Let x, y ∈ E(K). Define IK(x, y) to be the set of primes p in OK such that xp = yp. Show
that if x ̸= y, then IK(x, y) < ∞. If F/K is a finite extension, then one can naturally view
x, y as points in E(F ). What is the relation between IK(x, y) and IF (x, y) ?

4. Let x, y ∈ E(Q). For a finite set S of primes p ∈ Z, we say that x is S-integral to y, if there
exists a finite extension K/Q such that x, y ∈ E(K), and IK(x, y) consists of primes that
only lie above primes in S. Convince yourself that the notion of S-integrality doesn’t depend
on the choice of K. Show that if x is a point of E(Q)tors, i.e., the torsion subgroup of E(Q),
then there exists a finite set S with the property that infinitely many points in E(Q)tors are
S-integral to x.

5. However, if x ∈ E(Q) − E(Q)tors, then for any finite set S, there are only finitely many
points in E(Q)tors which are S-integral to x. This is a deep result by Baker–Ih–Ramely (cf.
arXiv.0509485).


