
PAWS 2023 – Elliptic Curves with Complex Multiplication

Problem set zero

Below you will find problems for problem set zero. This contains problems that will help us learn
all the basics required before we move on to PAWS in a few weeks. We divide the problem sets
into three parts - beginner, intermediate and advanced.

Feel free to go back and forth between the theory and the problems you like. There is absolutely
no pressure to learn all this material at one go. Take your time and keep coming back to it as
you move forward in your learning. Please be kind to yourself and your peers while learning and
discussing the material. Most importantly, have fun :)

Preliminaries

Group theory

An important theorem that will give us some context for later. We will encounter these while
studying the “group law” on elliptic curves.

Theorem 1. (Structure theorem) Every finitely generated abelian group is isomorphic to the group
Zn ⊕ Z/p1 ⊕ · · · ⊕ Z/pk for some positive integer n. The integer n is called the rank of the abelian
group.

Algebraic curves

Here are some preliminary definitions. A nice reference for everything below is “Arithmetic of
elliptic curves”. We encourage everyone to look at examples from the book as you learn the
definitions. Throughout this problem set, let K denote a field and K̄ a fixed algebraic closure of
K.

Definition 1. (Affine-n-space over K) Affine n-space (over K), denoted An
K is the set of n-tuples

(x1, . . . , xn), xi ∈ K̄. The set of K-rational points of An
K consists of those n-tuples with coordinates

in K.

Definition 2. (Affine algebraic set) To each ideal I ⊂ K̄[X1, . . . , Xn] we associate the set

VI = {P ∈ An : f(P ) = 0 for all f ∈ I}

An (affine) algebraic set is a set of the form VI for some I. If V is an algebraic set, the ideal of V
is given by I(V ) = {f ∈ K̄[X] : f(P ) = 0 for all P ∈ V }.

Definition 3. (Affine variety) An affine algebraic set V is an affine variety if I(V ) is prime in
K̄[X].

Definition 4. (Affine coordinate ring) Let V be a variety defined over K. Then the affine coor-

dinate ring of V/K is defined by K[V ] = K[X]
I(V/K) where I(V/K) = I(V ) ∩K[X]. It is an integral

domain, and its quotient field, denoted K(V ), is called the function field of V .

Definition 5. (Local ring of a variety) The local ring of a variety V at a point P , denoted K̄[V ]P ,
is the localization of K̄[V ] at the prime ideal {f ∈ K̄[V ] : f(P ) = 0}.



Definition 6. (Dimension of a variety) The dimension of an affine variety V , denoted by dim(V )
is the transcendence degree of K̄(V ) over K̄.

Definition 7. (Non-singular variety) Let V be a variety, P ∈ V , and f1, . . . , fm ∈ K̄[X] a
set of generators for I(V ). Then V is non-singular (or smooth) at P if the m × n matrix
(∂fi/∂Xj(P ))1≤i≤m,1≤j≤n has rank n−dimV . If V is non-singular at every point, then we say that
V is non-singular (or smooth). If the rank is less than n−dimV , then we say the point is singular.

Definition 8. (Projective-n-space) The projective n-space (over K), denoted Pn
K , is the set of (n+

1)-tuples (x0, . . . , xn) such that at least one xi ∈ K̄ is non-zero, modulo the following equivalence
relation: (x0, . . . , xn) ∼ (y0, . . . , yn) if there exists a λ ∈ K̄∗ with xi = λyi for all i. Note that
Pn contains many copies of An. For example, for each 0 ≤ i ≤ n, there is an inclusion An →
Pn, (y1, . . . , yn) 7→ [y1, . . . , yi−1, 1, yi, . . . , yn].

Definition 9. (Projective algebraic set) Let K[x0, . . . , xn] denote the polynomial ring over K̄ in
n + 1 variables. Let I ⊂ K̄[x0, . . . , xn], be a homogenous ideal. We associate a subset VI = {P ∈
Pn : f(P ) = 0 for all homogeneous f ∈ I} to I. A projective algebraic set is any set of the form
VI .

Definition 10. (Projective variety) Let V be a projective algebraic set. The homogeneous ideal
of V , denoted I(V ), is the ideal in K̄[x0, . . . , xn] generated by

{f ∈ K̄[x0, . . . , xn] : f is homogeneous and f(P ) = 0 for all P ∈ V }

A projective algebraic set V is called a projective variety if its homogeneous ideal I(V ) is a prime
ideal in K̄[x0, . . . , xn].

Definition 11. (Dimension and function field of a projective variety) Let V be a projective variety
defined over K, and choose An ⊂ Pn so that V ∩ An ̸= ∅. The dimension of V is the dimension of
V ∩ An. The function field of V , denoted K(V ), is the function field of V ∩ An.

Definition 12. (Non-singular projective variety) Let V be a projective variety, P ∈ V , and choose
An ⊂ Pn with P ∈ An. Then V is non-singular (or smooth) at P if V ∩ An is non-singular at P .

Definition 13. (Rational map between varieties) Let V1 and V2 ⊂ Pn be projective varieties. A
rational map φ : V1 → V2 is a map of the form φ = [f0, . . . , fn], where f0, . . . , fn ∈ K̄(V1) have the
property that for every point P ∈ V1 at which f0, . . . , fn are defined, φ(P ) = [f0(P ), . . . , fn(P )] ∈
V2.

Definition 14. (Regular map betwen varieties) A rational map φ = [f0, . . . , fn] : V1 → V2 is
regular (or defined) at P ∈ V1 if there is a function g ∈ K̄(V1) such that

(i) each gfi is regular at P ;

(ii) for some i, gfi(P ) ̸= 0.

Definition 15. (Curve) A curve is a projective variety of dimension one. We will generally work
with smooth curves and from here on assume that all curves are smooth.

Definition 16. (Order of a meromorphic function on C) Let C be a curve and P ∈ C a smooth
point. Then K̄[C]P is a discrete valuation ring. The normalized valuation on K̄[C]P gives ordP :
K̄(C) → Z ∪ {∞}. A uniformizer for C at P is a function t ∈ K̄(C) with ordP (t) = 1.



Definition 17. (Degree of a map) Let φ : C1 → C2 be a non-constant map of curves defined over
K. If φ is constant, we define the degree of φ to be 0; otherwise we say that φ is finite, and define
its degree by degφ = [K(C1) : φ

∗K(C2)], where φ∗ : K(C2) → K(C1) is an injection of function
fields defined by φ∗f = f ◦ φ.

Definition 18. (Ramification index of a map φ) Let φ : C1 → C2 be a non-constant map of
curves, and let P ∈ C1. The ramification index of φ at P is given by eφ(P ) = ordP (φ

∗tφ(P )) where
tφ(P ) ∈ K(C2) is a uniformizer at φ(P ).

Definition 19. (Divisor group of a curve)

1. The divisor group of a curve C, denoted Div(C), is the free abelian group generated by the
points of C. Thus a divisor D ∈ Div(C) is a formal sum

D =
∑
P∈C

nP (P )

with nP ∈ Z and nP = 0 for all but finitely many P ∈ C.

2. The degree of D is defined by degD =
∑

P∈C nP .

3. A divisor D =
∑

P∈C nP (P ) is effective, denoted by D ≥ 0 if nP ≥ 0 for every P ∈ C.
Similarly, if D1, D2 ∈ Div(C), then we write D1 ≥ D2 if D1 −D2 is effective.

Definition 20. (Divisor class group) Let f ∈ K̄(C). Associate to f the divisor

div(f) =
∑
P∈C

ordP (f)(P )

. A divisor D ∈ Div(C) is principal if it has the form D = div(f) for some f ∈ K̄(C)∗. The divisor
class group of C is the quotient of Div(C) by the subgroup of principal divisors.

Definition 21. (The Riemann Roch space) Let D ∈ Div(C). We associate to D the set of functions

L (D) = {f ∈ K̄(C)∗ : div(f) ≥ −D} ∪ {0}

. It is a finite-dimensional K̄-vector space, and we denote its dimension by l(D).

Definition 22. Let C be a curve. The space of differential forms on C, denoted ΩC , is the K̄(C)-
vector space generated by symbols of the form dx for x ∈ K̄(C), subject to the usual relations:

(i) d(x+ y) = dx+ dy for all x, y ∈ K̄(C);

(ii) d(xy) = xdy + ydx for all x, y ∈ K̄(C);

(iii) da = 0 for all a ∈ K̄.

Definition 23. Let ω ∈ ΩC . The divisor associated to ω is

div(ω) =
∑
P∈C

ordP (ω)(P ) ∈ Div(C)

. Any divisor of the form div(ω) is called a canonical divisor.



Theorem 2. (Riemann-Roch) Let C be a curve and KC a canonical divisor on C. There is an
integer g ≥ 0, called the genus of C, such that for every divisor D ∈ Div(C),

l(D)− l(KC −D) = degD − g + 1

.

Definition 24. (Genus) Keeping the notation above, we define the positive integer g in Theorem
2 to be the genus of the curve C.

Theorem 3. (Hurwitz) Let φ : C1 → C2 be a non-constant separable map of curves. Then

2g(C1)− 2 = (degφ)(2g(C2)− 2) +
∑
P∈C1

(eφ(P )− 1)

. Further, equality holds if and only if char K = 0, or char K = p > 0 and p does not divide eφ(P ).

Magma

Magma is a software package designed for computations in algebra, number theory, algebraic ge-
ometry, and algebraic combinatorics. Here is the link for online magma calculator. For example:

Problem 1. Try the following code:

P<x , y , z> := Pro j e c t i veSpace ( Rat iona l s ( ) , 2 ) ;
C := Curve (P, z∗yˆ2 − xˆ3 + x∗z ˆ 2 ) ;
Dimension (C) ;
I sNons ingu la r (C) ;
Genus (C) ;
p := C ! [ 1 , 0 , 1 ] ;
L := TangentLine (C, p ) ;
L ;

Here is the link for magma handbook.

Beginner Problems

Problem 2 (Counting subgroups). Let p be a prime and let n,m be positive integers. Figure out
the number of subgroups in

1. Z
p ⊕ Z

p

2. Z
pn ⊕ Z

pn

3. Z
m ⊕ Z

m

4. (Zp )
⊕n

5. (Zp )
⊕n ⊕ (Zp )

⊕n, with the additional condition that the projection of the subgroup to each

(Zp )
⊕n is surjective.

Problem 3 (Automorphism groups). Let p be a prime and let n,m be positive integers. Figure
out the automorphism groups of the following groups:

http://magma.maths.usyd.edu.au/magma/handbook/
http://magma.maths.usyd.edu.au/magma/handbook/


1. (Zp )
⊕n

2. ( Z
pm )⊕n

3. ( Z
m)⊕n.

Problem 4. (Hyperelliptic curves)

1. Let y2 = f(x) = adx
d + ad−1x

d−1 + · · · + a0 define an affine curve C for degree d. Let
P = (p0, q0) be a point on the curve. Write down the criteria for P to be a singular point.

2. Now suppose that the curve given in 1. is non-singular. Write down a map from C to P1.
What is the degree of this branched cover of P1?

3. At what points of C is the cover C → P1 ramified?

4. Using all data computed so far, find the genus of C in terms of the degree d.

Problem 5. (Silverman Example 2.9) Consider the map φ : P1 → P1 given by:

φ([X,Y ] = [X3(X − Y )2, Y 5]

Show that the map φ is unramified everywhere except the point [0, 1] and [1, 1]. Find the ramifi-
cation indices in each case as well.

Problem 6. Consider the algebraic plane curve y2 − x3 − x = 0. Show that (0, 0) is a singular
point of the curve.

Problem 7. Let C be a curve and denote its function field by K(C). Explain the correspondence
between K(C) ∪ {∞} and morphisms C → P1 defined over K.

Intermediate problems.

Problem 8. Let φ : C1 → C2 be a map of curves. Prove that the map φ is either constant or
surjective.

Problem 9. Let C be the smooth projective curve associated to the affine plane curve y3+x3 = 1,
and let φ : C → P1 be the map given by the rational function x.

1. Find the ramification points of φ.

2. Compute the genus of C. Check your answer with Magma.

3. Find a map η : C → P1 of degree 2 such that η((1, 0)) = η((0, 1)), and determine the
ramification points of η.

Problem 10. (Arithmetic of Silverman, 2.7) Let f(x, y, z) be a homogenous polynomial of degree
d. Moreover, let f = 0 define a non-singular curve C in P2. Show that the genus of the curve is

(d− 1)(d− 2)

2
.

(Hint: there are at least two ways of doing this. 1. Think about a map C → P1. 2. Compute the
canonical bundle of C in terms of the canonical bundle of P2 (For people familiar with the canonical
bundle)).



Problem 11. For this problem refer to Theorem 2. Let C be a curve and KC be a canonical
divisor.

1. Show that deg(KC) = 2g − 2 and l(KC) = g.

2. Let D be any arbitrary divisor on C. Show that if degD > 2g−2, then l(D) = degD+1−g.

Problem 12. Let C be a curve of genus 1 and P,Q ∈ C. Show that (P ) ∼ (Q) if and only if
P = Q.

Advanced problems

NOTE: For some advanced problems, you will need some knowledge of scheme theory.

Problem 13. Let E be smooth curve. Assume that the genus of E is 1 and that it has a dis-
tinguished point O. Show that E is given by a cubic equation in the plane by following the steps
given below.

1. Compute l(nO) for all n ≥ 1.

2. Use part (1) to pick bases {1, x} and {1, x, y} for the vector spaces L (2O) and L (3O)
respectively. Conclude there must be a linear relation

A1 +A2x+A3y +A4x
2 +A5xy +A6y

2 +A7x
3 = 0

by looking at L (6O).

OR (For students familiar with some scheme theory)

3. Prove that any divisor D of degree 3 on E is very ample. Then use Riemann-Roch to show
|D| gives an embedding into P2. In particular, |3O| gives us an embedding of |E| into P2.

Problem 14 (Play with tangent lines). Suppose that the base field is C. The dual projective space
P2,∗ is the moduli space parametrizing lines in P2. It is isomorphic to P2: a line defined by the
equation Ax+ By + Cz = 0 corresponds to the point [A : B : C] ∈ P2,∗. Let C ⊆ P2 be a smooth
curve of degree d ≥ 1, then the dual curve C∗ is the subset of P2,∗ consisting lines tangent to C.

1. Find explicit equation for the dual of a nondegenerate conic ax2 + by2 + cz2 = 0.

2. Show that C∗ ⊆ P2,∗ is a irreducible closed subvariety of dimension 1. Use an example to
show that C∗ may be singular. What property does C have, if C∗ admits an ordinary node
or an ordinary cusp?

3. The following two numbers are equal: (1) the degree of the dual curve and (2) the number of
tangent lines of C that passes through a fixed general point of P2. Figure out this number in
terms of d.

4. Let C be a smooth planar curve of degree d over C. A point P ∈ C is called an inflection
point of order s, if the intersection multiplicity of C with the tangent line at P is greater or
equal to s. For each s ≥ 3, let IC(s) be the number of inflection points on C of order s. Show
that ∑

s≥3

(s− 2)IC(s) = 3d(d− 2)

.



Problem 15 (Play with étale covers). Let k be an algebraically closed field. A morphism of k-
schemes is said to be étale, if it is flat and unramified. It is said to be finite étale (or an étale
cover), if it is étale and finite. You can think of an étale cover as an analogue of covering spaces in
algebraic geometry.

1. Show that any non-constant map between smooth (affine) curves is flat. (Hint: the local ring
of a smooth curve at a point is a DVR).

2. Give an example of (1) a flat morphism which is ramified, (2) an unramified morphism which
is not flat, (3) an étale morphism which is not finite, (4) a finite morphism which is not étale.

3. Show that P1
k does not admit any nontrivial étale cover.

4. If char k = 0, show that A1
k does not admit nontrivial étale cover. What happens if char k =

p?


