
Reductions of CM Elliptic Curves

Let E : y2 = x3 + Ax + B be an elliptic curve defined over Q. As we discussed, the endomorphism ring
End

Q
(E) is either isomorphic to Z or isomorphic to an order O of an imaginary quadratic field K which is

a free Z-module of rank 2.
For all but finitely many primes p, the reduction of E at p is an elliptic curve Ep defined over Fp. The En-

domorphism ring EndFp
(Ep) is either isomorphic to an order of an imaginary quadratic field or isomorphic

to an order of a quaternion algebra which is a free Z-module of rank 4.
Given a fixed elliptic curve E/Q, We want to discuss the set of primes at which the reduction of E has a

larger Endomorphism ring.

1 Endomorphism Rings of Elliptic Curves over Finite fields

Let E be an elliptic curve over Fq defined by y2 = x3 + ax + b, a, b ∈ Fq. Let p be the characteristic of
Fq. The absolute Galois group Gal(Fp/Fp) ≃ Ẑ is topologically generated by a single element σ, often
referred to as the Frobenius element. For α ∈ Fp, σ(α) = αp. Recall the Galois group Gal(Fp/Fp) acts on
the set of elliptic curves defined over Fp with σ maps E to Eσ : y2 = x3 + apx + bp. Note that the map
E → Eσ : (x, y) 7→ (xp, yp) is an algebraic map (different from a Galois element in Gal(Q/Q) case), thus an
isogeny.

Since E is defined over Fq, it admits an endomorphism ϕ : (x, y) 7→ (xq, yq), the q-th power Frobenius
map. The map ϕ is purely inseparable of degree q.

For simplicity, we can consider E defined over a prime field Fp with p ̸= 2. Since the Frobenius mor-
phism has degree p, we can see that the ring EndFp

(E) has an element with norm p. If EndFp
(E) is isomor-

phic to an order O of an imaginary quadratic field K, then p has to split in K/Q. In this case, we say E is
ordinary.

Definition 1.1. A definite quaternion algebra B over Q is the Q-algebra defined by

B = Q + Qα + Qβ + Qαβ

with multiplication defined by

α2, β2 ∈ Q, α2, β2 < 0, βα = −αβ.

For any prime p, the Qp algebra B ⊗ Qp is either still a division algebra or isomorphic to the matrix
algebra M2(Qp). If B ⊗Qp ≃ M2(Qp), then we say p is split or unramified for B, and if B ⊗Qp is a division
algebra, then we call p ramified. Every quaternion algebra is ramified at finitely many primes and this set
of primes determines B.

An order O ⊂ B is a lattice (a finitely generated Z-module satisfying O ⊗ Q = B) that is also a subring
of B. An order is maximal if it is not properly contained in another order.

If EndFp
(E) is not isomorphic to an order of an imaginary quadratic field, then B = EndFp

(E)⊗ Q is a
definite quaternion algebra over Q with the only ramified finite prime being p. The Endomorphism ring
EndFp

(E) is isomorphic to O ⊂ B which a maximal order of B. In this case, we say E is supersingular.
Note that from our definition, the property for an elliptic curve E/Fq being ordinary or supersingular

does not change under base field extensions. Thus, they are determined by the j-invariants.
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When p is ramified in B, the division algebra B ⊗ Qp has a unique maximal order Op which contains
all elements with non-negative valuation with respect to the unique valuation on B ⊗ Qp extending the
p-adic valuation of Qp. The ring Op has a unique maximal ideal Pp whose residue field is isomorphic to
Fp2 . Moreover, P2

p = pO and the algebra B ⊗ Qp2 ≃ M2(Qp2). The quadratic fields K/Q contained in B are
the ones satisfying B ⊗ K ≃ M2(K), these are exactly the imaginary quadratic fields K/Q in which p is inert
or ramified.

2 Density of Supersingular Primes

Let E/Q be an elliptic curve. Let p > 3 be a prime of good reduction for E. The reduction of E at p is an
elliptic curve Ep/Fp. Let ap ∈ Z be the trace of Frobenius action on Ep[ℓ∞]. Then Ep is supersingular if
and only if ap = 0. From the Hasse bound, we know that −2

√
p ≤ ap ≤ 2

√
p. Thus, if ap is randomly

distributed, then the probability of ap = 0 should be roughly 1
4
√

p . If we sum over all primes p, the number

of primes p < X such that Ep is a supersingular elliptic curve is about
√

X
log X . This is a special case of the

Lang–Trotter conjecture predicting the expectation for the number of supersingular primes for a general
elliptic curve. When an elliptic curve E has complex multiplication, the distribution of ap is known to be
not random.

Theorem 2.1 (Shimura–Taniyama). Let E/L be an elliptic curve with complex multiplication by O ⊂ K. Let
p ⊂ L be a prime lying above the rational prime p at which E admits good reduction. If p splits in K/Q, then the
reduction Ep is ordinary. If p is inert or ramified in K/Q, then the reduction Ep is supersingular.

Extending the field L if necessary such that K ⊂ L, this theorem follows from the fact that EndL(E) →
EndFp(Ep) is injective. As we discussed in the previous section, the endomorphism algebra EndFp

(Ep)⊗Q

contains an imaginary quadratic field K/Q in which p splits if and only if Ep is ordinary.

Theorem 2.2 (Serre). Let E be an elliptic curve without complex multiplication defined over Q, the set of primes p
at which the reduction of E is ordinary has density 1.

3 Elkies’s Theorem

Theorem 3.1 (Elkies). Let E be an elliptic curve defined over Q. There exist infinitely many primes p such that the
reduction of E at p is supersingular.

When E is a CM elliptic curve, the statement follows from the theorem of Shimura–Taniyama. So we
will assume E does not have CM.

Idea of proof: Assume E admits supersingular reduction at finitely many primes. Let the finite set
S contain all supersingular primes and all primes at which E admits bad reduction. We would want to
construct a prime p /∈ S such that Ep is supersingular.

To construct such a p, we will construct a CM elliptic curve E0 such that End
Q
(E0) ⊗ Q ≃ K, Ep is

isomorphic to the reduction of E0 at a prime above p over Fp, and p does not split in K/Q. In fact, instead
of constructing a E0, in practice, we construct the field K which guarantees the existence of a desired E0.

Next we will give a sketch of the proof in a simplified case.

Goal: given E/Q with jE < 1728 and a finite set S of primes, construct a supersingular prime p /∈ S.

1. Let D be a prime satisfying

(a) D ≡ 3 mod 4;

(b) for each p ∈ S or p | (jE − 1728), we have p splits in K = Q(
√
−D)/Q;

(c) D is sufficiently large.
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Such a prime D exists by Dirichlet’s theorem which states that there exist infinitely many primes in
any congruence class a (mod b) when gcd(a, b) = 1.

Note that D ≡ 3 mod 4 implies
(
−1
D

)
= −1 which is of important use in the proof.

2. Consider elliptic curves E1, · · · , En with complex multiplication by the maximal order OK ⊂ K.

Any p non-split in K/Q is a supersingular prime for E1, · · · , En.

3. Define the following monic irreducible polynomial

PD(x) =
n

∏
i=1

(x − ji) ∈ Z[x]

whose roots are the j-invariants of E1, · · · , En.

Recall that PD(x) has all coefficients in Z because j1, · · · , jn are Galois conjugates and they are all
algebraic integers.

Moreover, for any prime p | PD(jE), the reduction Ep is isomorphic to the reduction of some Ei at a
prime above p over Fp.

4. Show (jE − 1728)PD(jE) ≡ □ mod D.

This statement follows from Deuring’s lifting lemma.

This implies either

D | (jE − 1728)PD(jE) recall D ∤ (jE − 1728) by our assumption

or the Legendre symbol
(
(jE − 1728)PD(jE)

D

)
= 1.

5. PD(x) has a unique real root and (jE − 1728)PD(jE) < 0 as long as D is sufficiently large.

To determine the sign of PD(jE), we need to analyze the real roots of PD(x). The real j-invariants
correspond to lattices which are fixed by complex conjugation. These are the fractional ideal classes
a ⊂ cl(OK) such that a−1 = a = a, thus they are in cl(OK)[2]. From genus theory, for imaginary
quadratic field with prime discriminant, the group cl(OK)[2] is trivial. Thus the only real CM j-
invariant is j( 1+

√
−D

2 ).

Recall j(τ) = q−1 + 744 + 196884q + · · · , q = e2πiτ .

Thus j( 1+
√
−D

2 ) < 0 for D sufficiently large. Combine this fact with our assumption jE < 1728.

If D ∤ PD(jE), we deduce the Legendre symbol(
(jE − 1728)PD(jE)

D

)
=

(
(−1)|(jE − 1728)PD(jE)|

D

)
= 1.

Combined with
(
−1
D

)
= −1, we get

(
|(jE − 1728)PD(jE)|

D

)
= −1.

6. Recall that the Legendre symbol is multiplicative.

There either exists a positive p | PD(jE) such that (recall all p | (jE − 1728) splits in Q(−D)/Q)(
p
D

)
=

(
−D

p

)
= −1;

or D | PD(jE). Either way, we obtain a non-split prime p or D which is a supersingular prime for E
not contained in S.
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