Reductions of CM Elliptic Curves

Let E : y> = x> + Ax + B be an elliptic curve defined over Q. As we discussed, the endomorphism ring
End@(E) is either isomorphic to Z or isomorphic to an order O of an imaginary quadratic field K which is
a free Z-module of rank 2.

For all but finitely many primes p, the reduction of E at p is an elliptic curve £, defined over IFj,. The En-
domorphism ring Endﬁp (Ep) is either isomorphic to an order of an imaginary quadratic field or isomorphic
to an order of a quaternion algebra which is a free Z-module of rank 4.

Given a fixed elliptic curve E/Q, We want to discuss the set of primes at which the reduction of E has a
larger Endomorphism ring.

1 Endomorphism Rings of Elliptic Curves over Finite fields

Let £ be an elliptic curve over F, defined by y> = x> + ax 4+ b,a,b € F,. Let p be the characteristic of
IF,. The absolute Galois group Gal(FF,/F,) =~ Z is topologically generated by a single element o, often
referred to as the Frobenius element. For & € F,, o(a) = a”. Recall the Galois group Gal(IF,/IF,) acts on
the set of elliptic curves defined over IF, with o maps & to £7 : y? = x> + aPx + bP. Note that the map
E — &7 : (x,y) — (xP,y*) is an algebraic map (different from a Galois element in Gal(Q/Q) case), thus an
isogeny.

gSinZe £ is defined over [F, it admits an endomorphism ¢ : (x,y) — (x7,y7), the g-th power Frobenius
map. The map ¢ is purely inseparable of degree 4.

For simplicity, we can consider £ defined over a prime field IF, with p # 2. Since the Frobenius mor-
phism has degree p, we can see that the ring Ende (€) has an element with norm p. If EndE (&) is isomor-
phic to an order O of an imaginary quadratic field K, then p has to split in K/Q. In this case, we say & is
ordinary.

Definition 1.1. A definite quaternion algebra B over Q is the Q-algebra defined by
B=Q+Qua+Qp+Quap

with multiplication defined by
o,pPeQ, o B <0, Pu=—ap.

For any prime p, the Q, algebra B ® Q, is either still a division algebra or isomorphic to the matrix
algebra M>(Qy). If B® Qp ~ M>(Qy), then we say p is split or unramified for B, and if B® Q, is a division
algebra, then we call p ramified. Every quaternion algebra is ramified at finitely many primes and this set
of primes determines B.

An order O C B is a lattice (a finitely generated Z-module satisfying O ® Q = B) that is also a subring
of B. An order is maximal if it is not properly contained in another order.

If EndE (&) is not isomorphic to an order of an imaginary quadratic field, then B = EndE (£)®Qisa

definite quaternion algebra over Q with the only ramified finite prime being p. The Endomorphism ring
End@p (&) is isomorphic to O C B which a maximal order of B. In this case, we say £ is supersingular.

Note that from our definition, the property for an elliptic curve £ /IF; being ordinary or supersingular
does not change under base field extensions. Thus, they are determined by the j-invariants.



When p is ramified in B, the division algebra B ® Q, has a unique maximal order O, which contains
all elements with non-negative valuation with respect to the unique valuation on B ® Q, extending the
p-adic valuation of Q,. The ring Oy, has a unique maximal ideal P, whose residue field is isomorphic to
IF». Moreover, Pr% = pO and the algebra B® Q,,» ~ Mz(sz). The quadratic fields K/Q contained in B are
the ones satisfying B ® K ~ M;(K), these are exactly the imaginary quadratic fields K/Q in which p is inert
or ramified.

2 Density of Supersingular Primes

Let E/Q be an elliptic curve. Let p > 3 be a prime of good reduction for E. The reduction of E at p is an
elliptic curve £,/IF,. Let a, € Z be the trace of Frobenius action on &£,[(*]. Then &, is supersingular if
and only if a, = 0. From the Hasse bound, we know that —2,/p < a, < 2,/p. Thus, if 4, is randomly
distributed, then the probability of a, = 0 should be roughly ﬁ. If we sum over all primes p, the number
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Lang-Trotter conjecture predicting the expectation for the number of supersingular primes for a general
elliptic curve. When an elliptic curve E has complex multiplication, the distribution of a; is known to be
not random.

of primes p < X such that £, is a supersingular elliptic curve is about . This is a special case of the

Theorem 2.1 (Shimura-Taniyama). Let E/L be an elliptic curve with complex multiplication by O C K. Let
p C L be a prime lying above the rational prime p at which E admits good reduction. If p splits in K/Q, then the
reduction &y is ordinary. If p is inert or ramified in K/Q, then the reduction &, is supersingular.

Extending the field L if necessary such that K C L, this theorem follows from the fact that End; (E) —
Endp, (&p) is injective. As we discussed in the previous section, the endomorphism algebra Ende (&) ®Q

contains an imaginary quadratic field K/Q in which p splits if and only if £, is ordinary.

Theorem 2.2 (Serre). Let E be an elliptic curve without complex multiplication defined over Q, the set of primes p
at which the reduction of E is ordinary has density 1.

3 Elkies’s Theorem

Theorem 3.1 (Elkies). Let E be an elliptic curve defined over Q. There exist infinitely many primes p such that the
reduction of E at p is supersingular.

When E is a CM elliptic curve, the statement follows from the theorem of Shimura-Taniyama. So we
will assume E does not have CM.

Idea of proof: Assume E admits supersingular reduction at finitely many primes. Let the finite set
S contain all supersingular primes and all primes at which E admits bad reduction. We would want to
construct a prime p ¢ S such that £, is supersingular.

To construct such a p, we will construct a CM elliptic curve Ey such that Endg(Eg) ® Q ~ K, & is

isomorphic to the reduction of Ey at a prime above p over ), and p does not split in K/Q. In fact, instead
of constructing a Ey, in practice, we construct the field K which guarantees the existence of a desired E.

Next we will give a sketch of the proof in a simplified case.

Goal: given E/Q with jg < 1728 and a finite set S of primes, construct a supersingular prime p ¢ S.
1. Let D be a prime satisfying

(@) D =3 mod 4;
(b) foreach p € Sorp | (jg —1728), we have p splits in K = Q(v/—D)/Q;
(c) D is sufficiently large.



Such a prime D exists by Dirichlet’s theorem which states that there exist infinitely many primes in
any congruence class a (mod b) when ged(a,b) = 1.

Note that D = 3 mod 4 implies (;31) = —1 which is of important use in the proof.

. Consider elliptic curves Ey, - - - , E;; with complex multiplication by the maximal order Ox C K.

Any p non-split in K/Q is a supersingular prime for Eq, - - - , Ej;.
. Define the following monic irreducible polynomial

n

Pp(x) = [(x —ji) € Z[x]

i=1
whose roots are the j-invariants of Eq, - - - , E,.

Recall that Pp(x) has all coefficients in Z because jy,- - -, ju are Galois conjugates and they are all
algebraic integers.

Moreover, for any prime p | Pp(jg), the reduction £, is isomorphic to the reduction of some E; at a
prime above p over F,.

. Show (jg —1728)Pp(jg) = 0 mod D.

This statement follows from Deuring’s lifting lemma.

This implies either

D | (jg — 1728)Pp(jg) recall D { (jg — 1728) by our assumption

ip — 1728)Pp (j
(e D) D(]E)) _ 1

or the Legendre symbol (
. Pp(x) has a unique real root and (jg — 1728)Pp(jg) < 0 as long as D is sufficiently large.

To determine the sign of Pp(jr), we need to analyze the real roots of Pp(x). The real j-invariants
correspond to lattices which are fixed by complex conjugation. These are the fractional ideal classes
a C cl(Ok) such that a=! = @ = q, thus they are in c/(Ok)[2]. From genus theory, for imaginary
quadratic field with prime discriminant, the group cl(Ok)[2] is trivial. Thus the only real CM j-
invariant is j(1-Y=L2 V27D)

Recall j(T) = g~ + 744 4196884 + - - -, q = e>™".

Thus ](L {D) < 0 for D sufficiently large. Combine this fact with our assumption jg < 1728.

If D 1 Pp(jE), we deduce the Legendre symbol

<(jE - 17255)PD(]'E)> _ <(—1)|(j5 —11)728)PD(]'E)|) _1

Combined with (Dl) = —1, we get ((]E B 17%8)13’3(]5)') =1

. Recall that the Legendre symbol is multiplicative.
There either exists a positive p | Pp(jg) such that (recall all p | (jg — 1728) splits in Q(—D)/Q)

©)-(9)--

or D | Pp(jg). Either way, we obtain a non-split prime p or D which is a supersingular prime for E
not contained in S.
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