Reductions of CM Elliptic Curves

Let $E : y^2 = x^3 + Ax + B$ be an elliptic curve defined over \mathbb{Q} . As we discussed, the endomorphism ring $\operatorname{End}_{\overline{\mathbb{Q}}}(E)$ is either isomorphic to \mathbb{Z} or isomorphic to an order \mathcal{O} of an imaginary quadratic field K which is a free \mathbb{Z} -module of rank 2.

For all but finitely many primes p, the reduction of E at p is an elliptic curve \mathcal{E}_p defined over \mathbb{F}_p . The Endomorphism ring $\operatorname{End}_{\overline{\mathbb{F}}_p}(\mathcal{E}_p)$ is either isomorphic to an order of an imaginary quadratic field or isomorphic to an order of a quaternion algebra which is a free \mathbb{Z} -module of rank 4.

Given a fixed elliptic curve E/Q, We want to discuss the set of primes at which the reduction of E has a larger Endomorphism ring.

1 Endomorphism Rings of Elliptic Curves over Finite fields

Let \mathcal{E} be an elliptic curve over \mathbb{F}_q defined by $y^2 = x^3 + ax + b, a, b \in \mathbb{F}_q$. Let p be the characteristic of \mathbb{F}_q . The absolute Galois group $\operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p) \simeq \widehat{\mathbb{Z}}$ is topologically generated by a single element σ , often referred to as the Frobenius element. For $\alpha \in \overline{\mathbb{F}}_p$, $\sigma(\alpha) = \alpha^p$. Recall the Galois group $\operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$ acts on the set of elliptic curves defined over $\overline{\mathbb{F}}_p$ with σ maps \mathcal{E} to $\mathcal{E}^{\sigma} : y^2 = x^3 + a^p x + b^p$. Note that the map $\mathcal{E} \to \mathcal{E}^{\sigma} : (x, y) \mapsto (x^p, y^p)$ is an algebraic map (different from a Galois element in $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ case), thus an isogeny.

Since \mathcal{E} is defined over \mathbb{F}_q , it admits an endomorphism $\phi : (x, y) \mapsto (x^q, y^q)$, the *q*-th power Frobenius map. The map ϕ is purely inseparable of degree *q*.

For simplicity, we can consider \mathcal{E} defined over a prime field \mathbb{F}_p with $p \neq 2$. Since the Frobenius morphism has degree p, we can see that the ring $\operatorname{End}_{\overline{\mathbb{F}}_p}(\mathcal{E})$ has an element with norm p. If $\operatorname{End}_{\overline{\mathbb{F}}_p}(\mathcal{E})$ is isomorphic to an order \mathcal{O} of an imaginary quadratic field K, then p has to split in K/\mathbb{Q} . In this case, we say \mathcal{E} is ordinary.

Definition 1.1. A definite quaternion algebra *B* over Q is the Q-algebra defined by

$$B = \mathbb{Q} + \mathbb{Q}\alpha + \mathbb{Q}\beta + \mathbb{Q}\alpha\beta$$

with multiplication defined by

$$\alpha^2, \beta^2 \in \mathbb{Q}, \quad \alpha^2, \beta^2 < 0, \quad \beta \alpha = -\alpha \beta.$$

For any prime p, the \mathbb{Q}_p algebra $B \otimes \mathbb{Q}_p$ is either still a division algebra or isomorphic to the matrix algebra $M_2(\mathbb{Q}_p)$. If $B \otimes \mathbb{Q}_p \simeq M_2(\mathbb{Q}_p)$, then we say p is split or unramified for B, and if $B \otimes \mathbb{Q}_p$ is a division algebra, then we call p ramified. Every quaternion algebra is ramified at finitely many primes and this set of primes determines B.

An order $O \subset B$ is a lattice (a finitely generated \mathbb{Z} -module satisfying $O \otimes \mathbb{Q} = B$) that is also a subring of *B*. An order is maximal if it is not properly contained in another order.

If $\operatorname{End}_{\overline{\mathbb{F}}_p}(\mathcal{E})$ is not isomorphic to an order of an imaginary quadratic field, then $B = \operatorname{End}_{\overline{\mathbb{F}}_p}(\mathcal{E}) \otimes \mathbb{Q}$ is a definite quaternion algebra over \mathbb{Q} with the only ramified finite prime being p. The Endomorphism ring $\operatorname{End}_{\overline{\mathbb{F}}_p}(\mathcal{E})$ is isomorphic to $O \subset B$ which a maximal order of B. In this case, we say \mathcal{E} is supersingular.

Note that from our definition, the property for an elliptic curve \mathcal{E}/\mathbb{F}_q being ordinary or supersingular does not change under base field extensions. Thus, they are determined by the *j*-invariants.

When *p* is ramified in *B*, the division algebra $B \otimes \mathbb{Q}_p$ has a unique maximal order O_p which contains all elements with non-negative valuation with respect to the unique valuation on $B \otimes \mathbb{Q}_p$ extending the *p*-adic valuation of \mathbb{Q}_p . The ring O_p has a unique maximal ideal P_p whose residue field is isomorphic to \mathbb{F}_{p^2} . Moreover, $P_p^2 = pO$ and the algebra $B \otimes \mathbb{Q}_{p^2} \simeq M_2(\mathbb{Q}_{p^2})$. The quadratic fields K/\mathbb{Q} contained in *B* are the ones satisfying $B \otimes K \simeq M_2(K)$, these are exactly the imaginary quadratic fields K/\mathbb{Q} in which *p* is inert or ramified.

2 Density of Supersingular Primes

Let E/\mathbb{Q} be an elliptic curve. Let p > 3 be a prime of good reduction for E. The reduction of E at p is an elliptic curve $\mathcal{E}_p/\mathbb{F}_p$. Let $a_p \in \mathbb{Z}$ be the trace of Frobenius action on $\mathcal{E}_p[\ell^{\infty}]$. Then \mathcal{E}_p is supersingular if and only if $a_p = 0$. From the Hasse bound, we know that $-2\sqrt{p} \le a_p \le 2\sqrt{p}$. Thus, if a_p is randomly distributed, then the probability of $a_p = 0$ should be roughly $\frac{1}{4\sqrt{p}}$. If we sum over all primes p, the number

of primes p < X such that \mathcal{E}_p is a supersingular elliptic curve is about $\frac{\sqrt{X}}{\log X}$. This is a special case of the Lang–Trotter conjecture predicting the expectation for the number of supersingular primes for a general elliptic curve. When an elliptic curve *E* has complex multiplication, the distribution of a_p is known to be not random.

Theorem 2.1 (Shimura–Taniyama). Let E/L be an elliptic curve with complex multiplication by $\mathcal{O} \subset K$. Let $\mathfrak{p} \subset L$ be a prime lying above the rational prime p at which E admits good reduction. If p splits in K/\mathbb{Q} , then the reduction $\mathcal{E}_{\mathfrak{p}}$ is ordinary. If p is inert or ramified in K/\mathbb{Q} , then the reduction $\mathcal{E}_{\mathfrak{p}}$ is supersingular.

Extending the field *L* if necessary such that $K \subset L$, this theorem follows from the fact that $\text{End}_L(E) \to \text{End}_{\mathbb{F}_p}(\mathcal{E}_p)$ is injective. As we discussed in the previous section, the endomorphism algebra $\text{End}_{\overline{\mathbb{F}}_p}(\mathcal{E}_p) \otimes \mathbb{Q}$ contains an imaginary quadratic field K/\mathbb{Q} in which *p* splits if and only if \mathcal{E}_p is ordinary.

Theorem 2.2 (Serre). *Let E be an elliptic curve without complex multiplication defined over* \mathbb{Q} *, the set of primes p at which the reduction of E is ordinary has density* 1.

3 Elkies's Theorem

Theorem 3.1 (Elkies). Let *E* be an elliptic curve defined over \mathbb{Q} . There exist infinitely many primes *p* such that the reduction of *E* at *p* is supersingular.

When *E* is a CM elliptic curve, the statement follows from the theorem of Shimura–Taniyama. So we will assume *E* does not have CM.

Idea of proof: Assume *E* admits supersingular reduction at finitely many primes. Let the finite set *S* contain all supersingular primes and all primes at which *E* admits bad reduction. We would want to construct a prime $p \notin S$ such that \mathcal{E}_p is supersingular.

To construct such a p, we will construct a CM elliptic curve E_0 such that $\operatorname{End}_{\overline{\mathbb{Q}}}(E_0) \otimes \mathbb{Q} \simeq K$, \mathcal{E}_p is isomorphic to the reduction of E_0 at a prime above p over $\overline{\mathbb{F}}_p$, and p does not split in K/\mathbb{Q} . In fact, instead of constructing a E_0 , in practice, we construct the field K which guarantees the existence of a desired E_0 .

Next we will give a sketch of the proof in a simplified case.

Goal: given E/Q with $j_E < 1728$ and a finite set *S* of primes, construct a supersingular prime $p \notin S$.

1. Let *D* be a prime satisfying

- (a) $D \equiv 3 \mod 4$;
- (b) for each $p \in S$ or $p \mid (j_E 1728)$, we have p splits in $K = \mathbb{Q}(\sqrt{-D})/\mathbb{Q}$;
- (c) *D* is sufficiently large.

Such a prime *D* exists by Dirichlet's theorem which states that there exist infinitely many primes in any congruence class *a* (mod *b*) when gcd(a, b) = 1.

Note that $D \equiv 3 \mod 4$ implies $\begin{pmatrix} -1 \\ D \end{pmatrix} = -1$ which is of important use in the proof.

- 2. Consider elliptic curves E_1, \dots, E_n with complex multiplication by the maximal order $\mathcal{O}_K \subset K$. Any *p* non-split in K/\mathbb{Q} is a supersingular prime for E_1, \dots, E_n .
- 3. Define the following monic irreducible polynomial

$$P_D(x) = \prod_{i=1}^n (x - j_i) \in \mathbb{Z}[x]$$

whose roots are the *j*-invariants of E_1, \dots, E_n .

Recall that $P_D(x)$ has all coefficients in \mathbb{Z} because j_1, \dots, j_n are Galois conjugates and they are all algebraic integers.

Moreover, for any prime $p | P_D(j_E)$, the reduction \mathcal{E}_p is isomorphic to the reduction of some E_i at a prime above p over $\overline{\mathbb{F}}_p$.

4. Show $(j_E - 1728)P_D(j_E) \equiv \Box \mod D$.

This statement follows from Deuring's lifting lemma.

This implies either

$$D \mid (j_E - 1728)P_D(j_E)$$
 recall $D \nmid (j_E - 1728)$ by our assumption

or the Legendre symbol $\binom{(j_E - 1728)P_D(j_E)}{D} = 1.$

5. $P_D(x)$ has a unique real root and $(j_E - 1728)P_D(j_E) < 0$ as long as *D* is sufficiently large.

To determine the sign of $P_D(j_E)$, we need to analyze the real roots of $P_D(x)$. The real *j*-invariants correspond to lattices which are fixed by complex conjugation. These are the fractional ideal classes $\mathfrak{a} \subset cl(\mathcal{O}_K)$ such that $\mathfrak{a}^{-1} = \overline{\mathfrak{a}} = \mathfrak{a}$, thus they are in $cl(\mathcal{O}_K)[2]$. From genus theory, for imaginary quadratic field with prime discriminant, the group $cl(\mathcal{O}_K)[2]$ is trivial. Thus the only real CM *j*-invariant is $j(\frac{1+\sqrt{-D}}{2})$.

Recall
$$j(\tau) = q^{-1} + 744 + 196884q + \cdots$$
, $q = e^{2\pi i \tau}$

Thus $j(\frac{1+\sqrt{-D}}{2}) < 0$ for *D* sufficiently large. Combine this fact with our assumption $j_E < 1728$. If $D \nmid P_D(j_E)$, we deduce the Legendre symbol

$$\binom{(j_E - 1728)P_D(j_E)}{D} = \binom{(-1)|(j_E - 1728)P_D(j_E)|}{D} = 1$$

Combined with $\begin{pmatrix} -1 \\ D \end{pmatrix} = -1$, we get $\begin{pmatrix} |(j_E - 1728)P_D(j_E)| \\ D \end{pmatrix} = -1$.

6. Recall that the Legendre symbol is multiplicative.

There either exists a positive $p \mid P_D(j_E)$ such that (recall all $p \mid (j_E - 1728)$ splits in $\mathbb{Q}(-D)/\mathbb{Q}$)

$$\binom{p}{D} = \binom{-D}{p} = -1;$$

or $D | P_D(j_E)$. Either way, we obtain a non-split prime p or D which is a supersingular prime for E not contained in S.