Reductions of CM Elliptic Curves

Let $E: y^{2}=x^{3}+A x+B$ be an elliptic curve defined over Q . As we discussed, the endomorphism ring End $\overline{\mathbb{Q}}^{(E)}$ is either isomorphic to \mathbb{Z} or isomorphic to an order \mathcal{O} of an imaginary quadratic field K which is a free \mathbb{Z}-module of rank 2 .

For all but finitely many primes p, the reduction of E at p is an elliptic curve \mathcal{E}_{p} defined over \mathbb{F}_{p}. The Endomorphism ring $\operatorname{End}_{\overline{\mathbb{F}}_{p}}\left(\mathcal{E}_{p}\right)$ is either isomorphic to an order of an imaginary quadratic field or isomorphic to an order of a quaternion algebra which is a free \mathbb{Z}-module of rank 4.

Given a fixed elliptic curve E / Q, We want to discuss the set of primes at which the reduction of E has a larger Endomorphism ring.

1 Endomorphism Rings of Elliptic Curves over Finite fields

Let \mathcal{E} be an elliptic curve over \mathbb{F}_{q} defined by $y^{2}=x^{3}+a x+b, a, b \in \mathbb{F}_{q}$. Let p be the characteristic of \mathbb{F}_{q}. The absolute Galois group $\operatorname{Gal}\left(\overline{\mathbb{F}}_{p} / \mathbb{F}_{p}\right) \simeq \widehat{\mathbb{Z}}$ is topologically generated by a single element σ, often referred to as the Frobenius element. For $\alpha \in \overline{\mathbb{F}}_{p}, \sigma(\alpha)=\alpha^{p}$. Recall the Galois group $\operatorname{Gal}\left(\overline{\mathbb{F}}_{p} / \mathbb{F}_{p}\right)$ acts on the set of elliptic curves defined over $\overline{\mathbb{F}}_{p}$ with σ maps \mathcal{E} to $\mathcal{E}^{\sigma}: y^{2}=x^{3}+a^{p} x+b^{p}$. Note that the map $\mathcal{E} \rightarrow \mathcal{E}^{\sigma}:(x, y) \mapsto\left(x^{p}, y^{p}\right)$ is an algebraic map (different from a Galois element in $\operatorname{Gal}(\overline{\mathrm{Q}} / \mathrm{Q})$ case), thus an isogeny.

Since \mathcal{E} is defined over \mathbb{F}_{q}, it admits an endomorphism $\phi:(x, y) \mapsto\left(x^{q}, y^{q}\right)$, the q-th power Frobenius map. The $\operatorname{map} \phi$ is purely inseparable of degree q.

For simplicity, we can consider \mathcal{E} defined over a prime field \mathbb{F}_{p} with $p \neq 2$. Since the Frobenius morphism has degree p, we can see that the ring $\operatorname{End}_{\overline{\mathbb{F}}_{p}}(\mathcal{E})$ has an element with norm p. If $\operatorname{End}_{\overline{\mathbb{F}}_{p}}(\mathcal{E})$ is isomorphic to an order \mathcal{O} of an imaginary quadratic field K, then p has to split in K / Q. In this case, we say \mathcal{E} is ordinary.

Definition 1.1. A definite quaternion algebra B over Q is the Q-algebra defined by

$$
B=\mathbf{Q}+\mathbf{Q} \alpha+\mathbf{Q} \beta+\mathbf{Q} \alpha \beta
$$

with multiplication defined by

$$
\alpha^{2}, \beta^{2} \in \mathbb{Q}, \quad \alpha^{2}, \beta^{2}<0, \quad \beta \alpha=-\alpha \beta .
$$

For any prime p, the Q_{p} algebra $B \otimes Q_{p}$ is either still a division algebra or isomorphic to the matrix algebra $M_{2}\left(\mathbf{Q}_{p}\right)$. If $B \otimes \mathbf{Q}_{p} \simeq M_{2}\left(\mathbf{Q}_{p}\right)$, then we say p is split or unramified for B, and if $B \otimes \mathbf{Q}_{p}$ is a division algebra, then we call p ramified. Every quaternion algebra is ramified at finitely many primes and this set of primes determines B.

An order $O \subset B$ is a lattice (a finitely generated \mathbb{Z}-module satisfying $O \otimes \mathbf{Q}=B$) that is also a subring of B. An order is maximal if it is not properly contained in another order.

If $\operatorname{End}_{\overline{\mathbb{F}}_{p}}(\mathcal{E})$ is not isomorphic to an order of an imaginary quadratic field, then $B=\operatorname{End}_{\overline{\mathbb{F}}_{p}}(\mathcal{E}) \otimes \mathbb{Q}$ is a definite quaternion algebra over \mathbb{Q} with the only ramified finite prime being p. The Endomorphism ring $\operatorname{End}_{\overline{\mathbb{F}}_{p}}(\mathcal{E})$ is isomorphic to $O \subset B$ which a maximal order of B. In this case, we say \mathcal{E} is supersingular.

Note that from our definition, the property for an elliptic curve $\mathcal{E} / \mathbb{F}_{q}$ being ordinary or supersingular does not change under base field extensions. Thus, they are determined by the j-invariants.

When p is ramified in B, the division algebra $B \otimes \mathbb{Q}_{p}$ has a unique maximal order O_{p} which contains all elements with non-negative valuation with respect to the unique valuation on $B \otimes Q_{p}$ extending the p-adic valuation of \mathbb{Q}_{p}. The ring O_{p} has a unique maximal ideal P_{p} whose residue field is isomorphic to $\mathbb{F}_{p^{2}}$. Moreover, $P_{p}^{2}=p O$ and the algebra $B \otimes \mathbb{Q}_{p^{2}} \simeq M_{2}\left(\mathbb{Q}_{p^{2}}\right)$. The quadratic fields K / \mathbb{Q} contained in B are the ones satisfying $B \otimes K \simeq M_{2}(K)$, these are exactly the imaginary quadratic fields K / \mathbb{Q} in which p is inert or ramified.

2 Density of Supersingular Primes

Let E / \mathbb{Q} be an elliptic curve. Let $p>3$ be a prime of good reduction for E. The reduction of E at p is an elliptic curve $\mathcal{E}_{p} / \mathbb{F}_{p}$. Let $a_{p} \in \mathbb{Z}$ be the trace of Frobenius action on $\mathcal{E}_{p}\left[\ell^{\infty}\right]$. Then \mathcal{E}_{p} is supersingular if and only if $a_{p}=0$. From the Hasse bound, we know that $-2 \sqrt{p} \leq a_{p} \leq 2 \sqrt{p}$. Thus, if a_{p} is randomly distributed, then the probability of $a_{p}=0$ should be roughly $\frac{1}{4 \sqrt{p}}$. If we sum over all primes p, the number of primes $p<X$ such that \mathcal{E}_{p} is a supersingular elliptic curve is about $\frac{\sqrt{X}}{\log X}$. This is a special case of the Lang-Trotter conjecture predicting the expectation for the number of supersingular primes for a general elliptic curve. When an elliptic curve E has complex multiplication, the distribution of a_{p} is known to be not random.

Theorem 2.1 (Shimura-Taniyama). Let E / L be an elliptic curve with complex multiplication by $\mathcal{O} \subset K$. Let $\mathfrak{p} \subset L$ be a prime lying above the rational prime p at which E admits good reduction. If p splits in K / Q, then the reduction $\mathcal{E}_{\mathfrak{p}}$ is ordinary. If p is inert or ramified in K / \mathbb{Q}, then the reduction \mathcal{E}_{p} is supersingular.

Extending the field L if necessary such that $K \subset L$, this theorem follows from the fact that $E n d_{L}(E) \rightarrow$ $\operatorname{End}_{\mathbb{F}_{\mathfrak{p}}}\left(\mathcal{E}_{\mathfrak{p}}\right)$ is injective. As we discussed in the previous section, the endomorphism algebra End $_{\overline{\mathbb{F}}_{\mathfrak{p}}}\left(\mathcal{E}_{\mathfrak{p}}\right) \otimes \mathbb{Q}$ contains an imaginary quadratic field K / \mathbb{Q} in which p splits if and only if \mathcal{E}_{p} is ordinary.

Theorem 2.2 (Serre). Let E be an elliptic curve without complex multiplication defined over \mathbb{Q}, the set of primes p at which the reduction of E is ordinary has density 1 .

3 Elkies's Theorem

Theorem 3.1 (Elkies). Let E be an elliptic curve defined over \mathbb{Q}. There exist infinitely many primes p such that the reduction of E at p is supersingular.

When E is a CM elliptic curve, the statement follows from the theorem of Shimura-Taniyama. So we will assume E does not have CM.

Idea of proof: Assume E admits supersingular reduction at finitely many primes. Let the finite set S contain all supersingular primes and all primes at which E admits bad reduction. We would want to construct a prime $p \notin S$ such that \mathcal{E}_{p} is supersingular.

To construct such a p, we will construct a CM elliptic curve E_{0} such that $\operatorname{End}_{\overline{\mathbb{Q}}}\left(E_{0}\right) \otimes \mathbb{Q} \simeq K, \mathcal{E}_{p}$ is isomorphic to the reduction of E_{0} at a prime above p over $\overline{\mathbb{F}}_{p}$, and p does not split in K / Q. In fact, instead of constructing a E_{0}, in practice, we construct the field K which guarantees the existence of a desired E_{0}.

Next we will give a sketch of the proof in a simplified case.
Goal: given E / Q with $j_{E}<1728$ and a finite set S of primes, construct a supersingular prime $p \notin S$.

1. Let D be a prime satisfying
(a) $D \equiv 3 \bmod 4 ;$
(b) for each $p \in S$ or $p \mid\left(j_{E}-1728\right)$, we have p splits in $K=\mathbb{Q}(\sqrt{-D}) / \mathbb{Q}$;
(c) D is sufficiently large.

Such a prime D exists by Dirichlet's theorem which states that there exist infinitely many primes in any congruence class $a(\bmod b)$ when $\operatorname{gcd}(a, b)=1$.
Note that $D \equiv 3 \bmod 4$ implies $\binom{-1}{D}=-1$ which is of important use in the proof.
2. Consider elliptic curves E_{1}, \cdots, E_{n} with complex multiplication by the maximal order $\mathcal{O}_{K} \subset K$.

Any p non-split in K / Q is a supersingular prime for E_{1}, \cdots, E_{n}.
3. Define the following monic irreducible polynomial

$$
P_{D}(x)=\prod_{i=1}^{n}\left(x-j_{i}\right) \in \mathbb{Z}[x]
$$

whose roots are the j-invariants of E_{1}, \cdots, E_{n}.
Recall that $P_{D}(x)$ has all coefficients in \mathbb{Z} because j_{1}, \cdots, j_{n} are Galois conjugates and they are all algebraic integers.
Moreover, for any prime $p \mid P_{D}\left(j_{E}\right)$, the reduction \mathcal{E}_{p} is isomorphic to the reduction of some E_{i} at a prime above p over $\overline{\mathbb{F}}_{p}$.
4. Show $\left(j_{E}-1728\right) P_{D}\left(j_{E}\right) \equiv \square \bmod D$.

This statement follows from Deuring's lifting lemma.
This implies either

$$
D \mid\left(j_{E}-1728\right) P_{D}\left(j_{E}\right) \text { recall } D \nmid\left(j_{E}-1728\right) \text { by our assumption }
$$

or the Legendre symbol $\binom{\left(j_{E}-1728\right) P_{D}\left(j_{E}\right)}{D}=1$.
5. $P_{D}(x)$ has a unique real root and $\left(j_{E}-1728\right) P_{D}\left(j_{E}\right)<0$ as long as D is sufficiently large.

To determine the sign of $P_{D}\left(j_{E}\right)$, we need to analyze the real roots of $P_{D}(x)$. The real j-invariants correspond to lattices which are fixed by complex conjugation. These are the fractional ideal classes $\mathfrak{a} \subset \operatorname{cl}\left(\mathcal{O}_{K}\right)$ such that $\mathfrak{a}^{-1}=\overline{\mathfrak{a}}=\mathfrak{a}$, thus they are in $\operatorname{cl}\left(\mathcal{O}_{K}\right)[2]$. From genus theory, for imaginary quadratic field with prime discriminant, the group $\operatorname{cl}\left(\mathcal{O}_{K}\right)[2]$ is trivial. Thus the only real $\mathrm{CM} j$ invariant is $j\left(\frac{1+\sqrt{-D}}{2}\right)$.
Recall $j(\tau)=q^{-1}+744+196884 q+\cdots, \quad q=e^{2 \pi i \tau}$.
Thus $j\left(\frac{1+\sqrt{-D}}{2}\right)<0$ for D sufficiently large. Combine this fact with our assumption $j_{E}<1728$.
If $D \nmid P_{D}\left(j_{E}\right)$, we deduce the Legendre symbol

$$
\binom{\left(j_{E}-1728\right) P_{D}\left(j_{E}\right)}{D}=\binom{(-1)\left|\left(j_{E}-1728\right) P_{D}\left(j_{E}\right)\right|}{D}=1 .
$$

Combined with $\binom{-1}{D}=-1$, we get $\binom{\left|\left(j_{E}-1728\right) P_{D}\left(j_{E}\right)\right|}{D}=-1$.
6. Recall that the Legendre symbol is multiplicative.

There either exists a positive $p \mid P_{D}\left(j_{E}\right)$ such that (recall all $p \mid\left(j_{E}-1728\right)$ splits in $\left.\mathbf{Q}(-D) / \mathbf{Q}\right)$

$$
\binom{p}{D}=\binom{-D}{p}=-1 ;
$$

or $D \mid P_{D}\left(j_{E}\right)$. Either way, we obtain a non-split prime p or D which is a supersingular prime for E not contained in S.

