
Arithmetic of CM Elliptic Curves

In Lecture 2, we explicitly constructed CM elliptic curves defined over the complex numbers. In Lecture
3, using the j-invariant, we showed CM elliptic curves can be defined over number fields. Today, we will
further discuss the fields over which CM elliptic curves are defined and where isogenies among them are
defined.

1 Galois Actions on Elliptic Curves

Let E be an elliptic curve defined over a number field K. Recall this means there exist A, B ∈ K such that the
elliptic curve E is defined by Weierstrass equation y2 = x3 + Ax + B. The absolute Galois group Gal(K/K)
acts on the set of K-points of E by its action on the coordinates. For any σ ∈ Gal(K/K), P = (x, y) ∈ E(K),
we write Pσ = (σ(x), σ(y)).

Let ϕ : E1 → E2 be an isogeny between elliptic curves E1, E2 defined over K. Recall a morphism ϕ is
defined over K if for any σ ∈ Gal(K/K), we have ϕ(Pσ) = (ϕ(P))σ. Because an isogeny is determined by
its kernel Ker ϕ ⊂ E1, the field over which the isogeny ϕ is defined is the minimal field L such that for any
σ ∈ Gal(Q/L) and P ∈ Ker ϕ(Q), the point Pσ ∈ Ker ϕ(Q).

Let τ ∈ Gal(Q/Q), then we can define an elliptic curve Eτ : y2 = x3 + τ(A)x + τ(B) and for any
P ∈ E(Q), the point Pτ ∈ Eτ(Q). Another way to say an elliptic curve E is defined over K is that E is
isomorphic to Eτ for any τ ∈ Gal(Q/K)for some isomorphism defined over K. Note that the map E → Eτ

given by P 7→ Pτ is not algebraic in most cases. In other words, in general, an elliptic curve defined over
a number field is not isogenous to its Galois conjugates. But we saw in Problem set 2 Problem 3 that CM
elliptic curves are isogenous (over Q) to all of their Galois conjugates.

2 Field of Definition for End(E)

Let E be an elliptic curve defined over a number field L. The endomorphism ring EndL(E) ≃ O where
O ⊂ K = Q(

√
d) is an order in an imaginary quadratic field. We want to determine over which field these

endomorphisms are defined.

Lemma 2.1. Let F be the field over which the endomorphisms are defined. Then K ⊂ F.

Proof. Recall the set of holomorphic differentials H0(E, Ω) is a 1-dimensional C-vector space. Let Λ ⊂ C

be a lattice such that C/Λ ≃ E(C) with z ∈ C corresponding to point Pz ∈ E(C) and let ι : K ↪→ C be the
embedding such that ι(α)z = α(Pz). Then the induced action α∗ on H0(E, Ω) is multiplication by α. Thus,
if the endomorphism α commutes with Galois actions in Gal(Q/F), then α ∈ F.

The embedding ι : K ↪→ C in the proof of Lemma 2.1 is part of the CM data. To precisely describe the
CM action, one should give O together with ι and this notion will be generalized to the notion CM type in
the case of higher dimensional abelian varieties with complex multiplication.

Proposition 2.2. Let E be an elliptic curve defined over a number field L. The endomorphism ring EndL(E) ≃ O
where O ⊂ K = Q(

√
d) is an order in an imaginary quadratic field. Then for any α ∈ O, the endomorphism α is

defined over the composition LK.
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Proof. From the proof of Lemma 2.1, there is an embedding ι : K ↪→ C such that the action of α ∈ O
on V = H0(E, Ω) is multiplication by ι(α). Recall from Lecture 1, since our discussion is over fields of
characteristic 0, the map EndL(K) → End(V) is injective. For any σ ∈ Gal(Q/LK), since it fixes α∗, it also
fixes α. We conclude the statement.

3 Field of Definition for CM Elliptic Curves

We will restrict our discussion to the case of elliptic curves with CM by a maximal order. Let E be an
elliptic curve defined over a number field L such that EndL(E) ≃ OK where OK is the ring of integers of an
imaginary quadratic field K. We will discuss the field K(j(E)). Let’s first state the conclusion and instead
of discussing the proof, I will explain the statement and its implications.

Theorem 3.1. The field K(j(E)) is the Hilbert class field of K.

The Hilbert class field L of a number field K is the maximal unramified abelian extension of K. It is a
Galois extension of K with Galois group Gal(L/K) isomorphic to the ideal class group C(K) (the group of
fractional OK-ideals modulo the subgroup of principal fractional ideals) of K. The Principal ideal theorem
gives an interesting property of the Hilbert class field, namely for any ideal I ⊂ OK, its extension IOL ⊂ OL
is a principal ideal.

For a number field K, the set of field extensions L/K are determined by the set of primes of K which
splits completely in the extension. The Hilbert class field L is exactly the field extension L/K over which
the set of split primes are all the principal ideals of K.

Recall the isomorphism classes of elliptic curves with CM by OK are in bijection to lattices in C which
are obtained from embeddings of fractional OK-ideals into C up to homothety. Let a ⊂ K be a fractional O
ideal and under an embedding K ⊂ C we make the following identification

fractional OK-ideal a←→ lattice Λa ←→ elliptic curve Ea.

This gives a bijection between the set of these isomorphism classes of elliptic curves S with C(K)
and thus C(K) acts on S . Let L be the Hilbert class field of K, then there is a canonical isomorphism
ϕ : Gal(L/K)→ C(K). This gives a Gal(K/K) action on the set S and the theorem was proved by showing
this action can be identified with the natural Galois action on S as we now describe.

Since K-isomorphism classes of elliptic curves are determined by their j-invariants, we can describe the
relationship between these two actions in the following way

(ϕ−1(a))(j(Eb)) = j(Ea−1b)

where the left hand side action is the Galois action on the algebraic number j(Eb) ∈ K.
Since the right hand side action: C(K) acting on S by a : Eb 7→ Ea−1b is transitive, we conclude that

the extension K(j(Ea))/K is Galois with Galois group isomorphic to C(K). And the left hand Galois action
shows that Gal(K/L) acts trivially on j(Ea) identifying the field extensions L/K and K(j(a))/K.

In general, if E is an elliptic curve with CM by an order O of K, not necessarily the maximal order, then
the field K(j(E)) is the ring class field of the order O. This result is sometimes referred to as the first main
theorem of complex multiplication.

The field extension K(j(E))/K is abelian with Galois group Gal(K(j(E))/K) ≃ C(O). Moreover, the
field extension K(j(E))/Q is Galois and Gal(K(j(E))/Q) ≃ C(O)⋊ (Z/2Z), a generalized dihedral group.
In fact, if L/K is a finite abelian extension, then L/Q is a generalized dihedral extension if and only if
L ⊂ K(j(O)) for some order O ⊂ K. So the first main theorem of complex multiplication helps us to
describe abelian extensions of an imaginary quadratic field K which are generalized dihedral extensions of
Q. Next we will use CM elliptic curves to describe all abelian extension of K.

4 Torsion Fields of CM Elliptic Curves

Let K be an imaginary quadratic field, to describe all abelian extensions of K, we will use the torsion points
of a CM elliptic curve.
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Theorem 4.1. Let E be an elliptic curve with CM byOK defined over the Hilbert class field H of K. Consider the map
h : E→ E/ Aut(E) ≃ P1 defined over H. By picking a parameter for P1

H , we get a function h : E(H) \ {O} → H.
Such a function is called a Weber function for E/H.

Let L/K be a finite abelian extension, then there exists an ideal a ⊂ OK such that L ⊂ K(j(E), h(E[a])) where
E[a] = {P ∈ E(L) : αP = O for all α ∈ a}.

Let E : y2 = x3 + Ax + B be an elliptic curve defined over H with CM by OK. If j(E) is not equal to 0 or
1728, then its only nontrivial automorphism is (x, y) 7→ (x,−y). Thus, the function (x, y) 7→ x is a Weber
function defined over H.

The theorem states that the maximal abelian extension of K is generated by the x-coordinates of all the
torsion points of E. This is an implication of the second theorem of complex multiplication.
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