
Modular Curves and the CM points on Modular Curves

In our last three lectures, we introduced the notion of a CM elliptic curve, an explicit description of a CM
elliptic curve defined over the complex numbers (lattice Z + Zτ ⊂ C, where τ is an imaginary quadratic
number), and some properties of CM elliptic curves (they are defined over number fields and they have
everywhere potentially good reduction).

In this lecture, I want to introduce some central problems in modern arithmetic geometry where CM
elliptic curves played a critical role in the study of.

1 Rational Points on Algebraic Curves

One origin of number theory and arithmetic geometry is the study of Diophantine problems, namely the
study of integral solutions to polynomial equations. Integral roots of polynomials correspond to rational
points on an algebraic variety, and the starting point of this problem is to study the set of K-points on an
algebraic curve defined over some non-algebraically closed field K.

The most famous example of this problem is Fermat’s last theorem, in which it states that the only
integral solutions to xn + yn = zn are the ones satisfying xyz = 0 for any n > 2. The proof of this theorem
relies on the study of elliptic curves and modular curves which we will define today. To talk about rational
points on algebraic curve, we start with the set of rational points on an elliptic curve defined over Q.

Let E : y2 = x3 + Ax + B be an elliptic curve defined over Q and we want to study the set of points
(x, y) ∈ E(Q). From the group law on E, we know that E(Q) is an abelian group.

Theorem 1.1 (Mordell–Weil theorem). Let E/Q be an elliptic curve. Then the group E(Q) is finitely generated.

By the fundamental theorem of finitely generated abelian groups, the group E(Q) ≃ Zr ⊕ Etors(Q)
where r is a non-negative integer called the rank of E and Etors(Q) is a finite abelian group called the torsion
subgroup of E. We have a relatively good understanding on the group Etors(Q) thanks to the following
theorem of Mazur.

Theorem 1.2 (Mazur). Let E/Q be an elliptic curve. Then the torsion subgroup Etors(Q) of E(Q) is isomorphic to
one of the following fifteen groups:

Z/NZ with 1 ≤ N ≤ 10 or N = 12,

Z/2Z × Z/2NZ with 1 ≤ N ≤ 4.

Further, each of these groups occurs as Etors(Q) for some elliptic curve E/Q.

But the rank of an elliptic curve is much more mysterious. We don’t know whether the rank for the set
of elliptic curves defined over Q is bounded and we don’t have an algorithm which guarantees to compute
the rank of an arbitrary elliptic curve E/Q.

The most important conjecture regarding the rank of an elliptic curve is the Birch and Swinnerton-Dyer
conjecture which predicts that the rank of E(Q) is determined by the L-function of E which contains the
information of the number of points on the reductions of E at all primes. This conjecture is wide open,
especially for E without complex multiplication.

One topic we will discuss today is a method to construct rational points (called Heegner points) on an
elliptic curve using the theory of complex multiplication. These points were used in the work of Gross–
Zagier and Kolyvagin which proved some cases of the BSD conjecture.
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2 Congruence Subgroups and Modular Curves

Let N be a positive integer. Consider the reduction homomorphism

SL2(Z) → SL2(Z/NZ).

This map is in fact surjective with kernel the subgroup of SL2(Z), referred to as the principal congruence
subgroup of level N,

Γ(N) =

{[
a b
c d

]
∈ SL2(Z) :

[
a b
c d

]
≡

[
1 0
0 1

]
(mod N)

}
.

Definition 2.1. A subgroup Γ of SL2(Z) is a congruence subgroup if Γ(N) ⊂ Γ for some N ∈ Z+, in which
case Γ is called a congruence subgroup of level N.

Besides the principal congruence subgroups, the most important congruence subgroups are

Γ0(N) =

{[
a b
c d

]
∈ SL2(Z) :

[
a b
c d

]
≡

[
∗ ∗
0 ∗

]
(mod N)

}
,

Γ1(N) =

{[
a b
c d

]
∈ SL2(Z) :

[
a b
c d

]
≡

[
1 ∗
0 1

]
(mod N)

}
.

Note that Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL2(Z).

Definition 2.2. Let Γ ⊂ SL2(Z) be a congruence subgroup. The modular curve Y(Γ) is the quotient Γ \ H

and the modular curve X(Γ) is its compactification X(Γ) = Γ \ H∗. The orbits of the points Q ∪ {∞} under
the Γ-action are called the cusps of X(Γ).

The modular curves X(Γ) are compact Riemann surfaces. Moreover, for Γ being Γ(N), Γ1(N), or Γ0(N)
the curves Y(Γ(N)) (denoted as Y(N)), Y1(Γ(N)) (denoted as Y1(N)), and Y(Γ0(N)) (denoted as Y0(N))
have modular interpretations. Here, we discuss the case of Y0(N) as an example.

Consider pair (E, C) where E is an elliptic curve defined over C and C is a cyclic subgroup of E of order
N. The set of C-points on Y0(N) are in bijection with pairs (E, C) up to equivalence condition (E1, C1) ∼
(E2, C2) where there exists an isomorphism ϕ : E1 → E2 such that ϕ(C1) = C2. Equivalently, a C-point on
Y0(N) corresponds to a pair of elliptic curves (E, E′) together with a degree N isogeny E → E′. To each
τ ∈ H, this pair of elliptic curves is (C/(Z + Zτ), C/(Z + ZNτ)) and the isogeny is z 7→ Nz.

The modular curve X(1) has a model over Q, i.e. P1
Q and its function field is Q(j). The curve X0(N) also

has a model over Q, meaning there exists an irreducible polynomial f (x) ∈ Q(j)[x] such that the curve X/Q

whose function field is isomorphic to Q(j)[x]/ f (x) satisfies X ⊗ Spec C ≃ X0(N). In fact this polynomial
f (x) is exactly the polynomial ΦN(x, τ) ∈ Q(j(τ))[x] from Lecture 3.

Theorem 2.3 (Modularity Theorem, Wiles, Taylor–Wiles, Breuil–Conrad–Diamond–Taylor). Let E be an el-
liptic curve with j(E) ∈ Q. Then for some positive integer N there exists a surjective morphism over Q from the
modular curve X0(N)/Q to the elliptic curve E,

X0(N) → E.

The modularity theorem was conjectured by Shimura–Taniyama–Weil and it was the key ingredient in
the proof of Fermat’s Last Theorem.

3 Rational Points on Modular Curves and CM Elliptic Curves

Let E be an elliptic curve defined over a field K. For any positive integer m which is coprime to the charac-
teristic of K, let E[m] denote the m-torsion subgroup of E,

E[m] = {P ∈ E(K) : mP = O}, and recall E[m] ≃ (Z/mZ)2.
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Then E[m] is a scheme defined over K and the absolute Galois group Gal(K/K) acts on E[m] by acting
on the K-points of E. This action gives a Galois representation

ϕm : Gal(K/K) → GL2(Z/mZ).

If an elliptic curve E/K has an order N cyclic subgroup C ⊂ E[N] fixed by the Gal(K/K) action, then
the pair (E, C) gives rise to a K-point on X0(N). If further the action of Gal(K/K) restricts on C is the trivial
action, then it gives rise to a K-point on X1(N). A C-point on Y1(N) corresponds to a pair (E, P) where
E/C is an elliptic curve and P is point of order N on E. A major part of Mazur’s theorem on the structure
of the torsion subgroup Etors(Q) is to prove the non-existence of Q-points on X1(N) which are not cusps
for N ≥ 13.

We can use CM elliptic curves to construct points on modular curves whose defining field is of low
degree over Q.

Let α : E → E be an endomorphism of E defined over K. Then the map α : E[m] → E[m] commutes
with the Gal(K/K) action. This forces the image of ϕm to be an abelian subgroup of GL2(Z/mZ) when E
is a CM elliptic curve with all of its endomorphisms defined over K. This image is much smaller than the
typical behavior of a non-CM elliptic curve defined over a number field.

Theorem 3.1 (Serre). Let K be a number field and let E/K be an elliptic curve without complex multiplication.

1. ϕℓ∞(Gal(K/K)) is of finite index in Aut(E[ℓ∞]) for all primes ℓ;

2. ϕℓ∞(Gal(K/K)) = Aut(E[ℓ∞]) for all but finitely many primes ℓ.

Thus, the m-torsion points of a CM elliptic curve E/K is defined over a number field L with relatively
low degree over K. Using this fact, we deduce that CM elliptic curves give rise to points on modular curves
whose defining field is of relatively low degree. Moreover, we can use CM elliptic curves to construct
explicit points on modular curves for which we can analyze their defining fields.

4 Heegner Points

The set of Heegner points on Y0(N)(C) are points corresponding to a pair of elliptic curves (E, E′) such that
End(E) ≃ End(E′) ≃ O where O is an order in an imaginary quadratic field.

Given an order O ⊂ Q(
√

d) where d is the discriminant of the field K = Q(
√

d). Let c be the index of O
in OK and then D = dc2 is the discriminant of O. The order O is determined by its discriminant. Given a
positive integer N, if the equation D = B2 − 4NC has integer solutions B, C ∈ Z satisfying gcd(N, B, C) = 1,
then there exists proper fractional O-ideals α, β such that under an embedding K ↪→ C, the images of α, β
are lattices with a cyclic degree N isogeny between their corresponding elliptic curves.

For fixed O and N, the set of Heegner points is fixed under the action of Aut(C). They are algebraic
points defined over K(j(τ)) where j(τ) is the j-invariant of an elliptic curve with CM by O.

Recall from the modularity theorem, given an elliptic curve E/Q, there exists X0(N) which admits a
surjective map π : X0(N) → E over Q. Thus, for an order O such that we can construct Heegner points
P1, · · · , Ph(O) on X0(N), we can consider the point P = π(P1) + · · ·+ π(Ph(O)) on E which is defined over
K. The work of Gross–Zagier related the height of P with the L-function of E, giving a way to construct a
rational point of infinite order for elliptic curves whose L-function satisfies certain conditions.
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