Modular Curve $X(1)$ and the j-invariant

1 Modular Functions and Uniformization

In last lecture, we discussed that isomorphism classes of elliptic curves defined over the complex numbers correspond to lattices $\Lambda \subset \mathbb{C}$ up to homothety. Thus, we can parameterize isomorphism classes of elliptic curves over \mathbb{C} by parameterizing lattices up to homothety.

For any lattice $\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$, we can find a homothetic lattice $\Lambda_{\tau}=\mathbb{Z}+\mathbb{Z} \tau$ for some $\tau \in \mathbb{C}$ satisfying $\operatorname{Im} \tau>0$. Thus, there is a surjective map from the upper half plane

$$
\mathbb{H}=\{\tau \in \mathbb{C} \mid \operatorname{Im} \tau>0\}
$$

to the set of homothety classes of lattices given by $\tau \mapsto \Lambda_{\tau}:=\mathbb{Z}+\mathbb{Z} \tau$.
But the choice from Λ to such a τ is not unique.
The modular group

$$
\mathrm{SL}_{2}(\mathbb{Z})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{Z}, a d-b c=1\right\}
$$

acts on \mathbb{H} by linear fractional transformations.

$$
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}), \quad \gamma(\tau)=\frac{a \tau+b}{c \tau+d}, \quad \forall \tau \in \mathbb{H}
$$

For any $\tau_{1}, \tau_{2} \in \mathbb{H}$, the lattices $\Lambda_{\tau_{1}}$ and $\Lambda_{\tau_{2}}$ are homothetic if and only if there exists $\gamma \in \operatorname{SL}_{2}(\mathbb{Z})$ such that $\tau_{2}=\gamma\left(\tau_{1}\right)$. Thus lattices up to homothety are parameterized by the upper plane \mathbb{H} modulo the action of $\mathrm{SL}_{2}(\mathbb{Z})$. And this set $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$ is in bijection to the region

$$
\mathcal{F}=\left\{\tau \in \mathbb{H}| | \Re(\tau)\left|\leq \frac{1}{2},|\tau| \geq 1\right\}\right.
$$

This region is called a fundamental domain for $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$ and every lattice $\Lambda \subset \mathbb{C}$ is homothetic to a lattice Λ_{τ} for some $\tau \in \mathcal{F}$.

The quotient $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$ (denoted as $Y(1)$) has a natural structure of a genus 0 Riemann surface with a puncture, a 2-sphere with one point missing. Then it's natural to want to compactify this topological space. To add this missing point and give it a moduli interpretation, we define the extended upper half plane

$$
\mathbb{H}^{*}=\mathbb{H} \cup \mathbb{Q} \cup\{\infty\}
$$

Then $\mathrm{SL}_{2}(\mathbb{Z})$ acts on \mathbb{H}^{*} and the quotient $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}^{*}$ (denoted as $X(1)$) is a compact genus 0 Riemann surface. There is one point in the compliment of $Y(1) \subset X(1)$ and this point is called the cusp of $X(1)$.

Next, we introduce a function j on homothety classes of lattices which is a complex analytic isomorphism of (open) Riemann surfaces $j: Y(1) \rightarrow \mathbb{C}$ and it extends to $j: X(1) \simeq \mathbb{P}^{1}(\mathbb{C})$.

Recall from Lecture 2, given a lattice Λ and $k \in \mathbb{Z}_{>1}$, we defined Eisenstein series

$$
G_{2 k}(\Lambda)=\sum_{\substack{\omega \in \Lambda \\ \omega \neq 0}} \omega^{-2 k}
$$

Given $\tau \in \mathbb{H}$, it is naturally associated to the lattice $\Lambda_{\tau}=\mathbb{Z}+\mathbb{Z} \tau$ and thus we can consider $G_{2 k}(\tau)$ as a meromorphic function defined on the upper half plane \mathbb{H}. Note that for any $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, we have

$$
G_{2 k}(\gamma \tau)=(c \tau+d)^{2 k} G_{2 k}(\tau)
$$

(Meromorphic functions on \mathbb{H} satisfying this condition are called weakly modular of weight $2 k$. The Eisenstein series $G_{2 k}, k>1$ is not only weakly modular, it is also holomorphic on \mathbb{H} and at ∞. It is an example of a modular form of weight $2 k$.)

The function $G_{2 k}$ is defined on the set of lattices but it is not a function on homothety classes of lattices. However, we can construct a function on homothety classes of lattices using $G_{2 k}$.

Definition 1.1. Let $\mathbb{Z}+\mathbb{Z} \tau \subset \mathbb{C}$ be a lattice. The j-invariant is defined to be the complex number

$$
j(\tau):=1728 \frac{\left(60 G_{4}(\tau)\right)^{3}}{\left(60 G_{4}(\tau)\right)^{3}-27\left(140 G_{6}(\tau)\right)^{2}}
$$

For any $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$, we have $j(\gamma \tau)=j(\tau)$.
Theorem 1.2. If $\Lambda_{1}, \Lambda_{2} \subset \mathbb{C}$ are two lattices, then they are homothetic if and only if

$$
j\left(\Lambda_{1}\right)=j\left(\Lambda_{2}\right)
$$

Since $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, the function $j: \mathbb{H} \rightarrow \mathbb{C}$ satisfies $j(\tau+1)=j(\tau)$. Thus, let $q=e^{2 \pi i \tau}$, the function j has a Laurent expansion in the variable q. Explicitly,

$$
j(\tau)=\frac{1}{q}+744+196884 q+\cdots=\frac{1}{q}+\sum_{n=0}^{\infty} c_{n} q^{n}
$$

where the coefficients c_{n} are integers for all $n \geq 0$.

2 The j-invariant of an Elliptic Curve

From our discussion in lecture 2, a lattice $\Lambda \subset \mathbb{C}$ corresponds to an elliptic curve defined by a Weierstrass equation

$$
y^{2}=4 x^{3}-60 G_{4} x-140 G_{6} \quad\left(y^{2}=x^{3}-15 G_{4} x-35 G_{6}\right)
$$

Following the definition of j-invariant for a lattice Λ, given an elliptic curve E over some field K with Weierstrass equation

$$
y^{2}=x^{3}+A x+B
$$

we can define its j-invariant to be

$$
j=1728 \frac{(4 A)^{3}}{16\left(4 A^{3}+27 B^{2}\right)}
$$

When K is a subfield of \mathbb{C}, our discussion implies that the j-invariant determines the isomorphism class of E over \mathbb{C}. Although we won't prove it, but it's true that, the j-invariant determines the isomorphism class of an elliptic curve E over \bar{K} for any field K.

From the definition, we see that for E defined over any field K (thus $A, B \in K$), its j-invariant takes value in K. Conversely, given a j-invariant $j_{0} \in K$ for some field K, the elliptic curve

$$
y^{2}+x y=x^{3}-\frac{36}{j_{0}-1728} x-\frac{1}{j_{0}-1728}
$$

has its j-invariant equal to j_{0} unless $j_{0}=0$ or 1728 . Values 0 and 1728 are j-invariants of elliptic curves $y^{2}+y=x^{3}$ and $y^{2}=x^{3}+x$ respectively. Thus, over an algebraically closed field \bar{K}, the set of isomorphism classes of elliptic curves is in bijection to the set of all j values in \bar{K}.

Note that the cusp of $X(1)$ corresponds to j-invariant value ∞. Thus, let \mathfrak{p} be a prime of a field K and E / K an elliptic curve, if the valuation of the j-invariant is negative at \mathfrak{p} ("having a power of \mathfrak{p} in the denominator of $j(E)$ "), then the reduction of E at \mathfrak{p} is singular and we call this reduction a bad reduction. If the valuation of the j-invariant is non-negative at \mathfrak{p}, then E has potential good reduction at \mathfrak{p}, meaning there is a finite extension L / K such that $E \otimes \operatorname{Spec} L$ has good reduction at a prime above \mathfrak{p}.

Moreover, let E_{1}, E_{2} be two elliptic curves defined over a number field K and let \mathfrak{p} be a prime of K at which E_{1}, E_{2} admit good reduction. For each E_{i} there exists a Weierstrass equation $y^{2}=x^{3}+A_{i} x+B_{i}$ such that $y^{2}=x^{3}+\overline{A_{i}} x+\overline{B_{i}}$ with $\overline{A_{i}}, \overline{B_{i}} \in \mathbb{F}_{\mathfrak{p}}$ the reduction of A, B in the residue field of \mathfrak{p} defines an elliptic curve \mathscr{E}_{i} over $\mathbb{F}_{\mathfrak{p}}$. The j-invariants $j\left(E_{1}\right) \equiv j\left(E_{2}\right) \bmod \mathfrak{p}$ if and only if \mathscr{E}_{1} is isomorphic to \mathscr{E}_{2} over $\overline{\mathbb{F}_{\mathfrak{p}}}$.

3 The j-invariant of a CM Elliptic Curve

Recall from Lecture 2, a lattice $\Lambda=\mathbb{Z}+\mathbb{Z} \tau \subset \mathbb{C}$ corresponds to a CM elliptic curve when τ is an imaginary quadratic number. Now let's talk about the j-invariant $j(\tau)$ of a CM elliptic curve, which is often called a singular moduli.

Proposition 3.1. The j-invariant of a CM elliptic curve is an algebraic number.
Proof. Let $E / C: y^{2}=x^{3}+A x+B$ be an elliptic curve and $\phi \in \operatorname{End}(E)$. For any $\sigma \in \operatorname{Aut}(\mathbb{C})$, let E^{σ} be the elliptic curve with Weierstrass equation $y^{2}=x^{3}+\sigma(A) x+\sigma(B)$. Then $\sigma \circ \phi \circ \sigma^{-1}$ is an Endomorphism of E^{σ}. Thus, if E has CM by an order \mathcal{O}, so does E^{σ}.

The isomorphism classes of E and E^{σ} are determined by their j-invariants and $j\left(E^{\sigma}\right)=\sigma(j(E))$ following the definition of the j-invariant. Recall from lecture 2, that the isomorphism classes of elliptic curves with CM by \mathcal{O} are parameterized by the class group of \mathcal{O} which is a finite group. We conclude that $j(E)$ is algebraic.

Let h be the class number of an order \mathcal{O} of an imaginary quadratic field. From the above proof, we see that $\mathbb{Q}(j(E))$ is a number field of degree at most h where E is an elliptic curve with CM by \mathcal{O}. In fact $[\mathrm{Q}(j(E)): \mathbf{Q}]=h$.
Theorem 3.2. The j-invariant of a CM elliptic curve is an algebraic integer. Thus, a CM elliptic curve has potential good reduction at every prime.
Sketch of proof. First, recall the degree of the multiplication by m isogeny is m^{2} for any positive integer m. Let $\alpha \in \mathcal{O} \subset \mathbb{C}$ be an endomorphism of an elliptic curve E. Then the degree of $\alpha: E \rightarrow E$ is its norm, or simply $\alpha \bar{\alpha}$ where $\bar{\alpha}$ its complex conjugate. Thus, an elliptic curve having CM by an order $\mathcal{O} \subset \mathrm{Q}(\sqrt{-\bar{d}})$ can be characterized by the existence of an endomorphism whose degree m is not a perfect square.

Consider a lattice $\Lambda_{\tau}=\mathbb{Z}+\mathbb{Z} \tau$, the elliptic curve $\mathbb{C} / \Lambda_{\tau}$ admits a degree m isogeny to $\mathbb{C} / \Lambda_{m \tau}$ by $z \mapsto m z$. Using the existence of dual isogeny, admitting a degree m isogeny to or from $\mathbb{C} / \Lambda_{\tau}$ are equivalent. In fact, all lattices Λ for which \mathbb{C} / Λ admitting a degree m isogeny to $\mathbb{C} / \Lambda_{\tau}$ takes the form $\mathbb{Z}+\mathbb{Z}(m \gamma \tau)$ for some $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$. Up to homothety, there are finitely many homothety classes of lattices Λ for which \mathbb{C} / Λ admits a degree m isogeny to $\mathbb{C} / \Lambda_{\tau}$ for a fixed Λ_{τ}. We list a representative of this set of $m \gamma \tau$ as $\tau_{1}, \cdots, \tau_{n}$.

Now we can define a polynomial in variable x in the following way

$$
\Phi_{m}(X, \tau):=\prod_{i=1}^{n}\left(X-j\left(\tau_{i}\right)\right) .
$$

This theorem follows from the following facts about the polynomial Φ_{m}. The proof of these statements all base on the q-expansion of the j-function.

If

$$
j(\tau)=\frac{1}{q}+\sum_{n=0}^{\infty} c_{n} q^{n}
$$

then

$$
j(m \gamma \tau)=\frac{\zeta_{m}^{-a b}}{\left(q^{1 / m}\right)^{a^{2}}}+\sum_{n=0}^{\infty} c_{n} \zeta_{m}^{a b n}\left(q^{1 / m}\right)^{a^{2} n}, \text { in which we take } m \gamma=\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)
$$

- If we vary τ, the coefficients of $\Phi_{m}(X, \tau)$ varies in the following way: $\Phi_{m}(X, \tau) \in \mathbb{C}(j(\tau))[X]$.

This follows from the coefficients of Φ_{m} as symmetric polynomials of $j(m \gamma \tau)$ are holomorphic functions on $\tau \in \mathbb{H}$ and invariant under the action of $\mathrm{SL}_{2}(\mathbb{Z})$. These coefficients are meromorphic at the cusps, thus are modular functions (weakly modular+meromorphic at ∞). All holomorphic modular functions of $\mathrm{SL}_{2}(\mathbb{Z})$ are polynomials of $j(\tau)$.

- Consider $\Phi_{m}(X, \tau)$ as a polynomial with two variables $\Phi_{m}(X, Y) \in \mathbb{C}[X, Y]$ by setting $Y=j(\tau)$. Then, in fact $\Phi_{m}(X, Y) \in \mathbb{Z}[X, Y]$.
Using the explicit Galois action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbf{Q})$ on $j(m \gamma \tau)$ using the q-expansion, we can conclude $\Phi_{m}(X, Y) \in \mathbb{Q}[X, Y]$. Since the coefficients of the q-expansions of $j(m \gamma \tau)$ are algebraic integers, we conclude that $\Phi_{m}(X, Y) \in \mathbb{Z}[X, Y]$.
- When m is not a perfect square, $\Phi_{m}(X, X)$ is an integral polynomial of X with leading coefficients ± 1. This again follows from the explicit q-expansion of $j(m \gamma \tau)$, where $m \gamma=\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$. Note that we need $m=a d$ to not be a perfect square in this argument.

