
Modular Curve X(1) and the j-invariant

1 Modular Functions and Uniformization

In last lecture, we discussed that isomorphism classes of elliptic curves defined over the complex numbers
correspond to lattices Λ ⊂ C up to homothety. Thus, we can parameterize isomorphism classes of elliptic
curves over C by parameterizing lattices up to homothety.

For any lattice Zω1 + Zω2, we can find a homothetic lattice Λτ = Z + Zτ for some τ ∈ C satisfying
Im τ > 0. Thus, there is a surjective map from the upper half plane

H = {τ ∈ C | Im τ > 0}

to the set of homothety classes of lattices given by τ 7→ Λτ := Z + Zτ.
But the choice from Λ to such a τ is not unique.
The modular group

SL2(Z) =
{(

a b
c d

)
| a, b, c, d ∈ Z, ad − bc = 1

}
acts on H by linear fractional transformations.

γ =

(
a b
c d

)
∈ SL2(Z), γ(τ) =

aτ + b
cτ + d

, ∀τ ∈ H.

For any τ1, τ2 ∈ H, the lattices Λτ1 and Λτ2 are homothetic if and only if there exists γ ∈ SL2(Z) such
that τ2 = γ(τ1). Thus lattices up to homothety are parameterized by the upper plane H modulo the action
of SL2(Z). And this set SL2(Z) \ H is in bijection to the region

F =
{

τ ∈ H | |ℜ(τ)| ≤ 1
2

, |τ| ≥ 1
}

.

This region is called a fundamental domain for SL2(Z) \ H and every lattice Λ ⊂ C is homothetic to a lattice
Λτ for some τ ∈ F .
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The quotient SL2(Z) \ H (denoted as Y(1)) has a natural structure of a genus 0 Riemann surface with a
puncture, a 2-sphere with one point missing. Then it’s natural to want to compactify this topological space.
To add this missing point and give it a moduli interpretation, we define the extended upper half plane

H∗ = H ∪ Q ∪ {∞}.
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Then SL2(Z) acts on H∗ and the quotient SL2(Z) \ H∗ (denoted as X(1)) is a compact genus 0 Riemann
surface. There is one point in the compliment of Y(1) ⊂ X(1) and this point is called the cusp of X(1).

Next, we introduce a function j on homothety classes of lattices which is a complex analytic isomor-
phism of (open) Riemann surfaces j : Y(1) → C and it extends to j : X(1) ≃ P1(C).

Recall from Lecture 2, given a lattice Λ and k ∈ Z>1, we defined Eisenstein series

G2k(Λ) = ∑
ω∈Λ
ω ̸=0

ω−2k.

Given τ ∈ H, it is naturally associated to the lattice Λτ = Z + Zτ and thus we can consider G2k(τ) as

a meromorphic function defined on the upper half plane H. Note that for any γ =

(
a b
c d

)
∈ SL2(Z), we

have
G2k(γτ) = (cτ + d)2kG2k(τ).

(Meromorphic functions on H satisfying this condition are called weakly modular of weight 2k. The Eisen-
stein series G2k, k > 1 is not only weakly modular, it is also holomorphic on H and at ∞. It is an example
of a modular form of weight 2k.)

The function G2k is defined on the set of lattices but it is not a function on homothety classes of lattices.
However, we can construct a function on homothety classes of lattices using G2k.

Definition 1.1. Let Z + Zτ ⊂ C be a lattice. The j-invariant is defined to be the complex number

j(τ) := 1728
(60G4(τ))

3

(60G4(τ))3 − 27(140G6(τ))2 .

For any γ ∈ SL2(Z), we have j(γτ) = j(τ).

Theorem 1.2. If Λ1, Λ2 ⊂ C are two lattices, then they are homothetic if and only if

j(Λ1) = j(Λ2).

Since
(

1 1
0 1

)
∈ SL2(Z), the function j : H → C satisfies j(τ + 1) = j(τ). Thus, let q = e2πiτ , the

function j has a Laurent expansion in the variable q. Explicitly,

j(τ) =
1
q
+ 744 + 196884q + · · · = 1

q
+

∞

∑
n=0

cnqn,

where the coefficients cn are integers for all n ≥ 0.

2 The j-invariant of an Elliptic Curve

From our discussion in lecture 2, a lattice Λ ⊂ C corresponds to an elliptic curve defined by a Weierstrass
equation

y2 = 4x3 − 60G4x − 140G6 (y2 = x3 − 15G4x − 35G6).

Following the definition of j-invariant for a lattice Λ, given an elliptic curve E over some field K with
Weierstrass equation

y2 = x3 + Ax + B,

we can define its j-invariant to be

j = 1728
(4A)3

16(4A3 + 27B2)
.

When K is a subfield of C, our discussion implies that the j-invariant determines the isomorphism class of
E over C. Although we won’t prove it, but it’s true that, the j-invariant determines the isomorphism class
of an elliptic curve E over K for any field K.
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From the definition, we see that for E defined over any field K (thus A, B ∈ K), its j-invariant takes value
in K. Conversely, given a j-invariant j0 ∈ K for some field K, the elliptic curve

y2 + xy = x3 − 36
j0 − 1728

x − 1
j0 − 1728

has its j-invariant equal to j0 unless j0 = 0 or 1728. Values 0 and 1728 are j-invariants of elliptic curves
y2 + y = x3 and y2 = x3 + x respectively. Thus, over an algebraically closed field K, the set of isomorphism
classes of elliptic curves is in bijection to the set of all j values in K.

Note that the cusp of X(1) corresponds to j-invariant value ∞. Thus, let p be a prime of a field K and E/K
an elliptic curve, if the valuation of the j-invariant is negative at p (“having a power of p in the denominator
of j(E)”), then the reduction of E at p is singular and we call this reduction a bad reduction. If the valuation
of the j-invariant is non-negative at p, then E has potential good reduction at p, meaning there is a finite
extension L/K such that E ⊗ Spec L has good reduction at a prime above p.

Moreover, let E1, E2 be two elliptic curves defined over a number field K and let p be a prime of K at
which E1, E2 admit good reduction. For each Ei there exists a Weierstrass equation y2 = x3 + Aix + Bi such
that y2 = x3 + Aix + Bi with Ai, Bi ∈ Fp the reduction of A, B in the residue field of p defines an elliptic
curve Ei over Fp. The j-invariants j(E1) ≡ j(E2) mod p if and only if E1 is isomorphic to E2 over Fp.

3 The j-invariant of a CM Elliptic Curve

Recall from Lecture 2, a lattice Λ = Z+Zτ ⊂ C corresponds to a CM elliptic curve when τ is an imaginary
quadratic number. Now let’s talk about the j-invariant j(τ) of a CM elliptic curve, which is often called a
singular moduli.

Proposition 3.1. The j-invariant of a CM elliptic curve is an algebraic number.

Proof. Let E/C : y2 = x3 + Ax + B be an elliptic curve and ϕ ∈ End(E). For any σ ∈ Aut(C), let Eσ be the
elliptic curve with Weierstrass equation y2 = x3 + σ(A)x + σ(B). Then σ ◦ ϕ ◦ σ−1 is an Endomorphism of
Eσ. Thus, if E has CM by an order O, so does Eσ.

The isomorphism classes of E and Eσ are determined by their j-invariants and j(Eσ) = σ(j(E)) following
the definition of the j-invariant. Recall from lecture 2, that the isomorphism classes of elliptic curves with
CM by O are parameterized by the class group of O which is a finite group. We conclude that j(E) is
algebraic.

Let h be the class number of an order O of an imaginary quadratic field. From the above proof, we
see that Q(j(E)) is a number field of degree at most h where E is an elliptic curve with CM by O. In fact
[Q(j(E)) : Q] = h.

Theorem 3.2. The j-invariant of a CM elliptic curve is an algebraic integer. Thus, a CM elliptic curve has potential
good reduction at every prime.

Sketch of proof. First, recall the degree of the multiplication by m isogeny is m2 for any positive integer m.
Let α ∈ O ⊂ C be an endomorphism of an elliptic curve E. Then the degree of α : E → E is its norm, or
simply αα where α its complex conjugate. Thus, an elliptic curve having CM by an order O ⊂ Q(

√
−d) can

be characterized by the existence of an endomorphism whose degree m is not a perfect square.
Consider a lattice Λτ = Z + Zτ, the elliptic curve C/Λτ admits a degree m isogeny to C/Λmτ by

z 7→ mz. Using the existence of dual isogeny, admitting a degree m isogeny to or from C/Λτ are equivalent.
In fact, all lattices Λ for which C/Λ admitting a degree m isogeny to C/Λτ takes the form Z + Z(mγτ) for
some γ ∈ SL2(Z). Up to homothety, there are finitely many homothety classes of lattices Λ for which C/Λ
admits a degree m isogeny to C/Λτ for a fixed Λτ . We list a representative of this set of mγτ as τ1, · · · , τn.

Now we can define a polynomial in variable x in the following way

Φm(X, τ) :=
n

∏
i=1

(X − j(τi)).
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This theorem follows from the following facts about the polynomial Φm. The proof of these statements all
base on the q-expansion of the j-function.

If

j(τ) =
1
q
+

∞

∑
n=0

cnqn,

then

j(mγτ) =
ζ−ab

m

(q1/m)a2 +
∞

∑
n=0

cnζabn
m (q1/m)a2n, in which we take mγ =

(
a b
0 d

)
.

• If we vary τ, the coefficients of Φm(X, τ) varies in the following way: Φm(X, τ) ∈ C(j(τ))[X].

This follows from the coefficients of Φm as symmetric polynomials of j(mγτ) are holomorphic func-
tions on τ ∈ H and invariant under the action of SL2(Z). These coefficients are meromorphic at the
cusps, thus are modular functions (weakly modular+meromorphic at ∞). All holomorphic modular
functions of SL2(Z) are polynomials of j(τ).

• Consider Φm(X, τ) as a polynomial with two variables Φm(X, Y) ∈ C[X, Y] by setting Y = j(τ). Then,
in fact Φm(X, Y) ∈ Z[X, Y].

Using the explicit Galois action of Gal(Q/Q) on j(mγτ) using the q-expansion, we can conclude
Φm(X, Y) ∈ Q[X, Y]. Since the coefficients of the q-expansions of j(mγτ) are algebraic integers, we
conclude that Φm(X, Y) ∈ Z[X, Y].

• When m is not a perfect square, Φm(X, X) is an integral polynomial of X with leading coefficients ±1.

This again follows from the explicit q-expansion of j(mγτ), where mγ =

(
a b
0 d

)
. Note that we need

m = ad to not be a perfect square in this argument.
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