
Elliptic Curves over C and Complex Multiplication

In last lecture, we introduced elliptic curves from an abstract algebraic perspective. In this lecture, we
give a more geometric description of elliptic curves defined over the complex numbers. This description
allows us to concretely think about points on an elliptic curve, visualize the set of torsion points, and more
importantly it gives us a way to parameterize all elliptic curves over C and observe the ones with complex
multiplication.

1 Elliptic Curves over C and Lattices

Recall from last lecture that an elliptic curve E is a smooth, projective, genus 1 algebraic curve. The set of
complex points on a genus 1 curve over C is topologically a torus with complex analytic topology.

The universal cover of a torus is a 2-dimensional plane and the covering map is given by R2 moding
out all translations (x, y) 7→ (x + m, y + n) , m, n ∈ Z.

torus T covering map R2/Z2

The set of C-points on an elliptic curve E/C can also be described this way.

Definition 1.1. A lattice Λ ⊂ C is a discrete subgroup of C which contains an R-basis for C.

Question: why is such a Λ isomorphic to Z2 ?

Let {ω1, ω2} be a set of generators of Λ, i.e. Λ = {n1ω1 + n2ω2 : n1, n2 ∈ Z}.

ω1

ω2

The quotient C/Λ is a complex Lie group with the addition on C. Given two lattices Λ1, Λ2, any maps
between quotients C/Λ1 → C/Λ2 are given by complex numbers α ∈ C such that αΛ1 ⊂ Λ2 by

ϕα(z) := αz mod Λ2.

Two lattices Λ1, Λ2 are called homothetic if Λ1 = αΛ2 for some α ∈ C. This is an equivalence relation
between lattices in C.

We will show the complex points of an elliptic curve E(C) is isomorphic to C/Λ for some lattice Λ as
complex Lie groups. Moreover, the following categories are equivalent.

Objects: elliptic curves over C, up to isomorphism

Maps: isogenies
⇐⇒

Objects: lattices Λ⊂C, up to homothety

Maps: {α∈C: αΛ1⊂Λ2}
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1.1 Functions on C/Λ

Recall points on an elliptic curve E defined over C satisfies a Weierstrass equation y2 = x3 + Ax + B. Thus
to identify the set of points E(C) and points in C/Λ where Λ is a lattice, we want to construct functions f , g
on C/Λ such that the values of f (z), g(z) satisfy f (z)2 = g(z)3 + Ag(z) + B for z ∈ C/Λ.

Definition 1.2. Let Λ ⊂ C be a lattice. The Weierstrass ℘-function relative to Λ is defined by the series

℘(z) =
1
z2 + ∑

ω∈Λ
ω ̸=0

1
(z − ω)2 − 1

ω2 .

The series in the definition of ℘(z) converges absolutely and uniformly on every compact subset of
C \ Λ. The Weierstrass ℘-function is a meromorphic function on C having a double pole with residue 0 at
every lattice point and no other poles. It satisfies condition

℘(z + ω) = ℘(z), for all ω ∈ Λ, z ∈ C.

Meromorphic functions on C satisfying this condition are called elliptic functions. Elliptic functions are
functions on C/Λ. The set of all elliptic functions is a field which we denote by C(Λ).

The derivative ℘′(z) of the Weierstrass ℘-function is also an elliptic function. Moreover, the field C(Λ) =
C(℘(z),℘′(z)). Every elliptic function is a rational combination of ℘(z) and ℘′(z).

1.2 Associate an Elliptic Curve to a Lattice Λ

Next we show that ℘(z) and ℘′(z) satisfies an equation of the form ℘′(z)2 = 4℘(z)3 + A℘(z) + B.

Definition 1.3. Let Λ ⊂ C be a lattice. The Eisenstein series of weight 2k is the series

G2k(Λ) = ∑
ω∈Λ
ω ̸=0

ω−2k.

The Eisenstein series is absolutely convergent for all k > 1. Thus, for a fixed lattice Λ and k > 1, the
values G2k(Λ) are constants associated to Λ which we simply denote by G2k.

The Laurent series for ℘(z) around z = 0 is given by

℘(z) =
1
z2 +

∞

∑
k=1

(2k + 1)G2k+2z2k.

The only holomorphic elliptic functions are constant functions. Thus, using the Laurent series of ℘(z)
and ℘′(z), we could compare the order of pole at z = 0 to conclude the following statement. For a fixed lat-
tice Λ, the Weierstrass ℘-function and the Eisenstein series G4, G6 satisfy the following differential equation

℘′(z)2 = 4℘(z)3 − 60G4℘(z)− 140G6, for all z ∈ C \ Λ.

Now we can associate to a lattice Λ ⊂ C an elliptic curve E/C.

Theorem 1.4. Given a lattice Λ ⊂ C, let E/C be the curve

E : y2 = 4x3 − 60G4x − 140G6.

It is an elliptic curve and the map

ϕ : C/Λ → E

z 7→ (℘(z),℘′(z))

is a complex analytic isomorphism of complex Lie groups.
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1.3 Associate a Lattice to an Elliptic Curve

By using Weierstrass ℘-function, we could associate a lattice Λ ⊂ C with an elliptic curve E/C. Moreover,
the points E(C) are identified with C/Λ with addition being the group law induced from C. Next we will
show every elliptic curve E/C arises from this way. Thus, this identification gives us a way to concretely
visualize the torsion points on E.

Let E/C be an elliptic curve defined by Weierstrass equation y2 = x3 + Ax + B. From last lecture, we
see that dx

y is a holomorphic differential on E which is invariant under translation.
Let α, β be closed paths on E(C) giving a basis for the singular homology group H1(E, Z). Then the

periods

ω1 :=
∫

α

dx
y

, ω2 :=
∫

β

dx
y

are R-linearly independent.
Moreover, let Λ ⊂ C be the lattice generated by ω1, ω2. Then the map

F : E(C) → C/Λ, F(P) =
∫ P

O

dx
y

mod Λ

is a complex analytic isomorphism of Lie groups.

2 CM Elliptic Curves over C

2.1 From a Proper Fractional Ideal to a CM elliptic curve

Recall from previous lecture that for an elliptic curve E/C, its endomorphism ring End(E) is either isomor-
phic to Z or an order O of an imaginary quadratic field K. We will now discuss the structure of orders in
imaginary quadratic fields and their proper fractional ideals. This will allow us to construct CM elliptic
curves by constructing their corresponding lattices.

Definition 2.1. An order O of an imaginary quadratic field K is a subring such that O is a rank 2 free
Z-module.

Let OK be the ring of integers of K. For any order O ⊂ K, we have O ⊂ OK with finite index and K is
the field of fractions of O. The ring OK is referred to as the maximal order of K.

A fractional ideal of O is a subset of K which is a nonzero finitely generated O-module. It is of the form
αa for some α ∈ K∗ and a an O-ideal. Moreover, a nonzero fractional O-ideal is a free Z-module of rank 2.

Thus, under an embedding K ↪→ C, the image of a fractional O-ideal a is a lattice Λa ⊂ C such that
αΛa ⊂ Λa for any α ∈ O. From the previous discussion, it corresponds to an elliptic curve E with O ⊂
End(E). Next we discuss for which fractional O-ideals we exactly have O = End(E).

A fractional O-ideal a is called proper if O = {α ∈ K | αa ⊂ a}.
A fractional O-ideal a is called invertible if there exists a fractional O-ideal b such that ab = O.
Let O be an order of an imaginary quadratic field. Then a fractional O-ideal is proper if and only if it is

invertible. For the maximal order of an imaginary quadratic field, every fractional ideal is proper. The set
of all proper fractional O-ideals which we denote by I(O) forms a group under multiplication.

By definition, the lattice of a proper fractional O-ideal in C gives rise to an elliptic curve E such that
O = End(E). We will discuss later that every such elliptic curve arises from this way.

As we want to classify elliptic curves up to isomorphism, lattices up to homothety, we discuss this
equivalence relation among proper fractional O-ideals.

A fractional O-ideal a is called principal if it is of the form αO for some α ∈ K∗. Principal fractional ideals
are proper and invertible. They form a subgroup of I(O) which we denote by P(O).

Let a, b be proper fractional O-ideals, under an embedding K ↪→ C, the lattices Λa and Λb are homoth-
etic if and only if ab−1 is principal.
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So naturally, we consider the quotient group C(O) := I(O/P(O)) which is a finite group called the
ideal class group of order O and its order h(O) is referred to as the class number of O. We will see that the
ideal class group C(O) parameterizes isomorphism classes of elliptic curves with End(E) = O.

2.2 From a CM Elliptic Curve to a Proper Fractional Ideal

We have seen that a proper fractional ideal of an order in an imaginary quadratic gives rise to a CM elliptic
curve. Now we will show every CM elliptic curve arises from this way.

Given a lattice Λ ⊂ C, the endomorphisms of C/Λ is the set {ϕα | α ∈ C, αΛ ⊂ Λ}. A lattice Λ
corresponds to a CM elliptic curve if there exists α ∈ C \ Z, such that αΛ ⊂ Λ. We say such a lattice has
CM.

Theorem 2.2. A lattice Λ has CM if and only if it is homothetic to a lattice of a proper fractional ideal of an order O
in an imaginary quadratic field K.

Proof. By definition, the lattice of a proper fractional O-ideal under an embedding O ↪→ C has its endo-
morphism ring being O. Thus, it has CM.

So we focus on proving the converse.
For any lattice Zω1 + Zω2, we can find a homothetic lattice Λ = Z + Zτ for some τ ∈ C.
So for a α ∈ End(Λ), we have α = a + bτ and ατ = c + dτ for a, b, c, d ∈ Z. This implies that τ satisfies

a quadratic equation
(a + bτ)τ = c + dτ.

Since {1, τ} generates a lattice, we know τ is not real. Thus, the field K := Q(τ) is imaginary quadratic.
Moreover,

O := {β ∈ K | βΛ ⊂ Λ}

is an order of K for which Λ is a proper fraction O-ideal.
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