4. Weil'soryjectures
4.1 Enolomorphism rings of abelian vavicies:

Albert classupucation
Let A be a k-nimple a belian varicty of alimexrin gover \mathbb{F}_{9}

$$
\text { Let } D=E_{n o j}^{0}(A)
$$

Wedolebaru: D is a olivition algetra.
F the centre of d.
$x \mapsto x^{+}$be Rosati in volutron A.
This is a positive involutoin. So the fixed field $F^{+}=\left\{x \in D: x^{+}=x\right\}$ astotally real number field (ie. every embeoloing $\sigma: F^{+} \longrightarrow \mathbb{C}$ factors Ahrough \mathbb{R}.)
Clearly, $F^{+} \subseteq F$.
. Let $e=[F: Q], e^{+}=\left[F^{+}: Q\right],[D: F]=d^{2}$ $d \in Z \geq 0$.

Thenven (Albert dassifucatioñ)
Keeping the notortains above, the algebra D is isomorphic to one of the following types:
(1) Type I: $J=F=F^{+}$, ant the Rosat involution is the identity; in that care, eld.
(2) Type II: $F=F^{+}$, and In a totally indefinite quaternion algebra over F.
ie $\forall \sigma: F \subset 口 \mathbb{R}, D \otimes_{\sigma} \mathbb{R}=\operatorname{Me}(\mathbb{R})$.
In that cate, de $1 g$.
(3) Type IU: $F=F^{+}$, and D is totally olefonite quaternion algebra (ie $\forall \sigma: F \leadsto \mathbb{R}$) $\Delta \otimes_{\sigma} \mathbb{R} \cong H$, where H ot the H a milting, quaternion ale bra.) In that Cate, e^{2} / g
(4) Type IV: Fur a CII extent ron of F^{+}lie it is totally imaginary quastratic ext $\underline{\text { en }}$ of F^{+}), and Δ is a division algebra ante centre is F. Tu that care,

$$
\begin{array}{ll}
x e^{+} d^{2} / g \text { if char (k) } \neq 0 \\
x e^{+} \cdot d / g \text { if char }(k)>0 .
\end{array}
$$

4. 2 Eta functions of abelian vametics

Theorem. A is an abeloan variety/ \mathbb{F}_{4}.

$$
\begin{array}{ll}
\cdot \operatorname{diw} A=g . & \\
\cdot q=p^{n} & p=\operatorname{diar}\left(F_{p}\right) \\
& n \geqslant 1
\end{array}
$$

(i) Every moat $\alpha \in \mathbb{C}$ of the characteniti polynomial F_{A} of π_{A} has absolute value $|\alpha|=\sqrt{9}$
(ii) If $\alpha \in \mathbb{C} u$ complex, then so us $\bar{\alpha}=\alpha / q$, ans the two roots appear unit the rome multiplicity. If $\alpha=\sqrt{9}$ or $-\sqrt{9}$ is a \cos of f_{A}, then its occurs with even multiplicity.

Proof: (i) Reoluce to the cate of a simple abelian variety.
Fo assume that
$\mathfrak{h}: A \sim_{\mathbb{H}_{4}} A^{\prime}=A_{1} \times \ldots \times A_{5}$, where each A_{i} is H_{q}-simple.
The isogeny h inolucer an inomophaim of Tate modules:

$$
\begin{aligned}
& \text { ate modules: } \\
& V_{l}(h): V_{l}(A) \cong V_{l}\left(A^{\prime}\right)=V_{l}\left(A_{1}\right) \oplus \ldots V_{l}\left(A_{1}\right) \\
&\left.{ }_{0}\right) \\
& \pi_{n}=\pi_{A^{\prime}}: h
\end{aligned}
$$

But roe have $h \circ \pi_{A}=\pi_{A^{\prime}} \cdot h$

$$
\begin{aligned}
& \text { But wo have } \\
& \sim V_{l}(l) \cdot V_{l}\left(\pi_{A}\right) \cdot V_{l}(l)^{-1}=V_{l}\left(\pi_{A^{\prime}}\right) \\
& \text { we see that }
\end{aligned}
$$

But in that care, we see that

$$
\begin{aligned}
& V_{l}\left(\pi_{A^{\prime}}\right): V_{l}\left(A^{\prime}\right) \longrightarrow V_{l}\left(A^{\prime}\right) \\
&\left(x_{1},, x_{s}\right) \longmapsto\left(V_{l}\left(\pi_{A_{1}}\right)\left(x_{1}\right), \ldots\right. \\
&\left.V_{l}\left(\pi_{A_{1}}\right)\left(x_{s}\right)\right)
\end{aligned}
$$

Fo this suppler that

$$
f_{A}=f_{A_{1}} \cdots f_{A_{3}}
$$

Fo enough ho counter rimple abelian vanities. Let $\lambda: A \rightarrow A^{2}$ aud + be the Rorati ivorbetoin seduces by A. We first show that

$$
\pi_{A} \circ \pi_{A}^{+}=[9]_{A}
$$

But

$$
\begin{aligned}
& \pi_{A} \circ \pi_{A}=L \pi A \\
& \pi_{A} \cdot \pi_{A}^{+}=\pi_{A} \cdot \lambda^{-1} \cdot \pi_{A}^{v} \cdot \lambda=\lambda^{-1} \pi_{A} \cdot \pi_{A}^{v} \cdot \lambda
\end{aligned}
$$

So ot is enough h show that $\delta_{A} \cdot \pi_{A}^{n}=[9]_{A^{*}}$ But, by olefinition

$$
\pi_{A}=F_{A / \mathbb{F}_{G}}^{n}
$$

By the popectier of the Versclibung map (ace next lecture), we have

$$
\begin{aligned}
& \pi_{A}^{v}=V_{A^{v} / \pi_{q}} \text {, and } \\
& \pi_{A^{v}}^{v} \cdot \pi_{A}^{v}=F_{A^{v} / \pi_{q}}^{u} \cdot V_{A^{v} / \pi_{q}}^{u}=\left[P^{n}\right]_{A^{v}}=[9]_{A^{v}}
\end{aligned}
$$

The $\pi_{A} \cdot \pi_{A}^{+}=[9]_{A}$.
Now, rive A i simple, $Q\left[\bar{c}_{A}\right]$ is a number field. Furthermore, f_{A} is a power of the
minimal prlyurnial of of π_{A}.
so the complex sots of g (and bence f_{A}) are of the form $2\left(\pi_{A}\right)$ where

$$
2: \mathbb{Q}\left[\pi_{A}\right] \subset \mathbb{C}^{+}
$$

The relation $\pi_{A} \cdot \pi_{A}^{+}=\left[9 T_{A}\right.$
$\Rightarrow Q\left[\pi_{A}\right]$ is stable unoler the involution ${ }^{t}$.
This vi s a positive involution.
(a) Totally real cate: $\mathbb{Q}\left[T_{A}\right]$ is totally res land + is quit the identity map.
(b) $C \Pi: Q\left[\pi_{A}\right]$ is a $C \Pi$ field; e.

$$
\begin{aligned}
& \forall i: \mathbb{Q}\left[\pi_{A}\right] \propto \mathbb{C}, i(x)=i\left(x^{+}\right) \\
& \forall x \in \mathbb{Q}\left[\pi_{A}\right] \text {. }
\end{aligned}
$$

In either care, we ne that $\pi_{A} \cdot \pi_{A}^{+}=9$ iuploce that $\alpha \in \mathbb{C}$ ir a root of $/ A$,
then $|\alpha|=\sqrt{9}$.
(ii) The first two assertions ave cary to prove (exarate).

Aspunve that $\alpha=\sqrt{9}$ or $\alpha=-\sqrt{9}$ is a root of F_{A}. Then $Q\left[\pi_{A}\right]$ cannot be a CII field. This means that $\mathbb{Q}\left[\bar{\pi}_{A}\right]$ suit be totally veal. In that care the only possible woos are $\alpha= \pm \sqrt{9}$ beccucser of the relation $\alpha \bar{\alpha}=\overline{9}$.
If $\sqrt{9}$ has nuiltiplicty $m \geqslant 0$, then $-\sqrt{9}$ has multiplicity $2 g-m$.

But

$$
\begin{aligned}
f_{A}(0) & =(-1)^{m} q^{g} \\
& =\operatorname{deg}\left(-\sigma_{A}\right)=q^{q}
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{deg}\left(-\sigma_{A}\right)=q \\
\Rightarrow(-1)^{m} q^{g} & =q^{g} \Rightarrow m \text { uneven }
\end{aligned}
$$

Let X be a relume of flite type over $\overline{\mathrm{Tg}_{\mathrm{g}}}$. For any integer $n \geqslant 0$, let $N_{n}:=\# X\left(\mathbb{F}_{q_{n}}\right)$ be the number of $\mathbb{H}_{q^{n}}$ - rational points. The zeta function of X is olegined by

$$
Z(x ; t): \exp \left(\sum_{n=1}^{\infty} \frac{N_{n}}{n} t^{n}\right) \in Q \llbracket[\rrbracket .
$$

Theorem. Let A be an abelian variety/ \mathbb{E}_{9}. Write $f_{A}=\prod_{i=1}^{28}\left(t-\alpha_{i}\right)$ (roots are counted with multiplicity).
(i) $\# A\left(\pi_{q^{n}}\right)=\prod_{i=1}^{2 g}\left(1-\alpha_{i}^{n}\right)$
(ii) The zeta function is given by $Z(A ; t)=\frac{P_{1} P_{3} \ldots P_{2 g+1}}{P_{0} P_{2} \ldots P_{2 g}}$, where each $P_{k}(t) \in \mathbb{Z}[t], k=0,72 q$; and i) ${\text { ivan explicitly in termor of the } \alpha_{i}}$

$$
P_{k}(t):=\prod_{1 \leq i_{1}<1<i_{k} \leq 2 g}\left(1-\alpha_{i_{1}}-\alpha_{i, k} t\right) \text {. }
$$

(iii) Functional equation: $Z\left(A ; \frac{1}{g^{2} t}\right)=Z(A ; E)$

Jacobian varieties
The functor
X is a complete non singular curve/ k.
The ohivisor group of x :

$$
\operatorname{Div}(X):=\left\{\sum_{i=1}^{n} n_{i} P_{i}: n_{i} \in 2, P_{i} \in X(\bar{k})\right\}
$$

- The olegree map:

$$
\begin{aligned}
& \text { he olegnee map: } \\
& D=\sum_{i=1}^{n} u_{i} P_{i} \longmapsto \operatorname{deg}(D):=\sum_{i=1}^{n} n_{i}
\end{aligned}
$$

- Fr $f \in \bar{k}(x)$,

$$
\begin{aligned}
\operatorname{div}(t) & =\sum_{\left.P_{\in X(\bar{k}}\right)} v_{P}(t) P \\
P_{\text {ria }}(X) & = \begin{cases}\operatorname{Div}(X) \\
D \in \operatorname{dir}(X): D=\operatorname{div}(t) \\
\text { for rue } k \in \bar{k}(x\end{cases}
\end{aligned}
$$

for rome $\notin \mathbb{k}(x)\}$.

$$
\begin{aligned}
& \operatorname{Pic}_{\text {ic }}(x)=\operatorname{Div}(X) / \operatorname{Pinc}(x) \\
& \operatorname{Div}^{\prime}(x):=\left\{D_{t} \operatorname{Div}(x): \operatorname{deg} D=0\right\}
\end{aligned}
$$

UI
Pron (X)
Defince $\operatorname{Pic}^{\circ}(x)=\operatorname{Dir}(x) / \operatorname{Prin}(x)$
Key fact:
$\Delta \leadsto \mathcal{F}(D)$ line bunolle.

$$
1 \longleftarrow \quad \mathcal{L}
$$

This unres pondence is well-defined, andretting $\operatorname{deg}(\mathcal{L})=\operatorname{deg}(D)$, Thwr is mabependent of the clavie of D $L \longrightarrow D, D^{\prime} \leadsto D^{\prime}=D=\operatorname{dov}(f)$ But oliv(f) has olgyiee 0 .

We can equally befine $\operatorname{Pic}(x)$ and $P_{i i}{ }^{\circ}(x)$ as followr:
$P_{i c}(x):=\{$ Live bunoller on $x\} /$ iromor

$$
P_{i c} \cdot(x)=\left\{d \in P_{i c}(x) \mid \operatorname{deg} z=0 \% \sim\right.
$$

Riemann-Roch Theonem
Eulercharacteriotic $x(x, \downarrow)$

$$
x(x, \mathscr{L})=\operatorname{deg}(\mathscr{L})+1-g
$$

where $g=$ genus of X.
Take T a conurcted ncleme / k

$$
x_{x_{k} T}=X x_{\text {ppcc }(k)} T
$$

X_{t} be the fibre of the piojectioni $P_{T}: X \times k T \longrightarrow T$

Fr $\mathcal{L} \in P_{i c}\left(X x_{k} T\right)$, then the map $t \mapsto x\left(x_{t}, \mathscr{L}_{t}\right)$ is locally constant.
$\Rightarrow \operatorname{deg}\left(\partial_{t}\right)$ is independent of t. Even better, of $T^{\prime} \rightarrow$ is a relative bare change, $\operatorname{deg}\left(\mathscr{L}_{t}\right) \mathrm{wm} / \mathrm{d}$ still be unchanged.
The functor:

$$
T(T):=\left\{\mathscr{L} \in P_{i c}(X \times T) \mid \operatorname{deg} \mathscr{L}_{t}=0 \forall t \in T\right.
$$

Theorem. Suppose $X(k) \neq \phi$, Then F is represent table by an abelian vanity of dime non g, called the Jacobian variety of X, denoted by $\operatorname{Jac}(X)$.

The thoosem says that the ne exists a pair (J, Mb) where J is an abehain varsity (k, and Nb it a line bundle on $X \times J$ reck that the following are true:
(a) $\left.\mathbb{D}_{6}\right|_{X \times\{04} \cong \theta_{x}$ and $\left.\operatorname{Nb}\right|_{\{x\}_{\times} T} \cong \theta_{5}$
(b) $\forall T$ (al above), $t \in T, \mathcal{L} \in \operatorname{Pic}(x \times T)$ much $f / \times \times\{+\} \cong \theta_{x}$ and $\mathfrak{L} /\{\times\} \times T \cong \theta_{T}$, there exist ic a unique noxplism $\phi: T \rightarrow J$ such that $\phi(t)=0$ and $\infty \cong(1 \times \phi)^{*} \operatorname{db}$.

Zeta functions of curves
Hasse-Weil-Serre Theorem.
Proposition Let X be a complete non ningular over \mathbb{H}_{9}, and $\mathrm{J}_{2 g}(X)$ it Jacobian. Write $f_{A}=\prod_{i=1}^{2 g}\left(t-\alpha_{i}\right)$
(α_{i} are the soots countet with multiphiaity) For any ivteper $m \geqslant 1$,

$$
\begin{aligned}
\# X\left(\pi_{q m}\right) & =1-\operatorname{Tr}\left(\pi_{\sigma}^{m}\right)+9^{m} \\
& =1-\sum_{i=1}^{2 q} \alpha_{i}^{m}+9^{m}
\end{aligned}
$$

Thesvem. Let X is a conuplete non ningular curve oven $\pi_{29} ; J=\operatorname{Jac}(x)$.

$$
f_{J}:=\prod_{i=1}^{29} 1\left(t-\alpha_{i}\right)
$$

Then, we have
(a)

$$
\begin{aligned}
& Z(X ; t)=\frac{P_{1}}{P_{0} P_{2}}, \text { where } \\
& P_{0}:=1-t \\
& P_{2}:=1-q t \\
& \left.\cdot P_{1}:=\prod_{i=1}^{2 g}\left(1-\alpha_{i} t\right) \begin{array}{c}
\text { vecopsocal } \\
\text { polymovial } \\
\text { of } \neq f
\end{array}\right)
\end{aligned}
$$

(b) $Z(x ; t)=q^{g-1} t^{2 g-2} Z\left(x ; \frac{1}{q t}\right)$

Thoovem. Let A be an a belian wariety it stimension g / A_{y}. Ther, we have

$$
\left|\operatorname{Tr}\left(\pi_{A}\right)\right| \leq g \cdot\lfloor 2 \sqrt{9}] \text {. }
$$

There it an epuality int ant only if

$$
\begin{aligned}
& \text { either } \alpha_{i}+\overline{\alpha_{i}}=\lfloor 2 \sqrt{9}\rfloor, \forall v \\
& \cdot \alpha_{i}+\overline{\alpha_{i}}=-\lfloor 2 \sqrt{9}\rceil, \forall i
\end{aligned}
$$

Covollary (H-W)-S) Let X be a complete non ningular curve $/ \mathbb{H}_{9}$. Then, the number of HY-raturial pointers of X \&s boundes by Her following inequalitios:

$$
9+1-g\lfloor 2 \sqrt{9}\rfloor \leq \# \times\left(\pi_{9}\right) \leq 9+1+g\lfloor 2 \sqrt{9}\rfloor
$$

