
ABELIAN VARIETIES OVER FINITE FIELDS:

PROBLEM SET 5

SANTIAGO ARANGO-PIÑEROS, SEOKHYUN CHOI, ALICE LIN, YUXIN LIN, AND MINGJIA ZHANG

Instructions: The goal of this problem set is to venture into the world of p-divisible groups and Dieudonné
modules. Problems marked (⋆), (⋆⋆), and (⋆ ⋆ ⋆) denote beginner, intermediate, and advanced problems,
respectively.

Notation: As customary, p will be a prime, and q will be a power of p.

In the first two problems, we explore the Newton polygon of a polynomial and use it to define the q-
Newton polygon of an abelian variety. These problems are inspired by problems from [Poo06], which serves
as a good complementary reference.

Problem 1 (⋆)
Let K be a field with a non-archimedean valuation v : K× → R. The Newton polygon of a polynomial
P (T ) = a0T

n + a1T
n−1 + · · ·+ an−1T + an is the lower convex hull of the finite set {(j, v(aj)) ∈ R2 : 0 ≤

j ≤ n and aj ̸= 0}. We will denote it by N (P ) = N (P, v). We define the width of a line segment from
(a, b) to (c, d) (with a < c) to be c− a.

Theorem A. Suppose that (K, v) above is complete, so that there is a unique extension vL of v to any
algebraic field extension L ⊃ K. Let K̄ be an algebraic closure of K, and let v̄ denote the extension of v
to K̄. Then,

#{α ∈ K̄ : P (α) = 0 and v̄(α) = s} = width of the segment of slope s in N (P ).

(1) Prove Theorem A.a

(2) Let m be a positive integer. How does N (P ) compare to N (Pm)?
(3) How does the Newton polygon of a product of polynomials relate to the Newton polygons of the

factors?

aHint: By changing P (T ) to P (λT ) for some suitable λ ∈ K̄, reduce to the case of slope s = 0. Start with P (T ) in factored
form, and in terms of the number of zeros with positive and negative valuation, determine the location of the slope-zero

part of the Newton polygon.

In the context of abelian varieties over finite fields, we focus on the case where K = Qp, and p is the
characteristic of our base field Fq.

Problem 2 (⋆)

Let the q-valuation v̄ : Q×
p → R to be the p-adic valuation renormalized so that v̄(q) = 1. We can define the

q-Newton polygon of an abelian variety A/Fq to be the Newton polygon of the characteristic polynomial
of Frobenius PA(T ) with respect to the q-valuation v̄. We write N (A) := N (PA(T ), v̄). Newton polygons
of g-dimensional abelian varieties over Fq satisfy the following properties:a

a. The left endpoint is (0, 0) and the right endpoint is (2g, g).
b. The vertices are all integer points with nonnegative second coordinate.
c. The vertices are symmetric: If λ is a slope occuring in multiplicity r, then (1 − λ) is a slope

occuring in multiplicity r. For example, the polygon with vertex (0, 0), (g, 0), (2g, g) is symmetric,
since 0 occurs as a slope for g many times and 1 occurs as a slope for g many times.
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We say a Newton polygon is admissible if it satisfies properties a, b, c.

(1) Describe the admissible Newton polygons for g ≤ 3.
(2) Are all admissible Newton polygons realized by some abelian variety of dimension g ≤ 3? Find explicit

examples in the LMFDB for each one.
(3) How does the Newton polygon of an abelian variety relate to the Newton polygons of its simple factors

in the isogeny category?
(4) How does the q-Newton polygon of A compare to the qr-Newton polygon of AFqr

?
(5) Calculate the Newton polygon of the varieties described in PSET 4 Problem 11.

aSee how many of these you can prove!

The following problem establishes the basics of the ring of Witt vectors attached to a commutative ring.
It is taken from [Neu13, Chapter II. Exercise 2-5].

Problem 3 (⋆⋆)
Let X0, X1, . . . be an infinite sequence of variables, and p a prime number. For each n ∈ Z≥1, let

Wn(X0, . . . , Xn) := Xpn

0 + pXpn−1

1 + · · ·+ pnXn.

(1) Show that there exists polynomials S0, S1, . . . ;P0, P1, · · · ∈ Z[X0, X1, . . . ;Y0, Y1, . . . ] such that

Wn(S0, S1, . . . , Sn) = Wn(X0, X1, . . . , Xn) +Wn(Y0, Y1, . . . , Yn)

Wn(P0, P1, . . . , Pn) = Wn(X0, X1, . . . , Xn) ·Wn(Y0, Y1, . . . , Yn)

Now, let A be a commutative ring such that pA = 0. Let a := (a0, a1, . . . ) be an infinite tuple with
ai ∈ A. We make the set of such tuples into a commutative ring W (A) as follows. For two such tuples
a = (a0, a1, . . . ), b = (b0, b1, . . . ), define addition and multiplication

a+ b := (S0(a, b), S1(a, b), . . . ) and a · b := (P0(a, b), P1(a, b), . . . ).

W (A) is the ring of (p-typical) Witt vectors attached to A.

(2) Check that 1 := (1, 0, . . . ) is the multiplicative identity of W (A), and that p := 1 + 1 + · · ·+ 1 is the
element (0, 1, 0, . . . ) in W (A).

(3) For every Witt vector a = (a0, a1, . . . ) ∈W (A), we define the ghost components a(n) as

a(n) := Wn(a) = ap
n

0 + pap
n−1

1 + · · ·+ pnan.

Consider mappings V, F : W (A)→W (A) defined by

V (a) := (0, a0, a1, . . . ) and F (a) := (ap0, a
p
1, . . . ).

Show that
V (a)

(n)
= pa(n−1) and a(n) = (F (a))(n−1) + pnan.

(4) Now let K be a field of characteristic p. Show that V is a homomorphism of W (K) as an additive
group, F is a homomorphism of W (K) as a ring, and

V ◦ F (a) = F ◦ V (a) = p · a = (0, ap0, a
p
1, . . . )

a

(5) (⋆ ⋆ ⋆) If K is a perfect field of characteristic p, then W (K) is a complete discrete valuation ring with
residue field K and maximal ideal pW (K).

(6) (⋆ ⋆ ⋆) Show that W (Fpn) ∼= Zpn , which is the valuation ring of Qpn , the unique degree n unramified
extension of Qp.

aTo show that f, g are the same map from W (A) → W (A), it suffices to show that Wn ◦f = Wn ◦g from Z[X;Y ] → Z[X;Y ].
Also, if A has characteristic p, it suffices to show that fn ≡ gn (mod p) as an element in Z/pZ[X,Y ]

The next problem is Exercise 7.4.5 in [BC09], which gives a different way to understand the Witt vectors.
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Problem 4 (⋆⋆)
Let k be an arbitrary field of characteristic p > 0.

(1) Use the addition law on the truncated Witt ring Wn defined in Problem 3 (applied to all k-algebras),
to explain how this gives An

k the structure of a smooth group variety Wn.
(2) Describe the group variety structure explicitly for n = 2 and any k.
(3) Recall from PSET 1, Problem 8 the idea of a ring variety. Write down the axioms to define a

“commutative ring scheme” and exhibit Wn as such an example.

The following is Lemma/Exercise after Definition 4.28 in [CO09]. It introduces the notion of the Dieudonné
ring and the local Cartier ring.

Problem 5 (⋆)
Let K be a perfect field of characteristic p. Let W (K) be the ring of Witt vectors and let σ : W (K) →
W (K) be the homomorphism (a0, a1, . . .) 7→ (ap0, a

p
1, . . .). The Dieudonné ring DK is defined to the

polynomial ring W (K)[F, V ] satisfying FV = V F = p, Fa = aσF , V aσ = aV .

(1) Show that the Dieudonné ring DK can be naturally identified with the Z-graded ring
⊕

i∈Z ciV
iW (K)

with the relation aV n = V naσ
n

, where ci = p−i if i < 0 and ci = 1 otherwise. This means W (k)[F, V ]
is the ring consisting of finite sums

∑
i aiV

i where ai ∈W (K), vK(ai) ≥ max{0,−i}.
(2) Let W (K)[[V, F ⟩⟩ be the ring consisting of formal Laurent series

∑
i aiV

i where ai ∈W (K), vK(ai) ≥
max{0,−i}, and vp(ai) + i → ∞ as |i| → ∞. Again the relation aV n = V naσ

n

is given. Let
v : W (K)[[V, F ⟩⟩ → Z be defined by v(

∑
i aiV

i) = mini{vK(ai) + i}. Show that v is a discrete
valuation on W (K)[[V, F ⟩⟩. a

(3) Show that the inclusion W (K)[F, V ] ↪→W (K)[[V, F ⟩⟩ is a ring homomorphism whose image is dense.
b

aThis ring can be naturally identified with the local Cartier ring Cartp(K).
bThis indicates that the Dieudonné ring can be naturally identified as a dense subring of the local Cartier ring.

We compute the Cartier duals of some finite flat group schemes.

Problem 6 (⋆⋆)
Let k be a field. Compute the Cartier duals of the following commutative k-groups.

(1) Z/nZ. Recall that as a k-scheme, this is given by SpecA where A :=
∏

i∈Z/nZ eik. The multiplication

on A is defined by ei · ej = δijei, and the co-multiplication is given by ∆(er) =
∑

i+j=r ei ⊗ ej .

(2) When k has characteristic p, the group αp := Spec k[x]/(xp), considered as a subgroup of Ga,k.

In problem 7 and 8, we use Dieudonné modules to classify the commutative finite flat group schemes of
order p defined over an algebraically closed field k of characterstic p, and apply this to study the p-torsion
group scheme of a supersingular elliptic curve over k. If you get stuck, the solutions can be found here.

Problem 7 (⋆)
Let k be an algebraically closed field of characterstic p. Let Dk = W (k)[F, V ] be the Dieudonné ring.

(1) Using [BC09, Theorem 7.2.4], there is an equivalence of categories between commutative order p finite
flat group schemes over k and left Dk-modules M whose underlying W (k)-module is of length 1. Use
(6) from Problem 3 to show that such an M must be isomorphic to W (k)/(p) as a W (k)-module.

(2) To specify the Dk-module structure on M , it suffices to write down the action of F and V . Let e be
a basis element of M as a 1-dimensional k-vector space. Let α, β ∈ k be such that

Fe = αe, V e = βe.

Show that at least one of α, β is zero.
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(3) Conversely, show that upon fixing a basis element e, any choice of (α, β) with at least one of α and
β being 0 uniquely determines a Dieudonné module over W (k) of length 1.

(4) Show that upon changing the basis e′ := λe for some λ ∈ k×, then if one of α, β is nonzero, it can be
chosen to be 1.

(5) Now we have reduced to the cases (α, β) being (0, 0), (1, 0), or (0, 1). There are three well-known
finite flat group schemes of order p over a characteristic p field: µp, Z/pZ, and αp. For each group
scheme, find out whether it is connected, étale, or neither.

(6) Show that the relative Frobenius kills a connected order p group scheme over k, and is an isomorphism
on an étale group scheme.a Deduce that the (1, 0) Dieudonné module must correspond to Z/pZ.

(7) Use the definition of the Verschiebung morphism on a group scheme together with Problem 6 to
decide which of µp, αp correspond to (0, 1), and which to (0, 0).

aHint: See these notes by Andrew Snowden.

Problem 8 (⋆⋆)
Let E/Fp be a supersingular elliptic curve. We will show there is a unique group scheme G over Fp of
order p2 such that E[p] ∼= G.

(1) Using [BC09, Theorem 7.2.4] again, a group scheme G over k of order p2 corresponds to a Dieudonné
module M(G) of length 2 as a W (Fp)-module. Show that if G is p-torsion, then so is M(G). In

particular, M(G) must be isomorphic to W (Fp)/(p)⊕W (Fp)/(p) as a W (Fp)-module.

(2) (⋆⋆) Use the connected-étale sequence and the fact that #E[p](Fp) = 1 to show that E[p] is connected.
(3) (⋆⋆) As an extension of Part (6) of Problem 7, one can show the relative Frobenius ϕG is a finite flat

morphism of degree p, and is nilpotent on any connected finite flat group scheme G over a field. Use
this to show that the kernel of ϕG is an order p flat group scheme, and so the Dieudonné module of
ker(ϕG) must be isomorphic to Fp as a W (Fp)-module.

(4) The induced action of Frobenius on the Dieudonné module M(E[p]) is also nilpotent by functoriality,
so we can choose an Fp-basis e1, e2 of M(E[p]) so that

Fe1 = e2, Fe2 = 0.

Show that V e2 = 0, and V e1 = αe2 for some α ∈ Fp. Show that α ̸= 0.

(5) By scaling e1 and using that Fp is algebraically closed, show that we can let α = 1. In particular, there
is a unique Dieudonné module corresponding to the group scheme E[p] for a supersingular elliptic
curve.

The case of E ordinary is more straightforward. Use the fact that #E[p](Fp) = p and the fact that the
connected-étale exact sequence splits for group schemes over a perfect field to show that E[p] ∼= µp×Z/pZ.

The following problem is adapted from [CO09, Exercise 4.6]. Here we investigate the endomorphism
algebra of simple Dieudonné modules over an algebraically closed base field.

Problem 9 (⋆⋆)
Let k be an algebraically closed field containing Fp. Let Dk be the Dieudonné ring as in Problem 5,
and Dk[

1
p ] be the rational Dieudonné ring. Now, let (m,n) be a pair of non-negative integers such that

gcd(m,n) = 1. Let Nm,n := Dk[
1
p ]/Dk[

1
p ](F

m − V n). Nm,n is a simple object in the isogeny category of

Dieudonné module over k. We want to compute EndDk[
1
p ]
(Nm,n).

(1) Show that Nm,n
∼= Dk[

1
p ]/Dk[

1
p ](F

m+n − pn).

(2) Let φ ∈ EndDk[
1
p ]
(Nm,n). Suppose φ(1) =

∑m+n−1
i=0 aiF

i with ai ∈ W (k)[ 1p ]. Use the fact that

(Fm+n − pn)φ(1) ∈ Dk[
1
p ](F

m+n − pn) to show that all the ai’s lie in W (Fpm+n)[ 1p ] = Qpm+n
a

(3) Show that the center of EndDk[
1
p ]
(Nm,n) is Qp.
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(4) Use the fact that Nm,n is a simple left Dk[
1
p ]-module, show that EndDk[

1
p ]
(Nm,n) is a central division

algebra over Qp.
(5) Recall the definition and notation of Dp,h,n from PSET 2, Problem 4. It can be written as

Qph [F ]/(Fh − pn), where Fα = ασF for α ∈ Qph . Show that φ 7→ φ(1) gives an isomorphism
EndDk[

1
p ]
(Nm,n) ∼= Qpm+n [F ]/(Fm+n − pn).

(6) Conclude that EndDk[
1
p ]
(Nm,n) is a central simple algebra over Qp with Hasse-invariant n

m+n .

aThat is, show that aσ
m+n

i = ai for all ai.

The next problem is Exercise 7.4.8 in [BC09]. It displays the role p-divisible groups play compared to
ℓ-adic Tate-modules: they are more suitable for encoding information at p!

Problem 10 (⋆ ⋆ ⋆)
Let A and B be abelian varieties over a perfect field k of characteristic p > 0. Recall that there is an
additive antiequivalence of categories G 7→ D(G) between the category of p-divisible groups over k and
the category of left W (k)[F, V ]-modules which are also finite as W (k)-modules.

(1) Show that the natural map

Homk(A,B)⊗Z Zp → HomW (k)[F,V ](D(B[p∞]),D(A[p∞]))

is injective.
(2) Show, however, that the natural map

Homk(A,B)⊗Z Zp → HomZp
(TpA, TpB)

is never injectivea.
(3) Now require k to be finite. If f ∈ Endk(A) is a nonzero endomorphism of A then the com-

mon characteristic polynomial Pf ∈ Z[T ] of all Tℓ(f) ∈ EndZℓ
(TℓA) with ℓ ̸= chark is also the

characteristic polynomial of D(f) ∈ EndW (k)(D(A[p∞])).

aHere Tp(A) = TA[p∞](k) (see Problem 14) is the “naive” Tate module

In Problem 7, we have considered examples of finite flat group schemes of order p. The following problem
expands on these examples to give examples of p-divisible groups of height 1.

Problem 11 (⋆⋆)
Let k be an algebraically closed field of characteristic p.

(1) Let Gm/k be the multiplicative group scheme defined over k.

(a) Show that the multiplication [pi] is given by x 7→ xpi

on the coordinate ring. Determine the
Hopf algebra of the group scheme Gm[pi], i.e. the kernel of [pi].

(b) Define Gi := Gm[pi]. Show that Gm[p∞] := {Gi}i≥1, together with the inclusion ji : Gi → Gi+1,
is a p-divisible group of height 1. This p-divisible group is often denoted µp∞ .

(c) Show that the relative Frobenius FGi/k : Gi → G
(p)
i
∼= Gi, agrees with [p] : Gi → Gi. Conclude

that VGi/k : Gi → Gi is the identity.
(d) Let Gm,n be the p-divisible group whose Dieudonné module is Mm,n := Dk/Dk(F

m − V n). By
comparing the action of Frobenius and Verschiebung and using the Dieudonné-Mannin classfica-
tiona, show that µp∞ is isogenous to G0,1. That is, D(µp∞)⊗Zp

Qp
∼= M0,1 ⊗Zp

Qp.

(2) Let Hi = p−iZ/Z
k
be the constant group scheme over k attached to the finite group p−iZ/Z.

(a) Show that Qp/Zp
k
:= {Hi}i≥1, together with the inclusion ji : Hi → Hi+1, is a p-divisible group

of height 1.

(b) Show that FHi/k : Hi → H
(p)
i
∼= Hi is the identity. Conclude that VHi/k is [p].

(c) Show that Qp/Zp
k
is isogenous to G1,0.

b
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aUse the statement of [BC09, Theorem 8.1.4]. Mm,n ⊗Zp Qp is Dm,m+n in the notation of Theorem 8.1.4, and is Nm,n in

the notation of Problem 9.
bUse the fact that D(Gt) = D(G)∨ and M∨

m,n = Mn,m, we see that Gm[p∞] is the Serre dual (see below) of Qp/Zp
k
.

The following problem gives the construction of Dieudonné module associated to the Serre dual of a
p-divisible group.

Problem 12 (⋆⋆)
Let k be an algebraically closed field of characteristic p. Let M be a Dieudonné modulea, i.e. a finite
free W (k)-module with left Dk action. We construct its dual M∨ as follows. As a W (k) module,
M∨ = HomW (k)(M,W (k)), with the action of V and F given as

(V · h)(m) = (h(F (m)))σ
−1

, (F · h)(m) = (h(V (m)))σ

for all h ∈M∨ and m ∈M .

(1) For a pair of non-negative integers (m,n) such that gcd(m,n) = 1, let Mm,n be as in Problem 11.
Show that M∨

m,n
∼= Mn,m.

(2) We have the following facts:
• Let X/k an abelian variety. Let X[p∞] denote its p-divisible group, and X[p∞]t the Serre dual
of X[p∞], then

X[p∞]t ∼= X∨[p∞],

where X∨ is the dual abelian variety.
• If G is a p-divisible group over k, and D(G) is its Dieudonné module, then

D(Gt) ∼= D(G)∨

Use the above facts, show that the Newton polygon of an abelian variety is symmetric. That is,
X[p∞] is isogenous to

⊕
i(Gmi,ni ⊕Gni,mi)

ri for some (mi, ni) non-negative and gcd(mi, ni) = 1.

aThere is an unfortunate clash of terminology with the Dieudonné module of a finite flat group scheme, which isn’t necessarily

torsion-free. We hope that the meanings are clear from the context.

The following problem explores examples of p-divisible groups attached to an abelian variety.

Problem 13 (⋆⋆)

(1) Recall that if f : X → Y is an isogeny between abelian varieties over a field k, then deg(f) =
rank(ker(f)), i.e. the rank of the finite group scheme ker(f) over k. Show that the p-divisible group
of a g-dimensional abelian variety over k is of height 2g.

(2) Now let E/Fq be an elliptic curve.

(a) Suppose E/Fq is supersingular. Recall in PSET 3, problem 7, we have shown that End0(E)⊗Q
Qp
∼= Dp,2,1, the central division algebra over Qp with Hasse-invariant 1

2 . Combine Problem 10
and Problem 9 Part (5) to conclude that EFq

[p∞] is isogenous to G1,1.

(b) Suppose E/Fq is ordinary. Recall in PSET 3, problem 9, we have shown that L = End0(E)
is an imaginary quadratic extension over Q generated by ϕq. Furthermore, the characteristic
polynomial of ϕq is T 2 − aT + q, where vp(a) = 0. Show that L ⊗Q Qp

∼= Qp × Qp. Use the
injection

End0(E)⊗Q Qp → End0(EFq
)⊗Q Qp → End(EFp

[p∞])⊗Zp Qp

to conclude that EFq
[p∞] is isogenous to G1,0 ⊕G0,1.

(3) Recall that in PSET 4, Problem 11, for a pair of non-negative integers (m,n) with n < m and
gcd(m,n) = 1, we have a simple abelian variety A/Fq of dimension g = m+ n, and the Frobenius ϕq

on A has minimal polynomial hA(T ) = T 2− pnT + pg. Moreover, End0(A)⊗Q Qp
∼= Dp,g,m⊕Dp,g,n.

Use these to show that AFq
[p∞] is isogenous to Gn,m ⊕Gm,n.
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As an important notion to study p-divisible groups, we introduce the Tate module of a p-divisible group.

Problem 14 (⋆⋆)
Let G be a p-divisible group over an affine perfect scheme S of characteristic p. Consider the inverse limit

TG := lim←−
×p

G[pn].

Show that this limit exists in the category of schemes and TG is an scheme, flat over S. This is called
the (schematic) Tate module of the p-divisible group G.a

(1) Show that the functor of points of TG identifies with the following functor

(T → S) 7→ Hom(Qp/Zp, GT ),

where Qp/Zp is the constant p-divisible group over T , and GT denotes the base change.
(2) Show that over a quasicompact noetherian test scheme U of characteristic p, the Tate module

Tµp∞(U) is trivial.

aDepending on conventions, sometimes the Tate module of G refers to the set of k̄-points of TG, which is a finite free

Zp-module.
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