ABELIAN VARIETIES OVER FINITE FIELDS: PROBLEM SET 4

SANTIAGO ARANGO-PIÑEROS, SEOKHYUN CHOI, ALICE LIN, YUXIN LIN, AND MINGJIA ZHANG

Instructions: The goal of this problem set is to assimilate the Weil conjectures for abelian varieties anf curves. Problems marked (\star), $(\star \star)$, and $(\star \star \star)$ denote beginner, intermediate, and advanced problems, respectively. For the computational problems () you may use CoCalc or MAGMA's online calculators.

Notation: As customary, p will be a prime, and q will be a power of p. We use ℓ to denote a prime, different from p. For a field K, we will use G_{K} to denote the absolute Galois group of K.

Problem 1 ($\star \star$)

Let A be a ring of finite type over \mathbb{Z}.
(1) Show that for every maximal ideal \mathfrak{m} in A, the residue field $\kappa(\mathfrak{m}):=A / \mathfrak{m}$ is finite. ${ }^{a}$
(2) Let $\operatorname{Max}(A)$ be the set of maximal ideals in A; this is called the maximal spectrum of A. Show that $\operatorname{Max}(A)$ is countable.
We define the norm of a maximal ideal \mathfrak{m} to be the size of its residue field $\mathrm{N}(\mathfrak{m}):=\# \kappa(\mathfrak{m})$. Define the zeta function of A as the formal Euler product

$$
\zeta_{A}(s):=\prod_{\mathfrak{m} \in \operatorname{Max}(A)}\left(1-\mathrm{N}(\mathfrak{m})^{-s}\right)^{-1}
$$

(3) Calculate the zeta function of the following rings; for $R=\mathbb{F}_{q}$ and \mathbb{Z} :
(a) $A=R$.
(b) $A=R[x]$.
(c) $A=R[x, y]$.
${ }^{a}$ Consider the structure map $\mathbb{Z} \rightarrow A$ composed with the projection $A \rightarrow A / \mathfrak{m}$. What are the possibilities for the kernel of the composition?

We can restate (and slightly generalize) the previous problem in the language of schemes as follows.

Problem 2 ($\star \star$)

Let X be a scheme of finite type over \mathbb{Z}.
(1) Show that for every closed point $P \in X$ the residue field $\kappa(P):=\mathcal{O}_{X, P} / \mathfrak{m}_{P}$ is a finite field. ${ }^{a b}$
(2) Denote by $|X|$ the set of closed points in X. Show that $|X|$ is countable.

We define the norm of a closed point P to be the size of its residue field $\mathrm{N}(P):=\# \kappa(P)$. Define the zeta function of X as the formal Euler product

$$
\zeta_{X}(s):=\prod_{P \in|X|}\left(1-\mathrm{N}(P)^{-s}\right)^{-1}
$$

(3) Calculate the zeta function of the following schemes; for $R=\mathbb{F}_{q}$ and \mathbb{Z} :
(a) $X=\operatorname{Spec} R$.
(b) $X=\mathbb{A}_{R}^{1}$.
(c) $X=\mathbb{P}_{R}^{1}$.

[^0]
Problem 3 ($\star \star \star$)

In this problem we are going to show that the zeta function defined in Problem 2 defines a holomorphic function. This is [Ser65, Theorem 1].

Theorem A. Let X be a scheme of finite type over \mathbb{Z}. Then, $\zeta_{X}(s)$ converges absolutely for a complex variable s in the half-plane $\operatorname{Re}(s)>\operatorname{dim} X .{ }^{a}$
To prove this, proceed as follows:
(1) If X is a finite union of schemes X_{i}, show that Theorem A follows if the conclusion is true for each X_{i}. This reduces the proof to the affine case.
(2) Let $f: X \rightarrow Y$ be a surjective and finite morphism between schemes of finte type. Show that if the conclusion of Theorem A is valid for Y, then it is valid for X too.
(3) Reduce to showing that the result holds for $X=\mathbb{A}_{\mathbb{F}_{p}}^{n}$.
(4) Let Y be a scheme of finite type over \mathbb{Z}. Show that $\zeta_{Y \times \mathbb{A}^{1}}(s)=\zeta_{Y}(s-1)$. ${ }^{b}$
(5) Conclude the proof by calculating $\zeta_{\mathbb{A}_{\mathbb{F}_{p}}}(s)$ and showing that it converges absolutely in the half-plane $\operatorname{Re}(s)>n$.
${ }^{a}$ In particular, $\zeta_{X}(s)$ is a Dirichlet series $\sum a_{n} / n^{s}$ with integral coefficients.
${ }^{b}$ This generalizes [Har77, Appendix C, Problem 5.3].

The following problem justifies the definition of the zeta function of a variety over a finite field as the exponential generating series of its point counts.

Problem 4 ($\star \star$)

Let X be a variety over \mathbb{F}_{q}. Let m_{d} denote the number of degree d closed points on X.
(1) Prove that for every $n \geq 1$, we have

$$
\sum_{d \mid n} d m_{d}=\# X\left(\mathbb{F}_{q^{n}}\right)
$$

(2) If we let $T=q^{-s}$, show that

$$
\zeta_{X}(s)=Z(X, T):=\exp \left(\sum_{n=1}^{\infty} \frac{\# X\left(\mathbb{F}_{q^{n}}\right)}{n} T^{n}\right)
$$

(3) Let X be a smooth, projective, and geometrically irreducible curve of genus g defined over \mathbb{F}_{q}. Show that one can recover the zeta function $Z(X, T)$ from the point counts

$$
\# X\left(\mathbb{F}_{q}\right), \# X\left(\mathbb{F}_{q^{2}}\right), \ldots, \# X\left(\mathbb{F}_{q^{g}}\right)
$$

(4) Use your favorite computer algebra system to write a computer program that receives as input:

- an irreducible polynomial $f \in \mathbb{F}_{q}[x]$,
and outputs the Frobenius polynomial of the Jacobian of the hyperelliptic curve X / \mathbb{F}_{q} with affine equation $y^{2}=f(x)$.
(5) Use your favorite computer algebra system to write a computer program that receives as input:
- an irreducible polynomial $f \in \mathbb{F}_{q}[x]$,
- a positive integer N,
and outputs the first N terms of the zeta function of the hyperelliptic curve X / \mathbb{F}_{q} with affine equation $y^{2}=f(x) .{ }^{a}$

[^1]The following problem is [Poo06, Problem 3.10].

Problem 5 (\star)

Let X be the Hermitian curve $x^{q+1}+y^{q+1}+z^{q+1}=0$ in \mathbb{P}^{2} over \mathbb{F}_{q}.
(1) Check that X is smooth projective.
(2) Calculate the genus of X.
(3) Calculate $\# X\left(\mathbb{F}_{q^{2}}\right)$.
(4) Compute the zeta function of $X_{\mathbb{F}_{q^{2}}}$.
(5) Calculate $\# X\left(\mathbb{F}_{q}\right)$.
(6) Compute the zeta function of X.

In this problem, we will calculate the zeta functions of some particular elliptic curves, and see that they are indeed of the form predicted by the Weil conjectures.

Problem 6 ($\star \star$)

Let E / \mathbb{F}_{p} be the elliptic curve

$$
y^{2}=x^{3}-n^{2} x
$$

for some n such that $p \nmid 2 n$, and $p \equiv 1 \bmod 4$. We will prove that

$$
\begin{equation*}
Z(E, T)=\frac{(1-\alpha T)(1-\bar{\alpha} T)}{(1-T)(1-p T)} \tag{6.a}
\end{equation*}
$$

for some specific $\alpha, \bar{\alpha} \in \mathbb{C}$.
(1) Let q be a power of p. Let C / \mathbb{F}_{q} be the curve

$$
u^{2}=v^{4}+4 n^{2} .
$$

Show that $\# E\left(\mathbb{F}_{q}\right)=\# C\left(\mathbb{F}_{q}\right)+1$.
(2) Let $\chi_{k, q}: \mathbb{F}_{q}^{*} \rightarrow \mathbb{C}^{*}$ be a character of order k for $k=2,4$. Prove

$$
\begin{equation*}
\#\left\{x \in \mathbb{F}_{q}: x^{k}=a\right\}=\sum_{j=1}^{k} \chi_{k, q}^{j}(a), \quad k=2,4 \tag{6.b}
\end{equation*}
$$

for $a \neq 0$.
(3) Note that

$$
\begin{aligned}
\# C\left(\mathbb{F}_{q}\right)=1 & +\#\left\{u \in \mathbb{F}_{q}: u^{2}=4 n^{2}\right\}+\#\left\{v \in \mathbb{F}_{q}: v^{4}=-4 n^{2}\right\} \\
& +\#\left\{u, v \in \mathbb{F}_{q}^{*}: u^{2}=v^{4}+4 n^{2}\right\}
\end{aligned}
$$

By applying Equation 6.b, show that

$$
\# C\left(\mathbb{F}_{q}\right)=q+1+\chi_{2, q}(n)\left(J\left(\chi_{2, q}, \chi_{4, q}\right)+J\left(\chi_{2, q}, \overline{\chi_{4, q}}\right)\right)
$$

where $J(\chi, \psi)$ is the Jacobi sum

$$
J(\chi, \psi)=\sum_{x \in \mathbb{F}_{q}} \chi(x) \psi(1-x)
$$

(4) Conclude that

$$
\# E\left(\mathbb{F}_{q}\right)=q+1-\alpha_{q}-\overline{\alpha_{q}}
$$

where $\alpha_{q}=-\chi_{2, q}(n) J\left(\chi_{2, q}, \chi_{4, q}\right)$.
(5) Let $N: \mathbb{F}_{p^{r}}^{*} \rightarrow \mathbb{F}_{p}^{*}$ be the norm map. Note that we can take that

$$
\chi_{2, p^{r}}=\chi_{2, p} \circ N, \quad \chi_{4, p^{r}}=\chi_{4, p} \circ N
$$

By Hasse-Davenport relation, we obtain

$$
-J\left(\chi_{2, p^{r}}, \chi_{4, p^{r}}\right)=-J\left(\chi_{2, p} \circ N, \chi_{4, p} \circ N\right)=-J\left(\chi_{2, p}, \chi_{4, p}\right)^{r} .
$$

Conclude that

$$
\alpha_{p^{r}}=\alpha_{p}^{r}
$$

(6) Complete the proof of Equation 6.a.

Problem 7 (\star)

Let E / \mathbb{F}_{q} be an elliptic curve. Denote by ϕ_{q} the q-Frobenius on E and let $P_{E}(T)=T^{2}-a T+q$ be the characteristic polynomial of ϕ_{q}.
(1) Review PSET2, Problem 11 and conclude the rationality of the zeta function $Z(E, T)$.
(2) Verify the functional equation

$$
Z\left(E,(q T)^{-1}\right)=Z(E, T)
$$

(3) Use the fact that $\operatorname{deg}([m]+[n] \phi)>0$ for all integers m, n to deduce the Hasse bound $|a| \leq 2 \sqrt{q}$.
(4) Let $\alpha, \beta \in \mathbb{C}$ be roots of $P_{E}(T)$. Show that $|\alpha|=|\beta|=\sqrt{q}$.

Recall that a q-Weil number is an algebraic integer α such that for every embedding $\sigma: \mathbb{Q}(\alpha) \rightarrow \mathbb{C}$, $|\sigma(\alpha)|=q^{1 / 2}$. Two q-Weil numbers α, α^{\prime} are conjugate if they are in the same orbit under the action of $\operatorname{Gal}_{\mathbb{Q}}$. In particular, there exists a field isomorphism $\mathbb{Q}(\alpha) \rightarrow \mathbb{Q}\left(\alpha^{\prime}\right)$ mapping α to α^{\prime}, so that α and α^{\prime} have the same minimal polynomial over \mathbb{Q}.

Problem 8 (\star)

Let α be a q-Weil number. Show that there are two possibilities:
(1) $\mathbb{Q}(\alpha)$ has at least one real embedding $\phi: \mathbb{Q}(\alpha) \rightarrow \mathbb{R}$. Then either

- $\mathbb{Q}(\alpha)=\mathbb{Q}$, and $\phi(\alpha)= \pm \sqrt{q}$, or
- $\mathbb{Q}(\alpha)=\mathbb{Q}(\sqrt{p})$, and $\phi(\alpha)= \pm \sqrt{q}$.
(2) $\mathbb{Q}(\alpha)$ has no real embeddings. In this case, $\mathbb{Q}(\alpha)$ is a CM field, i.e. an imaginary quadratic extension of a totally real field. In particular, consider the subfield of $\mathbb{Q}(\alpha)$ generated by $\beta:=\alpha+q / \alpha$.
Conversely, show that we can characterize all q-Weil numbers by the two above possibilities. In particular, if α is an algebraic integer such that either
- $\alpha= \pm \sqrt{q}$, or
- α is a root of $T^{2}-\beta T+q$ where β is a totally real algebraic integer and $|\phi(\beta)|<2 \sqrt{q}$ for every embedding $\phi: \mathbb{Q}(\beta) \hookrightarrow \mathbb{R}$,
then α is a q-Weil number.
The following problem is an exercise in [CO09, Exercise 3.10]. It classifies the center of a division algebra equipped with a positive involution.

Problem 9 (\star)

Let D be a finite dimensional division algebra over \mathbb{Q}. An involution $\dagger: D \rightarrow D$ is an \mathbb{Q}-linear automorphism on D satisfying the following properties:

- For $x, y \in D,(x y)^{\dagger}=y^{\dagger} x^{\dagger}$.
- $\left(x^{\dagger}\right)^{\dagger}=x$

In addition, we say \dagger is a positive involution if for any $x \in D, x \neq 0$, we have

$$
\operatorname{tr}_{D / \mathbb{Q}}\left(x x^{\dagger}\right)>0
$$

Here, $\operatorname{tr}_{D / \mathbb{Q}}(x)$ is the trace of x as an element in $\operatorname{End}_{\mathbb{Q}}(D)$.
Now \dagger is a positive involution on D. Let $L=\mathcal{Z}(D)$ be the center of D.
(1) Suppose L is fixed by \dagger, then notice that identity is a positive involution on L. Use weak approximation, show that L is totally real.
(2) Suppose L is not fixed by \dagger. Let L^{\dagger} be the fixed subfield. Show that L is totally imaginary extension of L^{\dagger}. Moreover, show that for any embedding $\psi: L \rightarrow \mathbb{C}, \dagger$ induces complex conjugation on L. That is, for any $x \in L$, we have

$$
\overline{\psi(x)}=\psi\left(x^{\dagger}\right)
$$

In particular, the endomorphism algebra of a simple abelian variety is equipped with a positive involution induced by polarization.

Problem 10 ($\star \star$)

Let A / \mathbb{F}_{q} be a simple abelian variety. Fix a polarization $\lambda: A \rightarrow A^{\vee}$. Then λ induces an involution $\dagger: \operatorname{End}^{0}(A) \rightarrow \operatorname{End}^{0}(A)$ as follows. Since λ is an isogeny, there exists $\lambda^{\prime}: A^{\vee} \rightarrow A$ such that $\lambda^{\prime} \circ \lambda=[n]$. So we have the element $\lambda^{-1}:=\frac{1}{n} \lambda^{\prime}$ in $\operatorname{End}^{0}(A)$. Then, given $\varphi \in \operatorname{End}(A)$, we define

$$
\varphi^{\dagger}:=\lambda^{-1} \circ \varphi^{\vee} \circ \lambda
$$

This is the Rosati involution on $\operatorname{End}^{0}(A)$.
(1) Let \mathcal{L} be an line bundle on A. Show that $\phi_{q}^{*} \mathcal{L}=\mathcal{L}^{\otimes q}$.
(2) Now let \mathcal{L} be the line bundle that gives the polarization $\lambda: A \rightarrow A^{\vee}$. Show that for any $a \in A(k), n \in$ $\mathbb{Z}_{>0},[n]^{*}\left(t_{a}^{*} \mathcal{L} \otimes \mathcal{L}^{-1}\right) \cong\left(t_{a}^{*} \mathcal{L} \otimes \mathcal{L}^{-1}\right)^{\otimes^{n}}$
(3) Recall the $\varphi^{\vee}: A^{\vee}\left(\mathbb{F}_{q}\right) \rightarrow A^{\vee}\left(\mathbb{F}_{q}\right)$ is given by $\varphi^{\vee}(\mathcal{L})=\varphi^{*} \mathcal{L}$. Deduce the identity:

$$
\phi_{q}^{\vee} \circ \lambda \circ \phi_{q}=[q]^{\vee} \circ \lambda
$$

as morphism from $A\left(\mathbb{F}_{q}\right) \rightarrow A^{\vee}\left(\mathbb{F}_{q}\right)$.
(4) Combine with the fact that Rosati involution is positive and Problem 9, show that ϕ_{q} is a q-Weil number.

Similar to the characteristic polynomial, we define the minimal polynomial $h_{A}(T)$ of the q-Frobenius endomorphism $\phi_{q}: A \rightarrow A$ to be the minimal polynomial of the corresponding endomorphism $T_{\ell}\left(\phi_{q}\right)$ of the Tate module $T_{\ell} A$. The following problem is a reformulation of [CO09, Exercise 3.14].

Problem 11 ($\star \star$)

Let A / \mathbb{F}_{q} be a simple abelian variety of dimension g, where $q=p^{g}$ and $p \neq 2$. Then we know that $D:=\operatorname{End}^{0}(A)$ is a division algebra over \mathbb{Q}, with center $L=\mathbb{Q}\left(\phi_{q}\right)$. Moreover, since A is an abelian variety defined over finite fields, it admits complex multiplication.
Let (n, m) be a pair of positive integers such that $g=m+n$ and $\operatorname{gcd}(m, n)=1$. Suppose ϕ_{q} has minimal polynomial ${ }^{a}$

$$
h_{A}(T):=T^{2}+p^{n} T+p^{g} .
$$

(1) Show that $h_{A}(T)$ is irreducible over \mathbb{Q} and that both roots are Weil q-numbers. Compute the p-adic valuation of the roots.
(2) Use the fact that A has complex multiplication, determine $\left[D: \mathbb{Q}\left(\phi_{q}\right)\right]$.
(3) For each place v of L, compute the local Hasse invariant $\operatorname{inv}_{v}\left(D \otimes_{L} L_{v}\right) \cdot{ }^{b}$
(4) Recall the definition and notation of $D_{p, h, m}$ in PSET 2, Problem 4.

Show that $D \otimes_{\mathbb{Q}} \mathbb{Q}_{p} \cong D_{p, g, n} \oplus D_{p, g, m}$.
(5) Let $\mathbb{F}_{q} \subseteq \mathbb{F}_{q^{r}}$ be a degree r extension and $A_{\mathbb{F}_{q^{r}}}$ be the base change of A to $\mathbb{F}_{q^{r}}$. Show that

$$
\operatorname{End}^{0}(A)=\operatorname{End}^{0}\left(A_{\mathbb{F}_{q^{r}}}\right) \Longleftrightarrow \mathbb{Q}\left(\phi_{q}\right)=\mathbb{Q}\left(\phi_{q^{r}}\right)
$$

${ }^{a} h_{A}(T)$ is $\operatorname{Irr}_{\pi_{A}}$ in [CO09, Theorem 10.17]. For a simple abelian variety A, it coincides with the minimal polynomial of the algebraic integer ϕ_{q}.
${ }^{b}$ Hint: Use [CO09][Theorem 10.17]
Recall that in the lecture note, we see the definition of the Jacobian variety associated to a non-singular curve. The following problem relates elliptic curve and the Jacobian of its homogeneous space.

Problem 12 ($\star \star$)

Let K be a perfect field. Let E / K be an elliptic curve with zero marked by $O, C / K$ be a smooth projective curve of genus one with a transitive action

$$
\mu: C \times E \rightarrow C
$$

This means μ is a morphism over K satisfying
(1) $\mu(x, O)=x$ for all $x \in C(\bar{K})$,
(2) $\mu(\mu(x, P), Q)=\mu(x, P+Q)$ for all $x \in C(\bar{K}), P, Q \in E(\bar{K})$,
(3) Given $x, y \in C(\bar{K})$, there exists a unique $P \in E(\bar{K})$ satisfying $\mu(x, P)=y$.

We call this pair $(C / K, \mu)$ a homogeneous space for E / K. Recall that
(a) $\operatorname{Pic}^{0}\left(C_{\bar{K}}\right)=\operatorname{Div}^{0}\left(C_{\bar{K}}\right) / \bar{K}(C)^{\times}$
(b) $\operatorname{Pic}^{0}(C)=\operatorname{Pic}^{0}\left(C_{\bar{K}}\right)^{G_{K}}$

Show that there is an isomorphism $\operatorname{Pic}^{0}(C) \xrightarrow{\sim} E(K)$. From this, we can deduce $\operatorname{Jac}(C)(L)=E(L)$ for any algebraic field extension L / K. ${ }^{a}$
${ }^{a}$ In fact, the equality $\operatorname{Jac}(C)=E$ is true as functors. That is, for any k-algebra R, we have $\operatorname{Jac}(C)(R)=E(R)$.

We can find Jacobian variety for a curve of genus 1 by using above homogeneous space.

Problem 13 (\star)

Let C / \mathbb{Q} be the Selmer curve $3 x^{3}+4 y^{3}+5 z^{3}=0$ and let E / \mathbb{Q} be an elliptic curve $x^{3}+y^{3}+60 z^{3}=0$ with origin $[1:-1: 0]$. Show $\operatorname{Jac}(C)(L)=E(L)$ where L / \mathbb{Q} is an algebraic extension of \mathbb{Q}.

In the following two exercises, we prove the Weil conjectures for smooth projective curves. In case you get stuck, a nice reference is available here.

Problem 14 (**)

Let C / \mathbb{F}_{q} be a smooth projective curve of genus g. We prove the rationality and functional equation part of the Weil conjectures for C.
(1) Calculate formally that the zeta function

$$
Z(C, T):=\prod_{x \in|C|}\left(1-T^{\operatorname{deg}(\mathrm{x})}\right)^{-1}=\prod_{x \in|C|} \sum_{k=0}^{\infty} T^{k \cdot \operatorname{deg}(x)}=\sum_{D \geq 0} T^{\operatorname{deg}(D)},
$$

where the last sum is taken over all effective divisors on C.
(2) Each D corresponds to a pair (\mathcal{L}, f), where \mathcal{L} is a line bundle and $f \in(\Gamma(C, \mathcal{L})-\{\mathbf{0}\}) / \mathbb{F}_{q}^{\times}$is a homogeneous global section. Hence, the above expression further evolves to

$$
\sum_{\substack{\mathcal{L} \in \operatorname{Pic}(C) \\ \operatorname{deg}(\mathcal{L}) \geq 0}} \# \mathbb{P}(\Gamma(C, \mathcal{L})) \cdot T^{\operatorname{deg}(\mathcal{L})}=\sum_{\substack{\mathcal{L} \in \operatorname{Pic}(C) \\ \operatorname{deg}(\mathcal{L}) \geq 0}} \frac{q^{h^{0}(\mathcal{L})}-1}{q-1} \cdot T^{\operatorname{deg}(\mathcal{L})},
$$

where $h^{0}(\mathcal{L})$ denotes the \mathbb{F}_{q}-dimension of the global sections of \mathcal{L}.
(3) Split the sum into two parts

$$
\begin{aligned}
& g_{1}(T)=\sum_{0 \leq \operatorname{deg}(\mathcal{L}) \leq 2 g-2} \frac{q^{h^{0}(\mathcal{L})}-1}{q-1} \cdot T^{\operatorname{deg}(\mathcal{L})} \\
& g_{2}(T)=\sum_{\operatorname{deg}(\mathcal{L})>2 g-2} \frac{q^{h^{0}(\mathcal{L})}-1}{q-1} \cdot T^{\operatorname{deg}(\mathcal{L})} .
\end{aligned}
$$

Use the Riemann-Roch theorem to show that

$$
g_{2}(T)=\sum_{\operatorname{deg}(\mathcal{L})>2 g-2} \frac{q^{\operatorname{deg}(\mathcal{L})+1-g}-1}{q-1} \cdot T^{\operatorname{deg}(\mathcal{L})}
$$

(4) Use the fact that $\operatorname{Pic}^{0}(C)$ is finite to conclude that $g_{1}(T)$ is a polynomial of degree $2 g-2$, and that

$$
g_{2}(T)=\# \operatorname{Pic}^{0}(C) \sum_{n>2 g-2} \frac{q^{n+1-g}-1}{q-1} \cdot T^{n}=\frac{h(T)}{(1-T)(1-q T)},
$$

for some polynomial $h(T)$ of degree $2 g$. Deduce that $Z(C, T)$ is of the form $\frac{P_{1}(T)}{(1-T)(1-q T)}$, where $P_{1}(T)$ is a polynomial with degree at most $2 g$ and constant term 1 .
(5) ($\star \star \star$) Use the involution $\mathcal{L} \mapsto \omega_{C} \otimes \mathcal{L}^{-1}$ and the Serre duality to verify the functional equation

$$
Z\left(C,(q T)^{-1}\right)=q^{1-g} T^{2-2 g} Z(C, T)
$$

and conclude that the polynomial $P_{1}(T)$ has degree $2 g$. Here ω_{C} is the canonical sheaf, a line bundle of degree $2 g-2$.

We continue to prove the Riemann hypothesis part of the Weil conjectures following the proof of Weil. Some intersection theory on surfaces is needed.

Problem 15 ($\star \star \star$ [Har77, Appendix C, 5.7])

Let C / \mathbb{F}_{q} be a smooth projective curve of genus g as above. Let $t_{r}:=1+q^{r}-\# C\left(\mathbb{F}_{q^{r}}\right)$ be the trace of the q^{r}-Frobenius endomorphism. Let $P_{1}(T)$ be as before, and we write

$$
P_{1}(T)=\prod_{i=1}^{2 g}\left(1-\alpha_{i} T\right)
$$

(1) Let ϕ_{q} be the geometric Frobenius on C. Denote by $\Gamma_{r} \subset C \times C$ the graph of ϕ_{q}^{r} and $\Delta \subset C \times C$ the diagonal. Show that the self-intersection $\Gamma_{r}^{2}=q^{r}(2-2 g)$ and $\Gamma_{r} \cdot \Delta=\# C\left(\mathbb{F}_{q^{r}}\right)$.
(2) Apply the Castelnuovo-Severi inequality ${ }^{a}$ to $D=a \Gamma_{r}+b \Delta$ for all a and b to obtain that $\left|t_{r}\right| \leq 2 g \sqrt{q^{r}}$.
(3) Use the definition of the zeta function and taking logs, show that for each r

$$
t_{r}=\sum_{i=1}^{2 g} \alpha_{i}^{r}
$$

(4) Show that $\left|t_{r}\right| \leq 2 g \sqrt{q^{r}}$ for all r is equivalent to $\left|\alpha_{i}\right| \leq \sqrt{q}$ for all i.
(5) Use the functional equation to show that $\left|\alpha_{i}\right| \leq \sqrt{q}$ for all i implies that $\left|\alpha_{i}\right|=\sqrt{q}$ for all i. Conclude the Riemann hypothesis part of the Weil conjectures from here.
${ }^{a}$ In particular, the form stated in [Har77, Exercise V.1.9].

References

[CO09] Ching-Li Chai and Frans Oort, Moduli of abelian varieties and p-divisible groups, Arithmetic geometry 8 (2009), 441-536.
[Har77] Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, vol. No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157
[Poo06] Bjorn Poonen, Lecture on rational points on curves, https://math.mit.edu/~poonen/papers/ curves.pdf, March 2006.
[Ser65] Jean-Pierre Serre, Zeta and L functions, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), Harper \& Row, New York, 1965, pp. 82-92. MR 194396

[^0]: ${ }^{a}$ A closed point P in $\operatorname{Spec} A$ is simply a maximal ideal \mathfrak{m} in A, and its residue field is $\kappa(P)=A / \mathfrak{m}$.
 ${ }^{b}$ A possibly useful result from commutative algebra is the Artin-Tate lemma.

[^1]: ${ }^{a}$ Compare the efficiency of your function with the built-in intrinsics!

