ABELIAN VARIETIES OVER FINITE FIELDS: PROBLEM SET 3

SANTIAGO ARANGO-PIÑEROS, SEOKHYUN CHOI, ALICE LIN, YUXIN LIN, AND MINGJIA ZHANG

Instructions: The goal of this problem set is to assimilate Tate's isogeny theorem [Tat66, Main Theorem]. Problems marked (\star) , $(\star\star)$, and $(\star\star\star)$ denote beginner, intermediate, and advanced problems, respectively.

Notation: As customary, p will be a prime, and q will be a power of p. We use ℓ to denote a prime, usually different from p. For a field K, we will use G_K to denote the absolute Galois group of K.

Problem 1 (\star)

Let A and B be abelian varieties over a field k. Choose a prime $\ell \neq \operatorname{char} k$, and let $T_{\ell}A$ and $T_{\ell}B$ be their ℓ -adic Tate modules.

(1) Define a natural map

 $T_{\ell} : \operatorname{Hom}(A, B) \to \operatorname{Hom}_{\mathbb{Z}_{\ell}}(T_{\ell}A, T_{\ell}B).$

(2) Show this map is injective.^a

 a Hint: Prove this first in the case that A is a simple abelian variety.

Problem 2 $(\star\star)$

Let A, B be simple abelian varieties over a field k. Choose a prime $\ell \neq \operatorname{char} k$. We will show that the natural map

$$\operatorname{Hom}(A,B) \otimes \mathbb{Z}_{\ell} \to \operatorname{Hom}(T_{\ell}(A), T_{\ell}(B))$$
$$\alpha \otimes c \mapsto cT_{\ell}\alpha$$

is injective, using the following steps.

(1) Let $M \subset \text{Hom}(A, B)$ be a finitely generated subgroup. Let

 $M^{div} := \{ \phi \in \operatorname{Hom}(A, B) : [m] \circ \phi \in M \text{ for some integer } m \ge 1 \}.$

Consider the finite-dimensional vector space $M \otimes \mathbb{R}$ with the natural Euclidean topology from \mathbb{R} , and linearly extend the degree mapping on M to $M \otimes \mathbb{R}$. By considering $M^{div} \subset M \otimes \mathbb{R}$, show that M^{div} is a discrete subgroup of $M \otimes \mathbb{R}$.^{*a*} Deduce that M^{div} is finitely generated.

- (2) Show that Hom(A, B) is torsion-free as a \mathbb{Z} -module.
- (3) Take $\phi \in \text{Hom}(A, B) \otimes \mathbb{Z}_{\ell}$, and suppose that $T_{\ell}\phi = 0$. Take $M \subset \text{Hom}(A, B)$ be a finitely generated subgroup such that $\phi \in M \otimes \mathbb{Z}_{\ell}$. Show that M^{div} is a free finitely generated \mathbb{Z} -module, so that we can choose a \mathbb{Z} -basis $\{\psi_1, \ldots, \psi_r\}$ of M^{div} and uniquely write ϕ as

$$\phi = \alpha_1 \psi_1 + \dots + \alpha_r \psi_r, \quad \text{for } \alpha_i \in \mathbb{Z}_{\ell}.$$

(4) Fix $n \ge 1$, and choose $a_1, \ldots, a_r \in \mathbb{Z}$ such that $a_i \cong \alpha_i \mod \ell^n$ for $i = 1, \ldots, r$. Show that

$$\psi := [a_1] \circ \psi_1 + \dots + [a_r] \circ \psi_r \in \operatorname{Hom}(A, B)$$

annihilates the subgroup $A[\ell^n]$. Deduce that ψ factors as $\psi = [\ell^n] \circ \lambda$ for some $\lambda \in \text{Hom}(A, B)$.

(5) Deduce that $\lambda \in M^{div}$, and show that $\ell^n \mid a_i$ for i = 1, ..., r. Since the choice of n was arbitrary, conclude that $\alpha_i = 0$ for i = 1, ..., r, and thus that $\phi = 0$.

^aHint: Find an open neighborhood U of $0 \in M \otimes \mathbb{R}$ which does not contain any nontrival element of M^{div} .

Problem 3 (\star)

Combine Problem 2 with PSET 1, Problem 7 to deduce an upper bound on $\operatorname{rank}_{\mathbb{Z}} \operatorname{Hom}(A, B)$ for abelian varieties A, B over a field k.

Problem 4 $(\star\star)$

- (1) Let A be an abelian variety. Suppose the endomorphism algebra $\operatorname{End}^{0}(A)$ contains a number field K. Let $g = \dim A$ and $f = [K : \mathbb{Q}]$. Show that $V_{\ell}A := T_{\ell}A \otimes \mathbb{Q}_{\ell}$ is a free $K \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$ -module of rank 2g/f.
- (2) Let E/K be an elliptic curve with complex multiplication over a number field K. Show that for all primes ℓ , the action of G_K on $V_{\ell}E$ is abelian. In other words, the image of the ℓ -adic representation $\rho_{\ell^{\infty}}: G_K \to \operatorname{Aut}(V_{\ell}E)$ is abelian.

Problem 5 $(\star\star)$

Let A, B be abelian varieties defined over \mathbb{F}_q . Let ℓ be a prime not dividing q. We have seen that the map

(0.1)
$$\operatorname{Hom}(A, B) \to \operatorname{Hom}_{G_{\mathbb{F}_{\ell}}}(T_{\ell}A, T_{\ell}B)$$

is injective. Tate's Isogeny Theorem states that it is also surjective.

Let $V_{\ell}A := T_{\ell}A \otimes \mathbb{Q}_{\ell}$ be the Tate \mathbb{Q}_{ℓ} -vector space.

(1) Show that Tate's Isogeny Theorem is equivalent to the bijectivity of

(0.2) $\operatorname{Hom}(A, B) \otimes \mathbb{Q}_{\ell} \to \operatorname{Hom}_{G_{\mathbb{F}_{q}}}(V_{\ell}A, V_{\ell}B).$

(2) Show that bijectivity of Equation 0.2 is equivalent to the bijectivity of

 $(0.3) \qquad \qquad \operatorname{End}(A) \otimes \mathbb{Q}_{\ell} \to \operatorname{End}_{G_{\mathbb{F}_{q}}}(V_{\ell}A)$

for every abelian variety A/\mathbb{F}_q .

(3) Consider now the commuting subalgebras of $\operatorname{End}_{G_{\mathbb{F}_q}}(V_{\ell}A)$ defined by

- E_{ℓ} is the image of $\operatorname{End}(A) \otimes \mathbb{Q}_{\ell}$ by Equation 0.3, and
- F_{ℓ} is the subalgebra of $\operatorname{End}_{G_{\mathbb{F}_q}}(V_{\ell}A)$ generated by the automorphisms of $V_{\ell}A$ induced by $G_{\mathbb{F}_q}$. Prove that if F_{ℓ} is semisimple, the bijectivity of Equation 0.3 is equivalent to the fact that F_{ℓ} is the commutant of E_{ℓ} in $\operatorname{End}(V_{\ell}A)$.

Here, we will prove some consequences of Tate's Isogeny Theorem, as proved in [Tat66].

Problem 6 $(\star \star \star)$

Let A and B be abelian varieties over a finite field \mathbb{F}_q , and let $P_A(T)$ and $P_B(T)$ be the characteristic polynomials of the q-Frobenius endomorphisms ϕ_A and ϕ_B , acting on the corresponding ℓ -adic Tate modules.

(1) Let α and β be absolutely semisimple endomorphisms of two finite-dimensional vector spaces V and W over a field K with characteristic polynomials $P_{\alpha}(T)$ and $P_{\beta}(T)$. Factor $P_{\alpha}(T)$ and $P_{\beta}(T)$ as products of powers of distinct monic irreducible polynomials $f(T) \in K[T]$.

$$P_{\alpha}(T) = \prod_{f} f(T)^{m(f)}, \quad P_{\beta}(T) = \prod_{f} f(T)^{n(f)}.$$

Show that the vector space

$$U := \{ \psi \in \operatorname{Hom}_{K}(V, W) \mid \psi \circ \alpha = \beta \circ \psi \}$$

has dimension

$$r(P_{\alpha}, P_{\beta}) := \sum_{f} m(f)n(f) \deg f$$

(2) Apply item 1 together with Tate's isogeny theorem to conclude that rank_Z Hom_{Fq}(A, B) = r(P_A, P_B).
(3) Show that the following are equivalent:

(a) B is F_q-isogenous to an abelian subvariety of A defined over F_q.
(b) For some l, V_lB is isomorphic to a sub-G_{Fq}-representation of V_l(A).
(c) P_B(T) divides P_A(T).

(4) Show that the following are equivalent.

(a) A and B are F_q-isogenous.
(b) P_A(T) = P_B(T).
(c) The zeta functions of A and B are equal.
(d) #A(F_{qn}) = #B(F_{qn}) for every n ≥ 1.

References

[Tat66] John Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134–144. MR 206004