ABELIAN VARIETIES OVER FINITE FIELDS: PROBLEM SET 3

SANTIAGO ARANGO-PIÑEROS, SEOKHYUN CHOI, ALICE LIN, YUXIN LIN, AND MINGJIA ZHANG

Instructions: The goal of this problem set is to assimilate Tate's isogeny theorem [Tat66, Main Theorem]. Problems marked $(\star),(\star \star)$, and $(\star \star \star)$ denote beginner, intermediate, and advanced problems, respectively.

Notation: As customary, p will be a prime, and q will be a power of p. We use ℓ to denote a prime, usually different from p. For a field K, we will use G_{K} to denote the absolute Galois group of K.

Problem 1 (\star)

Let A and B be abelian varieties over a field k. Choose a prime $\ell \neq \operatorname{char} k$, and let $T_{\ell} A$ and $T_{\ell} B$ be their ℓ-adic Tate modules.
(1) Define a natural map

$$
T_{\ell}: \operatorname{Hom}(A, B) \rightarrow \operatorname{Hom}_{\mathbb{Z}_{\ell}}\left(T_{\ell} A, T_{\ell} B\right) .
$$

(2) Show this map is injective. ${ }^{a}$
${ }^{a}$ Hint: Prove this first in the case that A is a simple abelian variety.

Problem 2 ($\star \star$)

Let A, B be simple abelian varieties over a field k. Choose a prime $\ell \neq$ char k. We will show that the natural map

$$
\begin{aligned}
& \operatorname{Hom}(A, B) \otimes \mathbb{Z}_{\ell} \rightarrow \operatorname{Hom}\left(T_{\ell}(A), T_{\ell}(B)\right) \\
& \alpha \otimes c \mapsto c T_{\ell} \alpha
\end{aligned}
$$

is injective, using the following steps.
(1) Let $M \subset \operatorname{Hom}(A, B)$ be a finitely generated subgroup. Let

$$
M^{d i v}:=\{\phi \in \operatorname{Hom}(A, B):[m] \circ \phi \in M \text { for some integer } m \geq 1\}
$$

Consider the finite-dimensional vector space $M \otimes \mathbb{R}$ with the natural Euclidean topology from \mathbb{R}, and linearly extend the degree mapping on M to $M \otimes \mathbb{R}$. By considering $M^{d i v} \subset M \otimes \mathbb{R}$, show that $M^{d i v}$ is a discrete subgroup of $M \otimes \mathbb{R} .^{a}$ Deduce that $M^{d i v}$ is finitely generated.
(2) Show that $\operatorname{Hom}(A, B)$ is torsion-free as a \mathbb{Z}-module.
(3) Take $\phi \in \operatorname{Hom}(A, B) \otimes \mathbb{Z}_{\ell}$, and suppose that $T_{\ell} \phi=0$. Take $M \subset \operatorname{Hom}(A, B)$ be a finitely generated subgroup such that $\phi \in M \otimes \mathbb{Z}_{\ell}$. Show that $M^{\text {div }}$ is a free finitely generated \mathbb{Z}-module, so that we can choose a \mathbb{Z}-basis $\left\{\psi_{1}, \ldots, \psi_{r}\right\}$ of $M^{d i v}$ and uniquely write ϕ as

$$
\phi=\alpha_{1} \psi_{1}+\cdots+\alpha_{r} \psi_{r}, \quad \text { for } \alpha_{i} \in \mathbb{Z}_{\ell}
$$

(4) Fix $n \geq 1$, and choose $a_{1}, \ldots, a_{r} \in \mathbb{Z}$ such that $a_{i} \cong \alpha_{i} \bmod \ell^{n}$ for $i=1, \ldots, r$. Show that

$$
\psi:=\left[a_{1}\right] \circ \psi_{1}+\cdots+\left[a_{r}\right] \circ \psi_{r} \in \operatorname{Hom}(A, B)
$$

annihilates the subgroup $A\left[\ell^{n}\right]$. Deduce that ψ factors as $\psi=\left[\ell^{n}\right] \circ \lambda$ for some $\lambda \in \operatorname{Hom}(A, B)$.
(5) Deduce that $\lambda \in M^{d i v}$, and show that $\ell^{n} \mid a_{i}$ for $i=1, \ldots, r$. Since the choice of n was arbitrary, conclude that $\alpha_{i}=0$ for $i=1, \ldots, r$, and thus that $\phi=0$.

[^0]
Problem 3 (\star)

Combine Problem 2 with PSET 1, Problem 7 to deduce an upper bound on $\operatorname{rank}_{\mathbb{Z}} \operatorname{Hom}(A, B)$ for abelian varieties A, B over a field k.

Problem 4 ($\star \star$)

(1) Let A be an abelian variety. Suppose the endomorphism algebra $\operatorname{End}^{0}(A)$ contains a number field K. Let $g=\operatorname{dim} A$ and $f=[K: \mathbb{Q}]$. Show that $V_{\ell} A:=T_{\ell} A \otimes \mathbb{Q}_{\ell}$ is a free $K \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$-module of rank $2 g / f$.
(2) Let E / K be an elliptic curve with complex multiplication over a number field K. Show that for all primes ℓ, the action of G_{K} on $V_{\ell} E$ is abelian. In other words, the image of the ℓ-adic representation $\rho_{\ell^{\infty}}: G_{K} \rightarrow \operatorname{Aut}\left(V_{\ell} E\right)$ is abelian.

Problem 5 ($\star \star$)

Let A, B be abelian varieties defined over \mathbb{F}_{q}. Let ℓ be a prime not dividing q. We have seen that the map
(0.1)

$$
\operatorname{Hom}(A, B) \rightarrow \operatorname{Hom}_{G_{\mathbb{F}_{q}}}\left(T_{\ell} A, T_{\ell} B\right)
$$

is injective. Tate's Isogeny Theorem states that it is also surjective.
Let $V_{\ell} A:=T_{\ell} A \otimes \mathbb{Q}_{\ell}$ be the Tate \mathbb{Q}_{ℓ}-vector space.
(1) Show that Tate's Isogeny Theorem is equivalent to the bijectivity of

$$
\begin{equation*}
\operatorname{Hom}(A, B) \otimes \mathbb{Q}_{\ell} \rightarrow \operatorname{Hom}_{G_{\mathbb{F}_{q}}}\left(V_{\ell} A, V_{\ell} B\right) \tag{0.2}
\end{equation*}
$$

(2) Show that bijectivity of Equation 0.2 is equivalent to the bijectivity of

$$
\begin{equation*}
\operatorname{End}(A) \otimes \mathbb{Q}_{\ell} \rightarrow \operatorname{End}_{G_{\mathbb{F}_{q}}}\left(V_{\ell} A\right) \tag{0.3}
\end{equation*}
$$

for every abelian variety A / \mathbb{F}_{q}.
(3) Consider now the commuting subalgebras of $\operatorname{End}_{G_{F_{q}}}\left(V_{\ell} A\right)$ defined by

- E_{ℓ} is the image of $\operatorname{End}(A) \otimes \mathbb{Q}_{\ell}$ by Equation 0.3 , and
- F_{ℓ} is the subalgebra of $\operatorname{End}_{G_{\mathbb{F}_{q}}}\left(V_{\ell} A\right)$ generated by the automorphisms of $V_{\ell} A$ induced by $G_{\mathbb{F}_{q}}$.

Prove that if F_{ℓ} is semisimple, the bijectivity of Equation 0.3 is equivalent to the fact that F_{ℓ} is the commutant of E_{ℓ} in $\operatorname{End}\left(V_{\ell} A\right)$.

Here, we will prove some consequences of Tate's Isogeny Theorem, as proved in [Tat66].

Problem 6 ($\star \star \star$)

Let A and B be abelian varieties over a finite field \mathbb{F}_{q}, and let $P_{A}(T)$ and $P_{B}(T)$ be the characteristic polynomials of the q-Frobenius endomorphisms ϕ_{A} and ϕ_{B}, acting on the corresponding ℓ-adic Tate modules.
(1) Let α and β be absolutely semisimple endomorphisms of two finite-dimensional vector spaces V and W over a field K with characteristic polynomials $P_{\alpha}(T)$ and $P_{\beta}(T)$. Factor $P_{\alpha}(T)$ and $P_{\beta}(T)$ as products of powers of distinct monic irreducible polynomials $f(T) \in K[T]$.

$$
P_{\alpha}(T)=\prod_{f} f(T)^{m(f)}, \quad P_{\beta}(T)=\prod_{f} f(T)^{n(f)}
$$

Show that the vector space

$$
U:=\left\{\psi \in \operatorname{Hom}_{K}(V, W) \mid \psi \circ \alpha=\beta \circ \psi\right\}
$$

has dimension

$$
r\left(P_{\alpha}, P_{\beta}\right):=\sum_{f} m(f) n(f) \operatorname{deg} f
$$

(2) Apply item 1 together with Tate's isogeny theorem to conclude that

$$
\operatorname{rank}_{\mathbb{Z}} \operatorname{Hom}_{\mathbb{F}_{q}}(A, B)=r\left(P_{A}, P_{B}\right)
$$

(3) Show that the following are equivalent:
(a) B is \mathbb{F}_{q}-isogenous to an abelian subvariety of A defined over \mathbb{F}_{q}.
(b) For some $\ell, V_{\ell} B$ is isomorphic to a sub- $G_{\mathbb{F}_{q}}$-representation of $V_{\ell}(A)$.
(c) $P_{B}(T)$ divides $P_{A}(T)$.
(4) Show that the following are equivalent.
(a) A and B are \mathbb{F}_{q}-isogenous.
(b) $P_{A}(T)=P_{B}(T)$.
(c) The zeta functions of A and B are equal.
(d) $\# A\left(\mathbb{F}_{q^{n}}\right)=\# B\left(\mathbb{F}_{q^{n}}\right)$ for every $n \geq 1$.

References

[Tat66] John Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134-144. MR 206004

[^0]: ${ }^{a}$ Hint: Find an open neighborhood U of $0 \in M \otimes \mathbb{R}$ which does not contain any nontrival element of $M^{d i v}$.

