
ABELIAN VARIETIES OVER FINITE FIELDS:

PROBLEM SET 2

SANTIAGO ARANGO-PIÑEROS, SEOKHYUN CHOI, ALICE LIN, YUXIN LIN, AND MINGJIA ZHANG

Instructions: The goal of this problem set is to get comfortable with the Tate module and the endomor-
phism ring of an abelian variety. Problems marked (⋆), (⋆⋆), and (⋆ ⋆ ⋆) denote beginner, intermediate, and
advanced problems, respectively. For the computational problems (Ï) you may use CoCalc or MAGMA’s
online calculators.

Notation: As customary, p will be a prime, and q will be a power of p. We use ℓ to denote a prime, usually
different from p. For a field K, we will use GK to denote the absolute Galois group of K.

1. Background problems

If this is your first encounter with the p-adics, it is worth to spend some time with Problem 1.

Problem 1 (⋆)
Let p be a prime, and define the p-adic valuation vp : Z → Z ∪ {∞} by the unique factorization property
of the integers; that is:

a =
∏
p

pvp(a), for a ̸= 0.

In other words, vp(a) is the largest power of p dividing a, and put vp(0) := ∞. We extend the p-adic
valuation to Q in the usual way by letting vp(a/b) := vp(a)− vp(b) for integers a, b. In this problem, we
will establish some of the main properties of vp.

(1) Show that vp : Q→ Z ∪ {∞} is a non-archimedean valuation. That is, prove that:
(a) vp(x) =∞ if and only if x = 0.
(b) vp(xy) = vp(x) + vp(y) for every x, y ∈ Q.
(c) vp(x+ y) ≥ min{vp(x), vp(y)} for every x, y ∈ Q.
(d) vp(x+ y) = min{vp(x), vp(y)} if vp(x) ̸= vp(y).

(2) Define the p-adic absolute value | · |p : Q → R ∪ {∞} by |x|p := p−vp(x). Show that | · |p is a non-
archimedean absolute value. That is, prove that:
(a) |x|p = 0 if and only if x = 0.
(b) |xy|p = |x|p|y|p for every x, y ∈ Q.
(c) |x+ y|p ≤ max{|x|p, |y|p} for every x, y ∈ Q.

(3) Denote by | · |∞ the usual absolute value of Q. Prove the product formula:

|x|∞ ·
∏
p

|x|p = 1, for any x ∈ Q×.

(4) Notice that each for each prime p ≤ ∞, the p-adic absolute value defines a metric on Q (for p =∞ this
is the usual euclidean distance on the rationals). Intuitively, we say a rational number is p-adically
small if it is “very” divisible by p. Show that (Q, | · |p) is not a complete metric space. That is, give
an example of a Cauchy sequence that does not converge in Q.

(5) Show that for two different primesa p and ℓ, the identity is not a homeomorphism between (Q, | · |p)
and (Q, | · |ℓ).

(6) Just as how R is the completion of Q with respect to the usual absolute value | · |∞, we define Qp as
the completion of Q with respect to the p-adic absolute value. Zp is the unit interval of Qp; that is

Zp := {x ∈ Qp : |x|p ≤ 1}.
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Show that Zp is compact and an integral domain.
(7) Convince yourself that you understand why Zp

∼= lim←−Z/pnZ.

aIncluding the prime at infinity!

The next problem allows you to get your hands on some 5-adic numbers. You might want to reflect on
Hensel’s lemma.

Problem 2 (⋆)
Show that −1 is a square in Q5. Manually calculate one of the square roots to 3 digits of 5-adic precision.
(Ï) Use your favorite computer algebra system to calculate both roots to 100 digits of 5-adic precision.

The following problem introduces key concepts and theorems about semisimple algebras, as needed in the
proof of Tate’s isogeny theorem (to be discussed in Lecture 3).

Problem 3 (⋆⋆)
Let K be a field. A K-algebra over K is called semi-simple if any left ideal admits a direct complement.
By a central simple algebra over K, we mean a finite-dimensional K-algebra which is simple and for which
the center is exactly K. By a central division algebra, we mean a central simple algebra which is also a
division algebra.

(1) Show that a matrix algebra overK is a central simple algebra. If a central simple algebra is isomorphic
to a matrix algebra, then we say that it is a split central simple algebra.

(2) (Wedderburn’s theorem) Show that every central simple algebra is isomorphic to a matrix algebra of
some central division algebra.

(3) (Skolem-Noether theorem) Show that every automorphism of a central simple algebra is an inner
automorphism.

(4) (Double centralizer theorem) Let A be a semisimple subalgebra of a finite dimensional central simple
algebra B over a field K. Then, show that

CB(CB(A)) = A.

Also show the dimension formula

[B : K] = [A : K][CB(A) : K].

(5) Assume that A is a semisimple algebra over a field K, with a finite-dimensional faithful representation
V over K. Then, show that

CEnd(V )(CEnd(V )(A)) = A.

(6) Let A be a central division algebra over K. Use the double centralizer theorem to show that [A : K]
is a square. If A is a division algebra over Q, we can define its reduced degree over Q as [A : Q]red :=

[A : Z(A)]
1
2 [Z(A) : Q], where Z(A) = CA(A) is the center of A.

In the next problem we classify central simple algebras over local fields using the cohomological interpre-
tation of the Brauer group.

Problem 4 (⋆ ⋆ ⋆)
Let K be a field. Recall that a central simple algebra over K is a simple K-algebra with center equal to K.
Let Br(K) be the Brauer group over K, the groupa of equivalence classes of central simple algebras over
K. For any field extension L/K, let Br(L/K) denote the subgroup of classes of central simple algebras
over K that split over L. That is, [B] ∈ Br(K) is in Br(L/K) if and only if B ⊗K L ∼= Mn(L) for some
n ≥ 1. We have a functorial isomorphism

φK : Br(K) ∼= H2(GK , (Ksep)×)
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inducing an isomorphism
φL/K : Br(L/K) ∼= H2(Gal(L/K), L×),

for any finite separable extension L/K. Furthermore, φK([A⊗K B]) = φK(A) + φK(B).

(1) Show that Br(R) ∼= 1
2Z/Z, and that the non-trivial element can be represented by H; Hamilton’s

original quaternion algebra over R. We define the Hasse-invariant of the representatives such that
inv∞([R]) = 0 and inv∞([H]) = 1

2 .

Now let Kv be a non-archimedean local field. We can describe the composition

invv : Br(Kv) ∼= H2(GKv
, (Kun

v )×) ∼= Q/Z
as follows. Given a central division algebra D over Kv, let Kv ⊆ L ⊆ D be its maximal subfield. L is an
unramified extension of Kv of degree n := [D : Kv]

1
2 .

(2) Let σ ∈ Gal(L/Kv) be the q-Frobenius automorphism on L, where q is the size of the residue field of
Kv. Use the Skolem-Noether theorem to show that there exists α ∈ D, unique up to a multiple in L,
such that for every β ∈ L, σ(β) = αβα−1.

(3) Let π be a uniformizer of Kv. Show that αn = uπr for some u ∈ O×
L and r ∈ Z. Then we define

the Hasse-invariant of D to be invv(D) := r/n mod Z. Show that invv(D) is well-defined. That is, it
does not depend on the choice of α.

(4) Let Qph be the unique unramified extension of Qp of degree h. For a pair of integers (m,h) such
that h ≥ 1,m ≥ 0, gcd(h,m) = 1, consider Dp,h,m. It is the division algebra generated by Qph and

an element α, with multiplication defined such that for β ∈ Qph , αβ = βσα, and αh = pm. Here,
σ ∈ Gal(Qph/Qp) is the p-Frobenius automorphism of Qph .
(a) Verify that Dp,h,m is a central division algebra over Qp and Qph is a maximal subfield. Compute

its Hasse-invariant invp(Dp,h,m) as an element of 1
hZ/Z. Determine the valuation on D that

extends the p-adic valuation on Qph .
(b) Notice that inside D, we have an order O generated by Zph and α, where Zph is the ring of

integers in Qph . Determine the pairs (m,h) for which O is a maximal order.b

aIt is not obvious that this set forms a group. Think about what the group operations are!
bHint: notice that O ⊆ OD := {x ∈ D : v(x) ≥ 0}.

2. Endomorphism algebras of Abelian Varieties

Let’s start by calculating some endomorphism rings! You may use the LMFDB , or your favorite computer
algebra system to verify your answers.

Problem 5 (⋆⋆)
Let Z(3) be the localization of Z at the prime ideal (3), and E be the elliptic curve over Z(3) defined by

y2z = x3 − xz2.

In PSET 1, Problem 3, we computed the endomorphism ring of EF32
. Now compute the endomorphism

rings End(EF3
), End(EQ(i)), End(EQ), and compare them. Here, i is a root of T 2 + 1 ∈ Q[T ].a

aRemark: Recall that the endomorphism ring of an elliptic curve E over a field k is either Z, an order in an imaginary

quadratic field, or an order in a quaternion algebra. If char(k) = 0, only the first two are possible. [Sil09, Corollary III.9.4]

Section §3.2 of the lecture notes defines the isogeny category of abelian varieties over a field k and states
that it is a semisimple abelian category. Let’s unpack this idea.

Problem 6 (⋆⋆)
Let k be a field.

(1) Justify why: A ∼ B if and only if A is isogenous to B, is an equivalence relation on the set of abelian
varieties over k.
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(2) Show that for every simple abelian variety A, the endomorphism algebra End0(A) := End(A)⊗Q is
a division algebra over Q.

(3) Reality check: End(A) is an order in End0(A).
(4) If A is not necessarily simple, conclude that End0(A) is a semisimple algebra over Q.

In the next problem, we sketch a proof of Lenstra [Len96] of a fundamental theorem of Deuring [Deu41].

Problem 7 (⋆⋆)
Let E be an elliptic curve defined over a field k of characteristic p, and suppose that rankZ End(E) = 4.
Then B := End(E)⊗Q is a quaternion algebra over Q ramified only at p and ∞. To prove this, denote
by O := EndE ⊂ B, and follow the following steps:

(1) Let n be prime to p. Recall that EndE[n] ∼= M2(Z/nZ).
(2) Show that O/nO → EndE[n] is injective.
(3) Show that #O/nO = n4 and conclude that O/nO → EndE[n] is an isomorphism.
(4) Show that for every prime ℓ ̸= p we have that Oℓ

∼= M2(Zℓ) as Zℓ-algebras.
(5) Argue why B is ramified at ∞.
(6) Recall the fundamental exact sequence from class field theory

(2.1) 0→ Br(Q)→
⊕
v

Br(Qv)
∑

v invv−−−−−→ Q/Z→ 0

where the first map is given by B →
⊕

v B ⊗Q Qv and the second map is given by (Bv)v →∑
v invv(Bv). Use Equation 2.1 to show B is ramified at exactly ∞ and p.a

(7) Show that B ⊗Q Qp
∼= Dp,2,1, where Dp,2,1 is defined as in 4. b

aSee [Voi21, Example 14.2.13] for an explicit description of these quaternion algebras.
bHint: Show that they have the same Hasse-invariant.

Problem 8 (⋆⋆)
Let A be a simple g-dimensional abelian variety defined over Fq. From Problem 6 we have that End0(A)
is a division algebra over Q. Recall that for a division algebra D, we defined its reduced degree by
[D : Q]red := [D : Z(D)]1/2[Z(D) : Q]. We say that A has complex multiplication if the reduced degree
[End0(A) : Q]red is equal to 2g.

Let L be the maximal commutative sub-algebra of D = End0(A). Show that A has complex multiplication
if and only if [L : Q] = 2g.a

aHint: Use the double centralizer theorem.

Recall the definition and notation of the q-Frobenius endomorphism ϕq from PSET 1, Problem 4.

Problem 9 (⋆)
Consider an ordinary elliptic curve E over Fq.

(1) Show that L = Q(ϕq) has [L : Q] = 2. Conclude that E has complex multiplication.
(2) Show Q(ϕq) is a quadratic imaginary extension of Q.a

(3) Show that for every element α ∈ End0(E), α commutes with ϕr
q for some r ≥ 1.

(4) Show that for any m ≥ 1, ϕm
q = aϕq + b for some a, b ∈ Z with a ̸= 0.

(5) Show that α commutes with ϕq and that α ∈ Q(ϕq). Conclude that End
0(E) is a quadratic imaginary

extension of Q.

aHint: See [Sil09][V.1.1] for Hasse bound.
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3. The Tate module of an Abelian Variety

Recall from Lecture 2 the existence of a Weil pairing on the Tate module of an abelian variety. In the
case of elliptic curves, we can use the Weil pairing to deduce useful formulas for the trace and determinant
of the map on the Tate module of E induced by an isogeny.

Problem 10 (⋆⋆)
Let E be an elliptic curve defined over a field k, and ℓ be a prime different from the characteristic of k.
Let TℓE be the ℓ-adic Tate module of E. The Weil pairing

e : TℓE × TℓE → Tℓµ

is a bilinear, alternating, non-degenerate, Galois-invariant pairing.a Here Tℓµ := lim←−µℓn , where µℓn is the

group of ℓn-th roots of unity in k̄. Moreover, for ϕ ∈ End(E) and Tℓ(ϕ) ∈ End(TℓE), the adjoint of Tℓ(ϕ)

with respect to e corresponds to the dual isogeny ϕ̂. That is,

e(Tℓ(ϕ)(P ), Q) = e(P, Tℓ(ϕ̂)(Q)).

Using the existence of e and the fact that ϕ ◦ ϕ̂ = ϕ̂ ◦ ϕ = [deg(ϕ)], show that

• det(Tℓ(ϕ)) = deg(ϕ), and
• tr(Tℓ(ϕ)) = 1 + deg(ϕ)− deg(1− ϕ).

aSee [Sil09][III.8].

Problem 11 (⋆⋆)
Here are some facts about the q-Frobenius endomorphism ϕq of an elliptic curve E/Fq:

(a) ϕq is a purely inseparable isogeny of degree q.

(b) Its dual isogeny ϕ̂q is the unique isogeny satisfying ϕq ◦ ϕ̂q = ϕ̂q ◦ ϕq = [q].
(c) The isogeny [m] + [n]ϕq is separable if and only if p ∤ m. In this case, we have that

#ker([m] + [n]ϕq) = deg([m] + [n]ϕq).

Let ℓ ̸= p be a prime and TℓE be the ℓ-adic Tate module of E.

(1) Denote by PE(T ) the characteristic polynomial of Tℓ(ϕq), the so-called characteristic polynomial of
Frobenius. Show that PE(T ) = T 2 − aT + q, where a = q+ 1−#E(Fq). Let α, α ∈ C be the roots of
PE(T ). Show that

#E(Fqn) = qn + 1− αn − αn,

for every positive integer n.
(2) The zeta function attached to E is the formal power seriesa

Z(E/Fq, T ) := exp

( ∞∑
n=1

#E(Fqn)
Tn

n

)
.

Show thatb Z(E/Fq, T ) =
1−aT+qT 2

(1−T )(1−qT ) .

aIf we let T = q−s, then ζE/Fq (s) = Z(E/Fq , q−s) is a holomorphic function with variable s, and it is the analogue of

ζFq [t](s) in PSET 0, Problem 8.
bThis is the rationality part of the Weil conjectures for E/Fq .
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